
ChorusOS 5.0 Features and
Architecture Overview

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900
U.S.A.

Part No: 806–6897–10
December 2001

Copyright 2001 Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303-4900 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, Sun Embedded Workshop, Sun WorkShop, Netra, ChorusOS,
Solstice, JDK, Java, J2ME, JVM, Solaris Web Start Wizards and Solaris are trademarks, registered trademarks, or service marks of Sun Microsystems,
Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc. Adobe is a registered trademark of Adobe Systems, Incorporated. Adobe logo is a trademark or registered trademark of Adobe
Systems, Incorporated.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2001 Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303-4900 U.S.A. Tous droits réservés

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, Sun Embedded Workshop, Sun WorkShop, Netra, ChorusOS, Solstice,
JDK, Java, J2ME, JVM, Solaris Web Start Wizards et Solaris sont des marques de fabrique ou des marques déposées, ou marques de service, de Sun
Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des
marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une
architecture développée par Sun Microsystems, Inc. Adobe est une marque enregistreé de Adobe Systems, Incorporated. Adobe logo est une marque
de Adobe Systems, Incorporated.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

011121@2870

Contents

Preface 13

1 Introduction to the ChorusOS 5.0 Operating System 17

What is the ChorusOS Operating System? 17

Component-Based Architecture 18

Supported Target Families 18

What’s New in 5.0? 18

2 Architecture and Benefits of the ChorusOS Operating System 21

General Architecture 21

Multi-Platform Development Environment 23

ChorusOS-Solaris Convergence 25

Portable Binary System 26

Configurability 26

Configuration Profiles 29

System Image 30

APIs in the ChorusOS Operating System 30

POSIX Processes 30

ChorusOS Actors 31

ChorusOS 4.x Legacy applications 31

Microkernel 31

Core Executive 32

Actors 32

Threads 36

POSIX Services 38

3

User and Supervisor Processes 39

High Availability 39

Black Box 40

Dynamic Reconfiguration 40

Memory Protection 40

Watchdog Timer Protection 40

Real-Time Operation 41

Development Lifecycle 41

Installing ChorusOS 41

Developing an Application 42

Developing a System 43

Applications 43

3 ChorusOS Operating System Features 45

Basic Services 45

Core Executive API 45

Optional Actor Management Services 47

User Mode (USER_MODE) 47

GZ_FILE 48

Dynamic Libraries (DYNAMIC_LIB) 48

Shared Libraries 48

Thread Synchronization (MONITOR) 49

POSIX Process Management API 50

Scheduling 51

First-in-First-Out Scheduling (SCHED_FIFO) 51

Multi-Class Scheduling (SCHED_CLASS) 52

Customized Scheduling 53

Synchronization 53

Mutexes (MUTEX) 53

Real-Time Mutex (RTMUTEX) 54

Semaphores (SEM) 55

Event Flags (EVENT) 55

Communications 56

Local Access Point (LAP) 57

Inter-Process Communication (IPC) 58

Mailboxes (MIPC) 64

Drivers 66

4 ChorusOS 5.0 Features and Architecture Overview • December 2001

Benefits of Using the Driver Framework 66

Framework Architecture Overview 67

Driver Framework APIs 68

BSP Hot Swap 80

Hot Swap Support 80

Hot Swap Sequences 81

Hot Restart and Persistent Memory 82

Persistent Memory 83

Hot Restart Overview 84

POSIX Features 90

POSIX Signals (POSIX-SIGNALS) 90

POSIX Real-Time Signals (POSIX_REALTIME_SIGNALS) 91

POSIX Threads (POSIX-THREADS) 92

POSIX Timers (POSIX-TIMERS) 94

POSIX Message Queues (POSIX_MQ) 95

POSIX Semaphores (POSIX-SEM) 95

POSIX Shared Memory (POSIX_SHM) 96

POSIX Sockets (POSIX_SOCKETS) 97

Input/Output (I/O) 98

I/O Options 99

File Systems 101

Processes 109

Memory Management 109

Time Management 116

Trace Management 123

Environment Variables (ENV) 127

Private Data (PRIVATE-DATA) 128

Password Management 129

Administration 130

Command Interpreter 130

The sysadm.ini File 131

System Administration Commands 131

Networking 135

Network Protocols 135

Network Libraries 141

Network Commands 144

System Instrumentation 147

Contents 5

The sysctl Facility 149

Device Instrumentation and Management 150

System Events 152

OS_GAUGES 154

Microkernel Statistics (MKSTAT) 155

Microkernel Memory Instrumentation 155

Microkernel Supervisor Page Instrumentation 156

Microkernel Execution Instrumentation 156

Microkernel CPU Instrumentation 157

POSIX Process Instrumentation 157

File Instrumentation 158

Per-File System Instrumentation 159

Per-Actor and Per-Process Instrumentation 159

Microkernel Per-Thread Instrumentation 160

Optional Java Functionality 160

Java Runtime Environment (JRE) 161

Java Dynamic Management Kit (JDMK) 162

Tools 162

Ews Graphic Configuration Tool 162

Built-in Debugging Tools 163

A Optional ChorusOS Operating System Components 167

B Complete List of Available ChorusOS System Calls 171

POSIX APIs 171

POSIX System Calls (2POSIX) 171

FTP Daemon Library (3FTPD) 173

Mathematical Libraries (3M) 173

POSIX Library Functions (3POSIX) 174

RPC Services (3RPC) 176

Standard C Library Functions (3STDC) 179

Telnet Services (3TELD) 183

Legacy POSIX-Like Extended APIs 183

New POSIX-Like Extended APIs 184

POSIX System Calls (2POSIX) 184

POSIX Library Functions (3POSIX) 185

6 ChorusOS 5.0 Features and Architecture Overview • December 2001

System Microkernel APIs 185

Microkernel System Calls (2K) 185

Data Link Services (2DL) 190

Monitoring Services (2MON) 190

Virtual Memory Segment Services (2SEG) 191

Device Driver Interfaces (9DDI) 192

Driver to Kernel Interfaces (9DKI) 192

Driver Implementations (9DRV) 195

Standard C Library Functions (3STDC) 196

General Microkernel APIs 198

Glossary 199

Index 213

Contents 7

8 ChorusOS 5.0 Features and Architecture Overview • December 2001

Tables

TABLE 1–1 New Features in ChorusOS 5.0 19

TABLE 3–1 ChorusOS Network Commands 144

TABLE A–1 Optional Operating System Components 167

9

10 ChorusOS 5.0 Features and Architecture Overview • December 2001

Figures

FIGURE 2–1 The Layered Architecture of the ChorusOS Operating System 21

FIGURE 2–2 The ChorusOS Component-based Architecture 27

FIGURE 2–3 User and Supervisor Address Spaces 35

FIGURE 2–4 A Multi-Threaded Actor 36

FIGURE 3–1 Driver Framerwork Architecture 68

FIGURE 3–2 A typical restartable actor 85

FIGURE 3–3 Restart Groups in a ChorusOS Operating System 87

FIGURE 3–4 Group restart 87

FIGURE 3–5 Hot Restart Architecture 89

FIGURE 3–6 Rise and Clear Values for a High Threshold 148

FIGURE 3–7 Rise and Clear Values for a Low Threshold 148

11

12 ChorusOS 5.0 Features and Architecture Overview • December 2001

Preface

The ChorusOS 5.0 Features and Architecture Overview describes the features and
architecture of the ChorusOS operating system. The ChorusOS 5.0 Features and
Architecture Overview serves as a general overview of the architecture of the ChorusOS
operating system, presenting its particularities and advantages, as well as introducing
all its features and components.

Who Should Use This Book
The ChorusOS 5.0 Features and Architecture Overview is intended for all users. It
provides a global view of the ChorusOS operating system and as such does not
present any procedural information or details of implementation.

Before You Read This Book
This book serves as a stand-alone presentation of ChorusOS and as such does not
necessarily require you to read other manuals first.

13

How This Book Is Organized
The ChorusOS 5.0 Features and Architecture Overview is organized as follows:

Chapter 1 provides a general introduction to the ChorusOS operating System.

Chapter 2 describes the architecture and main advantages of the ChorusOS operating
system.

Chapter 3 presents the features ChorusOS architecture.

Appendix A lists the optional components that can be configured in into an instance of
the ChorusOS operating system.

Appendix B provides a complete list of the system calls available in the ChorusOS
operating system.

Glossary provides a glossary of ChorusOS operating system terminology.

Related Books
This book provides a global overview of the ChorusOS operating system. For precise
information regarding installation, development, implementation, deployment and
administration, please consult the relevant volumes of the rest of the ChorusOS
documentation set.

For information about the structure of the ChorusOS documentation set, see About
ChorusOS 5.0 Documentation.

Ordering Sun Documents
Fatbrain.com, an Internet professional bookstore, stocks select product documentation
from Sun Microsystems, Inc.

For a list of documents and how to order them, visit the Sun Documentation Center on
Fatbrain.com at http://www1.fatbrain.com/documentation/sun.

14 ChorusOS 5.0 Features and Architecture Overview • December 2001

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Typographic Conventions
The following table describes the typographic changes used in this book.

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with on-screen
computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

Preface 15

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

16 ChorusOS 5.0 Features and Architecture Overview • December 2001

CHAPTER 1

Introduction to the ChorusOS 5.0
Operating System

This chapter provides a brief introduction to the ChorusOS operating system,
describing its purpose, architecture, the types of target supported, and the
enhancements added in version 5.0.

What is the ChorusOS Operating
System?
The ChorusOS operating system is a highly scalable and reliable embedded operating
system that has established itself among top telecommunications suppliers. The
ChorusOS operating system is used in public switches and PBXs, as well as within
access networks, cross-connect switches, voice-mail systems, cellular base stations,
web-phones, and cellular telephones.

The Sun Embedded Workshop™ software provides a development environment with
the necessary tools to build and deploy the ChorusOS operating system on a
telecommunications platform. The ChorusOS operating system is the embedded
foundation for Sun’s Service-Driven Network. Offering high service availability,
complete hardware and software integration, management capabilities and Java™
technology support dedicated to telecom needs, the ChorusOS operating system
allows the dynamic and cost-efficient deployment of new features and applications
while maintaining the reliability and functionality of existing networks.

The ChorusOS operating system supports third-party protocol stacks, legacy
applications, and applications based on real-time and Java technology, on a single
hardware platform.

17

Component-Based Architecture
The ChorusOS operating system can be tuned very finely to meet the requirements of
a given application or environment. The core executive component is always present
in an instance of the ChorusOS operating system. Optional features are implemented
as components that can be added to, or removed from, an instance of the ChorusOS
operating system.

Each API function in the ChorusOS operating system is contained in one or more of
the configurable components. As long as at least one of these components is
configured into a given instance of the operating system, the function is available.
Some library functions are independent of any specific component and are always
available.

The optional ChorusOS operating system components are listed in Appendix A.

Supported Target Families
ChorusOS 5.0 runs over Solaris operating environments, and supports the following
targets:

� UltraSPARC II (CP1500 and CP20x0)

� Intel x86, Pentium

� Motorola PowerPC 750 and 74x0 processor family (mpc7xx)

� Motorola PowerQUICC I (mpc8xx) and PowerQUICC II (mpc8260)
microcontrollers

What’s New in 5.0?
The following new features have been added in release 5.0 of the ChorusOS operating
system, with an emphasis given to enhancing the high availability and real time
services:

18 ChorusOS 5.0 Features and Architecture Overview • December 2001

TABLE 1–1 New Features in ChorusOS 5.0

Feature Description

Black Box To provide enhanced tracking of system
failures.

IPv6 IPv6 base services and commands.

NTP Network Time Protocol

POSIX real-time API Including Portable Operating System Interface
(POSIX) signals, real-time signals, and process
management to complement the existing
ChorusOS API, providing a standard, easy
migration of UNIX code and bringing the
ChorusOS operating system closer to the
Solaris operating environment.

Shared Libraries To extend the existing dynamic libraries
feature.

System Events To notify user-level applications of events in
the system or the drivers.

System Instrumentation System resource instrumentation (with
counters and gauges) to control resource usage
and anticipate possible over-use or starvation.

System Logging To provide further logging facilities.

Watchdog Timer Protection To monitor the system and take action in case
of failure.

These new features are covered in more detail in Chapter 2 and Chapter 3 in this
overview.

Introduction to the ChorusOS 5.0 Operating System 19

20 ChorusOS 5.0 Features and Architecture Overview • December 2001

CHAPTER 2

Architecture and Benefits of the
ChorusOS Operating System

This chapter describes the general architecture and the benefits provided by the
ChorusOS operating system.

General Architecture
The architecture of the ChorusOS operating system is divided into layers built one on
top of the other, as illustrated in the following figure.

21

A p p l i c a t i o n s

C V M

A d mi n i s t r a t i o n

C o mma n d p r o c e s s e s
I n i t i a l s y s t e m i n t e r p r e t e r

S y s t e m a d mi n

Ma n a g e me n t

C _ OS

D r i v e r s

S p e c i f i c & g e n e r i c
F a mi l y p r o c e s s o r

M i c r o-
k e r n e l

C h o r u s OS

FIGURE 2–1 The Layered Architecture of the ChorusOS Operating System

The following sections provide descriptions of the key components and main
advantages of the ChorusOS operating system.

22 ChorusOS 5.0 Features and Architecture Overview • December 2001

Multi-Platform Development
Environment
The Sun Embedded Workshop software, the ChorusOS operating system development
environment, provides the tools and libraries for developing C and C++ applications
on a range of supported platforms. Development takes place on one system, the host
(UltraSPARC), and the operating system is deployed on one or more supported
reference target boards.

The ChorusOS operating system also provides several utilities for managing the
operating system and applications running on the target. These utilities include
components that can be added to the operating system configuration.

The development environment includes:

C & C++ Development
Toolchain:

GNU gcc and g++ cross-compilers.

C & C++ Symbolic
Debugger:

GNU GDB debugger for the ChorusOS operating
system allows you to see what is going on inside an
application while it executes or what an application
was doing at the moment it crashed. The GDB
Debugger offers the following features:

� Easy-to-use graphical user interface (GUI)
� Support for debugging several applications running

on multiple targets with different processor
architectures

� Debugging of multithreaded user and supervisor
applications, including relocatable applications

� Flexible thread handling: one window per thread,
breakpoint per thread or per application

� Visualization of ChorusOS abstractions related to
debugged applications or global to the system

� Application debug over Ethernet or serial line, and
system debug over serial line

� Ability to debug almost every piece of code,
including the boot process, the C_OS, the drivers
and the applications

An Embedded Debugger: Which provides symbolic debugging for all system
applications and can be called automatically in the case
of unrecoverable error.

Configuration Tools: The ChorusOS operating system is configured simply
by providing a list of the required components. The

Architecture and Benefits of the ChorusOS Operating System 23

configuration tools provided, as part of the Sun
Embedded Workshop software, manage any hidden
dependencies or possible incompatibilities.

The configuration tools are designed to be flexible
enough to be extended to configure any other system
component (OS or drivers) or even application actors
that are part of the ChorusOS operating system image.

You can use either the graphical interface, called Ews,
or a command-line interface to view and modify the
characteristics of a ChorusOS operating system image.
In addition to the possibility of selecting only the
required components for the operating system, the Sun
Embedded Workshop software supports three other
levels of system configuration:

Resources For the list of components selected, it is
possible to fix the amount of resources
to be managed, and to set the value of
tunable parameters; for example, the
amount of memory reserved for
network buffers.

Boot Actors It is possible to include additional
actors in the system image loaded at
boot time.

Environment System-wide configuration parameters
can be fixed by setting UNIX-like
environment strings that the operating
system and actors retrieve upon
initialization; for example, an IP
address can be defined globally by
setting
LOCAL_INADDR="192.33.15.18"
using the configuration tool.

A set of Libraries:

� Thread-safe C++
� ANSI-C (POSIX 1003.1 compliant)
� POSIX 1003.1 timers, message queues, shared

memory, and semaphores
� POSIX 1003.1 pthreads
� POSIX 1003.1g sockets
� BSD File I/O
� Thread-safe mathematical ANSI-C
� Mathematical IEEE-754
� Library resolve for DNS/NIS client access

24 ChorusOS 5.0 Features and Architecture Overview • December 2001

� C++ iostream
� C++ exceptions
� C++ STL Management of per-thread private data
� LDAP
� Sun RPC
� X11, Xaw, Xext, Xmu, and Xt libraries

The Sun Embedded Workshop software also provides several utilities for managing
the operating system and applications running on the target. These utilities include
components that you can add to the operating system configuration.

The application management utilities include:

Netboot: Used to boot the ChorusOS operating system remotely using TFTP,
when the target does not provide an embedded boot facility

Default Console: Used to direct all console I/O to a local display or to a remote host
via a serial line

Remote Shell
(rsh):

Used to execute commands remotely on the target from the host;
in particular, this feature allows applications to be loaded
dynamically

Resource Status: Used to list the current status of all operating system resources.
For example, actors, threads, and memory.

Logging (LOG): Used to log operating system events as they occur on the target

Monitoring (MON): Used to monitor operating system objects, so that user-defined
routines are called when certain operations are performed on
specified objects

Profiling: Used to run profiling sessions on system applications

Benchmarking
(PERF):

Used to benchmark the operating system

ChorusOS-Solaris Convergence
The ChorusOS operating system is the real-time embedded operating system
companion to the Solaris operating environment, providing the following advantages:

Design flexibility
The sharing between the two operating systems means developers can decide
exactly how much of their solution will use the Solaris environment, and how
much will be based on the ChorusOS operating system, but use all the same
surrounding technology.

Architecture and Benefits of the ChorusOS Operating System 25

Gradual migration
By making it easy for developers to choose any percentage split between the
ChorusOS operating system and the Solaris operating system, and by making all
the surrounding modules and technologies converge with both, Sun enables
developers and their operator clients to begin at any point in the evolution from
real-time embedded to computer-based systems, and migrate slowly to where they
want to go as they replace obsolete systems and invest in new technologies.

Portable Binary System
For each supported target processor family, the ChorusOS operating system comes
with the implementation of at least one reference target board and provides a
complete set of well-defined interfaces allowing you to port the ChorusOS operating
system to other reference boards in the same target family. The Boot Kernel Interface
(BKI) and Device Driver Interface (DDI) available in the binary release of ChorusOS
allow you to customize the boot method and to add new drivers.

Configurability
The ChorusOS operating system uses a flexible, component-based architecture that
allows different services to be configured into the runtime instance of the ChorusOS
operating system. This allows the runtime instance of the ChorusOS operating system
to be finely tuned according to the underlying hardware platform, the memory
footprint requirements, and the application features.

Essential services required to support real-time applications running on the target
system are provided by the core executive, and each optional feature of the operating
system is implemented as a separate runtime component that can be added to, or
removed from the operating system, as required. This means that the operating system
can be configured very accurately to meet the exact needs of a given application or
environment, saving on memory and improving performance. Additional components
can be added, to create a tailor-made instance, to the level of the resources available.

The core executive can support multiple, independent applications running in both
user and supervisor memory space. The core executive can be complemented with
additional components to add the features required to support a given application.
Additional components supplied by the Sun Embedded Workshop software include:

� Framework and drivers for building board support packages

26 ChorusOS 5.0 Features and Architecture Overview • December 2001

� Interrupt management
� Processor scheduling
� Synchronization
� Memory management
� Communications
� Time management
� File systems
� Network protocols
� Dynamic process management
� POSIX application programming interfaces (APIs)
� Support for Java applications

This flexible architecture is shown in Figure 2–2.

Architecture and Benefits of the ChorusOS Operating System 27

Communications Synchronization Memory Management

Interrupt Management
Time Management Processor Scheduling

Event Flags

Mutexes

Semaphores

Time Utilities

Time of Day

Timers

Hot Restart

Executive

Core Executive

Mailboxes

Shared Memory

Message Queues

Distributed IPC
Local IPC Virtual

On-demand Paging

Flat

User defined

Round-robin

FIFO

POSIX APIs

User-defined Environment Support for Java applications

Java APIs

Dynamic
Process
Management

Environment

Monitoring

Logging

Host-Target
Debugger

Utilities

Microkernel APIs

I/O and Networking

 BSP / Drivers

Process Management

FIGURE 2–2 The ChorusOS Component-based Architecture

Detailed descriptions of the optional features for the ChorusOS operating system are
provided in the ChorusOS 5.0 Application Developer’s Guide.

By taking advantage of the component-based architecture, the application developer
can choose between an extremely small operating system that offers simple scheduling
and memory options, or a fully-featured, multi-API software platform.

28 ChorusOS 5.0 Features and Architecture Overview • December 2001

As well as making it possible to produce multiple versions of the operating system,
each of which is optimized for its own environment, the component-based architecture
provides the following additional benefits:

� Applications developed to run on a minimal configuration can also run unchanged
on a more complex configuration, thus providing an evolutionary path for
right-sizing devices and systems.

� The programming interfaces for the operating system components are available
publicly, providing an open environment for combining third-party system
software and development tools.

Configuration Profiles
The ChorusOS operating system provides two standard configuration profiles. These
serve as starting points for defining your own configuration:

� Basic profile
� Extended profile

Basic Profile
The basic profile is an example of a small deployment system and defines a realistic
configuration while keeping the footprint as small as possible. When using the basic
profile, all applications are usually embedded in the system image and launched
either at boot time as boot applications, or subsequently from the file system.

Extended Profile
The extended profile is an example of a development system and should be viewed as
a reference configuration for telecommunications systems. It includes support for
networking using remote Inter-Process Communication (IPC) over Ethernet and a
Network File System (NFS) client, using the protected memory model. It allows the
development and loading of multi-actor applications. These actors may use any
ChorusOS API, provided that the corresponding feature is part of the system
configuration.

Architecture and Benefits of the ChorusOS Operating System 29

System Image
Optional features are implemented as components that can be added to, or removed
from, an instance of the ChorusOS operating system, known as the system image. The
system image is made up of binary or executable files that define the operating system
and initial application processes. Once you have built your system image, you are
ready to start using the ChorusOS operating system. In this way, the operating system
can be very finely tuned to meet the requirements of a given application or
environment. The core executive component must always be present in a ChorusOS
system image.

Each API function in the ChorusOS operating system is contained in one or more of
the configurable components. As long as at least one of these components is
configured into a given system image, the function is available to be called. Some
library functions are independent of any specific component and are always available.

APIs in the ChorusOS Operating System
The ChorusOS operating system offers three sets of application programming
interfaces, including POSIX API compatibility. Each set is intended to serve a certain
class of applications.

POSIX Processes
These applications have access to a fully POSIX-compliant API for process
management, signals, threads, input/output, memory management, thread
sysnchronization, and timing services. This greatly extends the functionality of the
ChorusOS operating system, at the same time as allowing easier migration to
applications developed by the user, and closer conformity with the Solaris operating
environment.

These applications also have access to APIs developed for the ChorusOS services (non
existent in POSIX) that conform to the POSIX style, such as system events, black box,
watchdog, IPC, and MIPC.

30 ChorusOS 5.0 Features and Architecture Overview • December 2001

ChorusOS Actors
These include ChorusOS microkernel actors that run the system and the drivers. These
applications have access to APIs for all ChorusOS microkernel services.

ChorusOS 4.x Legacy applications
An API developed for release 4.x of the ChorusOS operating system, to support
applications developed with POSIX-like functionality without being fully
POSIX-compliant. Now superseded by the full POSIX implementation described
above, but retained for reasons of backward compatibility.

Caution – The POSIX processes and the ChorusOS actors combine to provide a rich
range of functionality. However, the two APIs are mutually exclusive. For details of
the implementations of these APIs in release 5.0 of the ChorusOS operating system,
see API(5FEA).

Microkernel
The microkernel is the heart of the ChorusOS operating system and contains the
minimum elements required to make a functioning system. In addition to the optional
components you can configure into your ChorusOS operating system, the microkernel
contains the kern, private data manager (pd), persistent memory manager (pmm), and
core executive components. The kern, pmm, and pd provide a minimum set of
interfaces that are used by the remainder of the operating system:

� The kern must be included in your system image. It implements the microkernel
interface and contains the KERN actor, the mk library and associated header files.

� The pd implements the per-thread data interface between the microkernel
subsystems, such as the UNIX subsystem.

� The pmm implements the persistent memory interface. The pmm is included
automatically in the system image when the HOT-RESTART feature is activated
(see “Hot Restart and Persistent Memory” on page 82).

The services provided by the core executive are explained below.

Architecture and Benefits of the ChorusOS Operating System 31

Core Executive
The essential services required to support real-time applications are provided by the
core executive. The core executive can support multiple, multithreaded applications
running in both user and supervisor memory space.

The core executive implements the basic ChorusOS execution model and provides the
framework for all other configurable features. Every system image must include the
core executive.

The core executive provides the following functionality:

� Support for multiple, independent applications
� Support for user and system (trusted) applications
� The unit of application modularization (actor)
� The unit of execution (thread)
� Thread control operations
� Local Access Point (LAP) management
� Exception management services
� A minimal interrupt management service

No synchronization, scheduling, time, communication or memory management
policies are wired into the core executive. These policies and services are provided by
additional features, that the user selects depending on the particular hardware and
software requirements.

Actors
This section provides an introduction to actors in the ChorusOS operating system. For
further information regarding topics such as loading actors, spawning actors, and
their execution environment and communications, see the ChorusOS 5.0 Application
Developer’s Guide.

Actor Definition
An actor is the unit of loading for an application. It serves also as the encapsulation
unit to associate all system resources used by the application and the threads running
within the actor. Threads, memory regions and communication end points are some
examples of these resources. These are covered in detail in the ChorusOS 5.0
Application Developer’s Guide. All system resources used by an actor are freed upon
actor termination.

32 ChorusOS 5.0 Features and Architecture Overview • December 2001

Some resources, known as anonymous resources, are not bound to a given actor. These
must be freed explicitly when they are no longer required. Examples of anonymous
resources are physical memory, reserved ranges of virtual memory, and interrupt
vectors.

The ChorusOS operating system is dedicated to the development and execution of
applications in a host-target environment where applications are developed, compiled,
linked, and stored on a host system and then executed on a reference target board
where the ChorusOS operating system is running. When configured correctly, the
ChorusOS operating system offers convenient support for writing and running
distributed applications.

Within the ChorusOS operating system environment, an application is a program or a
set of programs, usually written in C or C++. In order to run, an application must be
loaded on the ChorusOS runtime system. The normal unit of loading is called an actor
and is loaded from a binary file located on the host machine. As with any program
written in C or C++, an actor has a standard entry point:

int main()
{
/* A rather familiar starting point, isn’t it? */
}

The code of this type of application will be executed by a main thread that is created
automatically by the system at load time. The ChorusOS operating system provides
means to create and run more than one thread dynamically in an actor. It also offers
services that enable these actors, whether single-threaded or multi-threaded, to
cooperate, synchronize, locally or remotely exchange data, or get control of hardware
events, for example. These topics are covered step-by-step in the ChorusOS 5.0
Application Developer’s Guide.

An actor can be of two types: either a supervisor actor or a user actor. These types
define the nature of the actor address space. User actors have separate and protected
address spaces so that they cannot overwrite each other’s address spaces. Supervisor
actors use a common but partitioned address space. Depending on the underlying
hardware, a supervisor actor can execute privileged hardware instructions, such as
initiating an I/O, while a user actor cannot. See “User and Supervisor Actors”
on page 34.

Note – In flat memory, supervisor and user actors share the same address space and
there is no address protection mechanism.

Binary files from which actors are loaded can also be of two types: either absolute or
relocatable. An absolute binary is a binary where all addresses have been resolved and
computed from a well-known and fixed basis that cannot be changed. A relocatable
file is a binary that can be loaded or relocated at any address.

Architecture and Benefits of the ChorusOS Operating System 33

Both user and supervisor actors can be loaded either from absolute or relocatable
binary files. However, common practice is to load them from relocatable files to avoid
a static partitioning of the common supervisor address space, and to allow the loading
of user actors into this space in the flat memory model. This is covered in detail in
“User and Supervisor Actors” on page 34.

Naming Actors
Every actor, whether it is a boot actor or a dynamically-loaded actor, is uniquely
identified by an actor capability. When several ChorusOS operating systems are
cooperating together over a network in a distributed system, these capabilities are
always unique through space and time. An actor may identify itself with a predefined
capability, for example:

K_MYACTOR.

In addition, an actor created from the POSIX personality is identified by a local
process identifier.

host% rsh target hello
Started pid = 13
host%

Where target is the name of your target.

User and Supervisor Actors
There are two main kinds of actor run within the ChorusOS operating system
environment: user actors and supervisor actors.

A user actor runs in its own private address space so that if it attempts to reference a
memory address that is not valid in its address space, it encounters a fault and, by
default, is automatically deleted by the ChorusOS operating system.

Supervisor actors do not have their own fully-contained private address space.
Instead, they share a common supervisor address space, which means that an
ill-behaved supervisor actor can access, and potentially corrupt, memory belonging to
another supervisor actor. The common supervisor address space is partitioned
between the ChorusOS operating system components and all supervisor actors.

As supervisor actors reside in the same address space, there is no memory context
switch to perform when execution switches from one supervisor actor to another.
Thus, supervisor actors provide a trade-off between protection and performance.
Moreover, they allow execution of privileged hardware instructions and so enable
device drivers, for example, to be loaded and run as supervisor actors.

34 ChorusOS 5.0 Features and Architecture Overview • December 2001

On most platforms, the address space is split into two ranges: one reserved for user
actors and one for supervisor actors (see Figure 2–3). As user actor address spaces are
independent and overlap each other, the address where these actors run is usually the
same, even if the actors are loaded from relocatable binaries. On the other hand,
available address ranges in supervisor address space may vary depending on how
many and which supervisor actors are currently running. Since the ChorusOS
operating system is able to find a slot dynamically within the supervisor address space
to load an actor, the user does not need to be aware of the partitioning of the
supervisor address space: using relocatable binary files is sufficient.

User Actor C

User Actor B

User Actor A

Supervisor Actor 1

Supervisor Actor 2

ChorusOS

S
up

er
vi

so
r

A
dd

re
ss

 S
pa

ce
U

se
r

A
dd

re
ss

 S
pa

ce

FIGURE 2–3 User and Supervisor Address Spaces

In addition to being either a user or supervisor actor, an actor can be trusted, which
gives it the right to call certain privileged system services. Trusted actors are also
referred to as system actors. A supervisor actor is by definition trusted.

Architecture and Benefits of the ChorusOS Operating System 35

Inter-Actor Communication
The ChorusOS operating system offers a set of services for communicating between
actors. Two actors can be made to communicate by sharing memory. Other
communication mechanisms can be split into two categories:

� Mechanisms that are local, that is, they do not allow actors running on different
machines to communicate. The shared memory mechanism is one of these. You can
use the system features in order to implement distributed shared memory. Message
queues and local access points are other local communication mechanisms.

� Mechanisms that can be used transparently in a distributed way. The IPC service
enables actors to exchange messages transparently whether they are running on the
same machine or not.

Threads
This section provides an overview of the use of threads in the ChorusOS operating
system. For further information regarding threads, thread handling, thread
synchronization, thread scheduling, per-thread data, and threads and libraries, see the
ChorusOS 5.0 Application Developer’s Guide.

Within an actor, whether user or supervisor, one or more threads may execute
concurrently. A thread is the unit of execution in a ChorusOS operating system and
represents a single flow of sequential execution of a program. A thread is characterized
by a context corresponding to the state of the processor (registers, program counter,
stack pointer or privilege level, for example). See Figure 2–4.

36 ChorusOS 5.0 Features and Architecture Overview • December 2001

Code

Stack
Pointer

Main thread

main()

thLi: 13

Stack
Pointer

Stack
Pointer

Data

Dynamically
created threads

thLi: 14 thLi: 15

Communication
End Points

FIGURE 2–4 A Multi-Threaded Actor

Threads can be created and deleted dynamically. A thread may be created in an actor
other than the one to which the creator thread belongs, provided they are both
running on the same machine. The actor in which the thread was created is called the
home actor or the owning actor. The home actor of a thread is constant during the life
of the thread.

The system assigns decreasing priorities to boot actor threads, so that boot actor main
threads are started in the order in which they were loaded into the system image. If a
boot actor’s main thread sleeps or is blocked, the next boot actor threads will be
scheduled for running.

Although there are no relationships maintained by the ChorusOS operating system
between the creator thread and the created thread, the creator thread is commonly
called the parent thread, and the created thread is commonly called the child thread.

A thread is named by a local identifier referred to as a thread identifier. The scope of
this type of identifier is the home actor. In order to name a thread of another actor, you
must provide the actor capability and the thread identifier. It is possible for a thread to
refer to itself by using the predefined constant: K_MYSELF.

All threads belonging to the same home actor share all the resources of that actor. In
particular, they may access its memory regions, such as the code and data regions,

Architecture and Benefits of the ChorusOS Operating System 37

freely. In order to facilitate this access, the ChorusOS operating system provides
synchronization tools, covered in “Synchronization” on page 53 in this book.

Threads are scheduled by the microkernel as independent entities The scheduling
policy used depends on the scheduling module configured within the system. In a first
approach, assume that a thread may be either active or waiting. A waiting thread is
blocked until the arrival of an event. An active thread may be running or ready to run.

POSIX Services
The ChorusOS operating system offers a POSIX API for process management. POSIX
comprises a set of standard APIs for portable multithreaded programming. The
ChorusOS operating system provides the following POSIX APIs:

� POSIX (1003.1) message queue (POSIX-MQ)
� POSIX (1003.1) semaphores (POSIX-SEM)
� POSIX (1003.1) shared memory objects (POSIX-SHM)
� POSIX (1003.1) real-time clock/timers (POSIX-TIMERS)
� POSIX (1003.1) pthreads (POSIX-THREADS)
� POSIX (1003.1) compatible I/O system calls (POSIX-FILEIO)
� POSIX (1003.1) compatible socket system calls (POSIX-SOCKETS)
� POSIX (1003.1) real-time signals (POSIX_REALTIME_SIGNALS)

For a specific POSIX-compatible function to be available, the component in which it is
contained must be configured into the operating system. In some cases, a function can
be contained in more than one component, therefore, at least one of the components
must be selected.

The processes also benefit from the dynamic libraries (DYNAMIC_LIB) and
compressed (GZ_FILE) features. Processes can be multi-threaded using the POSIX
pthread calls described below. However, the ChorusOS operating system has some
limitations regarding multi-threaded processes. It is not possible to invoke either
fork() or exec() from a multi-threaded process. Such attempts will fail and report
an error code. If a multi-threaded application needs to launch a process, it should use
the posix_spawn() system call. However, the ChorusOS implementation of the
posix_spawn() call is limited and does not permit handling of file or signal
management operations.

Process images in the ChorusOS operating system are loaded from their files and are
not mapped in memory, even though the underlying selected memory profile supports
paging.

You can set tunable values for the following when you build your system:

38 ChorusOS 5.0 Features and Architecture Overview • December 2001

� The maximum number of processes that can be created on a system. This value is
lower than the maximum number of actors that can be created, which is also set
when you build your system.

� The maximum number of threads that can be created on a system.

� The maximum number of threads that can be created inside a process.

User and Supervisor Processes
POSIX processes are divided into two types, user and supervisor processes. The main
differences between user and supervisor processes are outlined below:

� Supervisor processes run in the same address space as the system. User processes
run in their own private address space so that if they attempt to reference a
memory address that is not valid in their address space, they encounter a fault and,
by default, are deleted.

� Supervisor processes run in privileged mode. This is architecture-specific, and
means that certain privileged instructions are available to supervisor processes
which are not available to user-mode applications.

� User applications must trap into the system, whereas supervisor applications do
not since they operate in privileged mode.

� Supervisor applications have only one stack (the system stack), whereas user
applications have one stack in user mode and another stack to execute when they
trap into privileged mode.

� Some libraries are different between supervisor applications and user applications,
since supervisor applications can execute privileged instructions, and user
applications trap to access system services.

High Availability
The ChorusOS operating system incorporates several features that provide high
availability services, including:

� Black Box
� Dynamic Reconfiguration
� Memory Protection
� Watchdog timer

Architecture and Benefits of the ChorusOS Operating System 39

Black Box
The black box feature provides an enhanced mechanism for tracing the activity of the
system, so that the exact cause of any failure can be determined quickly and easily.

Black box timer is elaborated further in “Black Box (BLACKBOX)” on page 124.

Dynamic Reconfiguration
The dynamic process management feature of the ChorusOS operating system allows
processes to be loaded dynamically, from either disk or the network, without first
halting the system. This provides the basis for a dynamic reconfiguration capability
that minimizes service downtime, and keeps existing services available while the
system is modified or upgraded. Dynamic reconfiguration also relies on the IPC
facilities of the ChorusOS operating system to transfer inbound communication to the
new processes transparently.

For example, with the ChorusOS operating system running in a Private Branch
Exchange (PBX), features such as call forwarding (or follow me) can be added without
interrupting the basic telephone service and without reconfiguring the entire
telephone network.

Memory Protection
Different applications can run in different memory address spaces, which are protected
from one another. If one application fails, it can corrupt only its own data but cannot
corrupt the data of other applications, or of the system itself. This mechanism confines
errors and prevents their propagation.

Memory Protection is elaborated further in “Protected Memory (MEM_PROTECTED)”
on page 112.

Watchdog Timer Protection
The watchdog timer feature provides a two-tier watchdog mechanism to monitor
hardware and the operating system by checking periodically that they are operating
correctly. The application may also be monitored if it uses the debug-aware watchdog
timer API.

Watchdog timer is elaborated further in “Watchdog Timer (WDT)” on page 121.

40 ChorusOS 5.0 Features and Architecture Overview • December 2001

Real-Time Operation
The ChorusOS operating system provides real-time service through the following
features and services, amongst others:

Synchronization Using mutexes and real-time mutexes. See
“Synchronization” on page 53 for details.

Real-time scheduling Using pre-emptive FIFO scheduling based on
thread priorities. See “First-in-First-Out Scheduling
(SCHED_FIFO)” on page 51 for more information.

High-resolution timer For fine-grained ordering of events and
fault-detection mechanisms between nodes. See
“High Resolution Timing” on page 123 for details.

Reduced context switching

overhead and interrupt latency By operating at the hardware register level, rather
than throughout the file structure.

IPC mail boxes (MIPC) To provide a shared message space for rapid
communication between actors. See “Mailboxes
(MIPC)” on page 64 for more information.

In addition, the ChorusOS operating system offers an implementation of the POSIX
real-time API. See “POSIX Services” on page 38 for a full examination of the
implementation of the POSIX real-time API.

Development Lifecycle
This section provides an overview of the stages in using the ChorusOS operating
system to develop an application or system. It provides a high-level summary of the
tasks described in the ChorusOS 5.0 Application Developer’s Guide.

Installing ChorusOS
This section provides a brief overview of the installation process. For full information,
see the ChorusOS 5.0 Installation Guide.

Architecture and Benefits of the ChorusOS Operating System 41

Installing the Development Environment on the Host
After installation is complete, the Sun Embedded Workshop software provides a
development environment containing all the binary components required to build a
ChorusOS operating system image. To create a system image for a particular reference
target board, follow the instructions in Part II of the ChorusOS 5.0 Installation Collection.

Setting up a Boot Server
A boot server is a system that provides the ChorusOS operating system image for
downloading to target systems. A boot server is useful if you want to make the same
image available to many targets. To install an instance of the ChorusOS operating
system on a boot server, follow the instructions in the ChorusOS 5.0 Installation Guide.
The system where you installed the development environment can be used as a boot
server.

Building and Booting on a Target System
When you have created an instance of the ChorusOS operating system you require,
including embedded applications, and built a system image, you need to boot it on the
target system. There are several ways to do this, including:

� Downloading the image at boot time from a boot server
� Loading the image from media located on the target system itself

Developing an Application

Configuring the System Image
When you develop an application, you must make sure that the instance of the
ChorusOS operating system that the application will run on contains the optional
components your application requires. For example, if your application uses
semaphores, you must include the SEM option. See Appendix A for information about
optional components of the ChorusOS operating system.

Writing an Application
The ChorusOS 5.0 Application Developer’s Guide explains the following:

� General principles of developing an application that runs on the ChorusOS
operating system

42 ChorusOS 5.0 Features and Architecture Overview • December 2001

� Available APIs

� How to build the application

� Different ways of running the application

Tuning
When your application is written, you can create a performance profile to check for
possible performance improvements. Creating a performance profile will help you to
optimize the application’s use of the ChorusOS operating system. See “Performance
Profiling” in the ChorusOS 5.0 Application Developer’s Guide and “Configuring and
Tuning” in the ChorusOS 5.0 System Administrator’s Guide

Developing a System
Information about advanced programming topics is not provided in this book.

� For information about porting the ChorusOS operating system software to another
target, and how to add a device driver, see ChorusOS 5.0 Board Support Package
Developer’s Guide.

� For information about developing applications to use the hot restart functionality
of the ChorusOS operating system, see “Recovering from Application Failure: Hot
Restart” in ChorusOS 5.0 Application Developer’s Guide

� For information about the organization of the source code and how to use it, see
the ChorusOS 5.0 Source Delivery Guide.

Applications
Users can write their own applications in C, C++, or Java.

The ChorusOS operating system is able to load binary files of user applications from
the host system acting as an NFS server, from a local disk, or from the system image
itself (/image/sys_bank). This host-target environment allows you to load
supervisor and user actors using a simple remote shell mechanism.

Architecture and Benefits of the ChorusOS Operating System 43

44 ChorusOS 5.0 Features and Architecture Overview • December 2001

CHAPTER 3

ChorusOS Operating System Features

This chapter provides an introduction to all the features of the ChorusOS operating
system. The features are grouped by subject area.

Basic Services
Basic and essential services are provided by the core executive API, as explained in
“Core Executive” on page 32.

Core Executive API
The core executive feature API is summarized in the following table.

Function Description

actorCreate() Create an actor

actorDelete() Delete an actor

actorSelf() Get the current actor capability

lapDescDup() Duplicate a LAP descriptor

lapDescIsZero() Check a LAP descriptor

lapDescZero() Clear a LAP descriptor

lapInvoke() Invoke a LAP

45

Function Description

lapResolve() Find a LAP descriptor by name

threadActivate() Activate a newly created thread

threadContext() Get and/or set thread context

threadCreate() Create a thread

threadDelete() Delete a thread

threadDelay() Delay the current thread

threadLoadR() Get software register

threadName() Set/Get thread symbolic name

threadSelf() Get the current thread LI

threadSemInit() Initialize a thread semaphore

threadSemWait() Wait on a thread semaphore

threadSemPost() Signal a thread semaphore

threadStat() Get thread information

threadStoreR() Set software register

svExcHandler() Set actor exception handler

svActorExcHandlerConnect() Connect actor exception handler

svActorExctHandlerDisconnect() Disconnect actor exception handler

svActorExctHandlerGetConnected() Get actor exception handler

svGetInvoker() Get handler invoker

svLapCreate() Create a LAP

svLapDelete() Delete a LAP

svMaskedLockGet() Disable interrupts and get a spin lock

svMaskedLockInit() Initialize a spin lock

svMaskedLockRel() Release a spin lock and enable interrupts

svSpinLockGet() Disable preemption and get a spin lock

svSpinLockInit() Initialize a spin lock

svSpinLockRel() Release a spin lock and enable preemption

svSpinLockTry() Try to get a spin lock and disable preemption

svSysCtx() Get the system context structure address

46 ChorusOS 5.0 Features and Architecture Overview • December 2001

Function Description

svSysPanic() Force panic handling processing

svSysReboot() Request a reboot of the local size

sySysTrapHandlerConnect() Connect a trap handler

sySysTrapHandlerDisconnect() Disconnect a trap handler

sySysTrapHandlerGetConnected() Get a trap handler

Get a trap handler() Connect a trap handler

svTrapDisConnect() Disconnect a trap handler

sysGetConf() Get the ChorusOS module configuration value

sysRead() Read characters from the system console

sysReboot() Request a reboot of the local site

sysWrite() Write characters from the system console

sysPoll() Poll characters from the system console

See CORE(5FEA)for further details about the core executive feature.

Optional Actor Management Services

User Mode (USER_MODE)
The USER_MODE feature enables support for user mode actors that require direct
access to the microkernel API.

This feature provides support for unprivileged actors, running in separate virtual user
address spaces (when available).

USER_MODE is used in all memory models.

For details, see USER_MODE(5FEA).

ChorusOS Operating System Features 47

GZ_FILE
The GZ_FILE feature enables dynamically loaded actors and dynamic libraries to be
uncompressed at load time, prior to execution. This minimizes the space required to
store these compressed files and the download time.

The GZ_FILE feature has no API. It is based on the gunzip tool. Thus, an executable
file compressed on the host system using the gzip command (whose suffix is .gz)
will be recognized automatically as a compressed executable file or dynamic library
and uncompressed by the system at load time.

For details, see GZ_FILE(5FEA).

Dynamic Libraries (DYNAMIC_LIB)
The DYNAMIC_LIB feature provides support for dynamic libraries within the
ChorusOS operating system. These libraries are loaded and mapped within the actor
address space at execution time. Symbol resolution is performed at library load time.
This feature also enables a running actor to ask for a library to be loaded and installed
within its address space, and then to resolve symbols within this library. The feature
handles dependencies between libraries.

The DYNAMIC_LIB feature API is summarized in the following table.

Function Description

dladdr() Translate address into symbolic information

dlclose() Close a dynamic library

dlerror() Get diagnostic information

dlopen() Gain access to a dynamic library file

dlsym() Get the address of a symbol in a dymanic
library

For details, see DYNAMIC_LIB(5FEA).

Shared Libraries
Shared libraries are similar to dynamic libraries. Dynamic libraries are shared if there
is no relocation in the text section. To make a dynamic library sharable, you must

48 ChorusOS 5.0 Features and Architecture Overview • December 2001

compile all the objects belonging to the shared library with the FPIC = ON imake
definition. The ChorusOS operating system also provides Imake rules to create shared
libraries.

The API which applies to dynamic libraries also applies to shared libraries. The
ChorusOS operating system provides the following shared libraries for user actors and
processes:

Library Description

libc.so Basic library routines

libnsl.so RPC library and network resolution routine
(gethostbyname(), and so on)

librpc.so RPC library only

libpthread.so POSIX thread library

libpam.so Password management routines

Thread Synchronization (MONITOR)
Concurrent threads are synchronized by monitors. A monitor is a set of functions in
which only one thread may execute at a time. It is possible for a thread running inside
a monitor to suspend its execution so that another thread may enter the monitor. The
initial thread waits for the second one to notify it (for example, that a resource is now
available) and then to exit the monitor.

MONITOR API
The MONITOR API is summarized in the following table:

Function Description

monitorGet() Obtains the lock on the given monitor

monitorInit() Initializes the given monitor

monitorNotify() Notifies one thread waiting in
monitorWait()

monitorNotifyAll() Notifies all threads waiting in
monitorWait()

monitorRel() Releases a lock on a given monitor

ChorusOS Operating System Features 49

Function Description

monitorWait() Causes a thread that owns the lock on the
given monitor to suspend itself until it
receives notification from another thread

POSIX Process Management API
The POSIX process management API is summarized in the following table:

Function Description

fork() Clone the current process

pthread_atfork() Register atfork() handlers

exec*() Execute a new image inside a process

posix_spawn() Create a new process executing a new image

wait() Wait for termination of a process

waitpid() Wait for termination of a process

_exit() Terminate the current process

getpid() Get process identifier

getppid() Get parent process identifier

getpgid() Get process group identifier

setpgid() Set process group identifier

getuid() Get real user identifier

geteuid() Get effective user identifier

getgid() Get user’s real group identifier

getegid() Get user’s effective group identifier

getgroups() Get additional group identifiers

setuid() Set real user identifier

setgid() Set real group identifier

seteuid() Set effective user identifier

50 ChorusOS 5.0 Features and Architecture Overview • December 2001

Function Description

setegid() Set effective group identifier

ptrace() Tracing and debugging a process

Scheduling
A scheduler is a feature that provides scheduling policies. A scheduling policy is a set
of rules, procedures, or criteria used in making processor scheduling decisions. Each
scheduler feature implements one or more scheduling policies, interacting with the
core executive according to a defined microkernel internal interface. A scheduler is
mandatory in all microkernel instances. The core executive includes the default FIFO
scheduler.

All schedulers manage a certain number of per-thread and per-system parameters and
attributes, and export an API for manipulation of this information or for other
operations. Several system calls may be involved. For example the
threadScheduler() system call is implemented by all schedulers, for manipulation
of thread-specific scheduling attributes. Scheduling parameter descriptors defined for
threadScheduler() are also used in the schedparam argument of the
threadCreate() system call (see “Core Executive API” on page 45).

The schedAdmin system call is supported in some schedulers for site-wide
administration of scheduling parameters.

The default scheduler present in the core executive implements a CLASS_FIFO
scheduling class, which provides simple pre-emptive scheduling based on thread
priorities.

Detailed information about these scheduling classes is found in the
threadScheduler(2K) man page.

For details on scheduling, see the SCHED(5FEA) man page.

First-in-First-Out Scheduling (SCHED_FIFO)
The default FIFO scheduler option provides simple pre-emptive FIFO scheduling
based on thread priorities. Priority of threads may vary from K_FIFO_PRIOMAX (0,
the highest priority) to K_FIFO_PRIOMIN (255, the lowest priority). Within this policy,
a thread becomes ready to run after being blocked is always inserted at the end of its
priority-ready queue. A running thread is preempted only if a thread of a strictly

ChorusOS Operating System Features 51

higher priority is ready to run. A preempted thread is placed at the head of its
priority-ready queue, so that it is selected first when the preempting thread completes
or is blocked.

Multi-Class Scheduling (SCHED_CLASS)
The multi-class scheduler option allows multiple scheduling classes to exist
simultaneously. Each active thread is subject to a single scheduling class at any one
time, but can change class dynamically.

The multi-class scheduler provides the following scheduling policies:

� Priority-based round-robin, with a fixed time quantum (CLASS_RR).
� Real-time scheduling (CLASS_RT)

Round Robin Scheduling (CLASS_RR)
The optional CLASS_RR scheduling class is available only within the SCHED_CLASS
scheduler. It is similar to SCHED_FIFO but implements a priority-based, preemptive
policy with round-robin time slicing based on a configurable time quantum. Priority of
threads may vary from K_RR_PRIOMAX (0, highest priority) to K_RR_PRIOMIN (255,
lowest priority). CLASS_RR uses the full range of priorities (256) of the SCHED_CLASS
scheduler.

The SCHED_RR policy is similar to the SCHED_FIFO policy, except that an elected
thread is given a fixed time quantum. If the thread is still running at quantum
expiration, it is placed at the end of its priority ready queue, and then may be
preempted by threads of equal priority. The thread’s quantum is reset when the thread
becomes ready after being blocked. It is not reset when the thread is elected again after
a preemption. The time quantum is the same for all priority levels and all threads. It is
defined by the K_RR_QUANTUM value (100 milliseconds).

For details, see the ROUND_ROBIN(5FEA) man page.

Real-Time Scheduling (CLASS_RT)
The CLASS_RT scheduling class is available only within the SCHED_CLASS scheduler.
It implements the same policy as the real-time class of UNIX SVR4.0. Refer to the man
page of UNIX SVR4.0 for a complete description.

The real-time scheduling policy is essentially a round-robin policy, with per-thread
time quanta. The priority of a thread may vary between K_RT_PRIOMAX (159, highest
priority) and K_RT_PRIOMIN (100, lowest priority).

52 ChorusOS 5.0 Features and Architecture Overview • December 2001

The order of priorities is inverted compared to the CLASS_FIFO priorities. CLASS_RT
uses only a sub-range of the SCHED_CLASS priorities. This sub-range corresponds to
the range [96, 155] of CLASS_FIFO and CLASS_RR.

The CLASS_RT manages scheduling using configurable priority default time quanta.

SCHED API
The SCHED feature API is summarized in the following table:

Function Description SCHED_FIFO SCHED_CLASS

schedAdmin() Administer scheduling classes +

threadScheduler() Get/set thread scheduling information + +

Customized Scheduling
Programmers can also develop their own scheduler to implement a specific scheduling
policy.

Synchronization
The ChorusOS operating system provides the following synchronization features:

� Mutexes
� Real-time mutexes
� Semaphores
� Event flags

Mutexes (MUTEX)
The ChorusOS operating system provides sleep locks in the form of mutual exclusion
locks, or mutexes. When using mutexes, threads sleep instead of spinning when
contention occurs.

Mutexes are data structures allocated in the client actors’ address spaces. No
microkernel data structure is allocated for these objects, they are simply designated by

ChorusOS Operating System Features 53

the addresses of the structures. The number of these types of objects that threads can
use is thus unlimited. Blocked threads are queued and awakened in a simple FIFO
order.

MUTEX API
The MUTEX API is summarized in the following table:

Function Description

mutexGet() Acquire a mutex

mutexInit() Initialize a mutex

mutexRel() Release a mutex

mutexTry() Try to acquire a mutex

Real-Time Mutex (RTMUTEX)
The real-time mutex feature, RTMUTEX, provides mutual exclusion locks that support
priority inheritance so that priority-inversion situations are avoided. It should be
noted that, although the ChorusOS operating system exports this service to
applications, it does not use this mechanism for synchronizing access to the objects it
manages.

For details, see the RTMUTEX(5FEA) man page.

RTMUTEX API
The RTMUTEX API is summarized in the following table:

Function Description

rtMutexGet() Acquire a real time mutex

rtMutexInit() Initialize a real time mutex

rtMutexRel() Release a real time mutex

rtMutexTry() Try to acquire a real time mutex

54 ChorusOS 5.0 Features and Architecture Overview • December 2001

Semaphores (SEM)
The SEM feature provides semaphore synchronization objects. A semaphore is an integer
counter and an associated thread wait queue. When initialized, the semaphore counter
receives a user-defined positive or null value.

Two main atomic operations are available on semaphores: P (or ‘‘wait’’) and V (or
‘‘signal”).

� The counter is decremented when a thread performs a P on a semaphore. If the
counter reaches a negative value, the thread is blocked and put in the semaphore’s
queue, otherwise, the thread continues its execution normally.

� The counter is incremented when a thread performs a V on a semaphore. If the
counter is still lower than or equal to zero, one of the threads queued in the
semaphore queue is picked up and awakened.

Semaphores are data structures allocated in the client actors’ address spaces. No
microkernel data structure is allocated for these objects, they are simply designated by
the address of the structures. The number of these types of objects that threads can use
is therefore unlimited.

For details, see the SEM(5FEA) man page.

SEM API
The SEM API is summarized in the following table:

Function Description

semInit() Initialize a semaphore

semP() Wait on a semaphore

semV() Signal a semaphore

Event Flags (EVENT)
The EVENT feature manages sets of event flags. An event flag set is a set of bits in
memory associated with a thread-wait queue. Each bit is associated with one event. In
this feature, the set is implemented as an unsigned integer, therefore the maximum
number of flags in a set is 8*sizeof(int). Inside a set, each event flag is designated
by an integer 0 and 8*sizeof(int).

ChorusOS Operating System Features 55

When a flag is set, it is said to be posted, and the associated event is considered to have
occurred. Otherwise, the associated event has not yet occurred. Both threads and
interrupt handlers can use event flag sets for signaling purposes.

A thread can wait for a conjunctive (and) or disjunctive (or) subset of the events in one
event flag set. Several threads can wait on the same event, in which case each of the
threads will be made eligible to run when the event occurs.

Three functions are available on event flag sets: eventWait(), eventPost(), and
eventClear().

Event flag sets are data structures allocated in the client actors’ address spaces. No
microkernel data structure is allocated for these objects. They are simply designated
by the address of the structures. The number of these types of objects that threads can
use is thus unlimited.

For details, see the EVENT(5FEA) man page.

EVENT API
The EVENT API is summarized in the following table:

Function Description

eventClear() Clear event(s) in an event flag set.

eventInit() Initialize an event flag set.

eventPost() Signal event(s) to an event flag set.

eventWait() Wait for events in an event flag set.

Communications
The ChorusOS operating system offers the following features for communications:

� Local Access Point (LAP)
� Inter-Process Communication (IPC)
� Mailboxes (MIPC)

56 ChorusOS 5.0 Features and Architecture Overview • December 2001

Local Access Point (LAP)
Low overhead, same-site invocation of functions and APIs exported by supervisor
actors may be executed through use of Local Access Points (LAPs). A LAP is
designated and invoked via its LAP descriptor. This may be directly transmitted by a
server to one or more specific client actors, via shared memory, or as an argument in
another invocation.

See the CORE(5FEA) man page for details.

LAP Options
Optional extensions to LAP provide safe on-the-fly shutdown of local service routines
and a local name binding service:

LAPBIND

The LAPBIND feature provides a nameserver from which a LAP descriptor may be
requested and obtained indirectly, using a static symbolic name which may be an
arbitrary character string. Using the nameserver, a LAP may be exported to any
potential client that knows the symbolic name of the LAP (or of the service exported
via the LAP).

The LAPBIND API is summarized below:

Function Description

lapResolve Find a LAP descriptor by name

svLapBind Bind a name to a LAP

svLapUnbind Unbind a LAP name

For details, see the LAPBIND(5FEA) man page.

LAPSAFE

The LAPSAFE feature does not export an API directly. It modifies the function and
semantics of local access point creation and invocation. In particular, it enables the
K_LAP_SAFE option (see svLapCreate(2K)), which causes validity checking to be
turned on for an individual LAP. If a LAP is invalid or has been deleted,
lapInvoke() will fail cleanly with an error return. Furthermore, the
svLapDelete() call will block until all pending invocations have returned. This

ChorusOS Operating System Features 57

option allows a LAP to be safely withdrawn even when client actors continue to exist.
It is useful for clean shutdown and reconfiguration of servers.

The LAPSAFE feature is a prerequisite for HOT_RESTART.

For details, see the LAPSAFE(5FEA) man page.

Inter-Process Communication (IPC)
The IPC feature provides powerful asynchronous and synchronous communication
services. IPC exports the following basic communication abstractions:

� The unit of communication (message).
� Point-to-point communication endpoints (port).
� Multicast communication endpoints (groups).

Description of IPC
The IPC feature allows threads to communicate and synchronize when they do not
share memory, for example, when they do not run on the same node. Communications
rely on the exchange of messages through ports.

Static and Dynamic identifiers

The IPC location-transparent communication service is based on a uniform global
naming scheme. Communication entities are named using global unique identifiers.
Two types of global identifiers are distinguished:

� Static identifiers, provided to the system by the applications
� Dynamic identifiers, returned by the system to the application

Static identifiers are built deterministically from stamps provided by the applications.
On a single site, only one communication object can be created with a given static
identifier in the same communication feature. The maximum number of static stamps
is fixed.

Network-wide dynamic identifiers, assigned by the system, are guaranteed to be
unique across site reboots for a long time. The dynamic identifier of a new
communication object is initially only known by the actor that creates the
communication object. The actor can transmit this identifier to its clients through any
application-specific communication mechanism (for example, in a message returned to
the client).

58 ChorusOS 5.0 Features and Architecture Overview • December 2001

Messages

A message is an untyped string of bytes of variable but limited size (64 KB), called the
message body. Optionally, the sender of the message can join a second byte string to the
message body, called the message annex. The message annex has a fixed size of 120
bytes. The message body and the message annex are transferred with copy semantics
from the sender address space to the receiver address space.

A current message is associated with each thread. The current message of a thread is a
system descriptor of the last message received by the thread. The current message is
used when the thread has to reply to the sender of the message or acquire protection
information about the sender of the message. This concept of current message allows
the most common case, in which threads reply to messages in the order they are
received, to be optimized and simplified. However, for other cases, the microkernel
provides the facility to save the current message, and restore a previously saved
message as the current message.

Ports

Messages are not addressed directly to threads, but to intermediate entities called
ports. Ports are named using unique identifiers. A port is an address to which
messages can be sent, and which has a queue holding the messages received by the
port but not yet consumed by the threads. Port queues have a fixed maximum size, set
as a system parameter.

For a thread to be able to consume the messages received by a port, this port must be
attached to the actor that supports the thread. When a port is created by a thread, the
thread attaches the port to an actor (possibly different from the one that supports the
thread). The port receives a local identifier, relative to the actor to which it is attached.

A port can only be attached to a single actor at a time, but can be attached successively
to different actors: a port can migrate from one actor to another. This migration can be
accompanied, or not, by the messages already received by the port and not yet
consumed by a thread. The concept of port provides the basis for dynamic
reconfiguration. The extra level of indirection (the ports) between any two
communicating threads means that the threads supplying a given service can be
changed from a thread of one actor to a thread of another actor. This is done by
changing the attachment of the appropriate port from the first thread’s actor to the
new thread’s actor.

When an actor is created, a first port is attached to it automatically and is the actor’s
default port. The actor’s default port cannot be migrated or deleted.

ChorusOS Operating System Features 59

Groups of Ports

Ports can be assembled into groups. The concept of group extends port-to-port
addressing between threads by adding a synchronous multicast facility. Alternatively,
functional access to a service can be selected from among a group of (equivalent)
services using port groups.

Creating a group of ports only allocates a name for the group. Ports can then be
inserted into the group and it is built dynamically. A port can be removed from a
group. Groups cannot contain other groups.

Like an actor, a group is named by a capability. This capability contains a unique
identifier (UI), specific to the group. This UI can be used for sending messages to the
ports in the group. The full group capability is needed to modify the group
configuration (inserting ports in and removing ports from the group).

Like ports, messages are addressed to port groups by their UI. In the case of a group
UI, the address is accompanied by an address mode. The possible address modes are:

� Broadcast to all ports in the group (broadcast mode).

� Addressing one of the ports of the group, selected arbitrarily (functional mode).

� Addressing one of the ports of the group, located on the same site as a given object
designated by its UI (associative functional mode).

� Addressing one of the ports of the group, assuming that the selected port UI is on a
different site from that of a given UI (exclusive functional mode).

Asynchronous and Synchronous Remote Procedure Call Communication

The IPC services allow threads to exchange messages in either asynchronous mode
or in Remote Procedure Call (RPC) mode (demand/response mode).

asynchronous mode: The sender of an asynchronous message is only
blocked for the time taken for the system to process the
message locally. The system does not guarantee that the
message has been deposited at the destination location.

synchronous RPC mode: The RPC protocol allows the construction of
client-server applications, using a demand/response
protocol with management of transactions. The client is
blocked until a response is returned from the server, or
a user-defined optional timeout occurs. RPC guarantees
at-most-once semantics for the delivery of the request.
It also guarantees that the response received by a client
is definitely that of the server and corresponds
effectively to the request (and not to a former request to
which the response might have been lost). RPC also
allows a client to be unblocked (with an error result) if

60 ChorusOS 5.0 Features and Architecture Overview • December 2001

the server is unreachable or if the server has crashed
before emitting a response. Finally, this protocol
supports the propagation of abortion through the RPC.
This mechanism is called abort propagation, that is, when
a thread that is waiting for an RPC reply is aborted,
this event is propagated to the thread that is currently
servicing the client request.

A thread attempting to receive a message on a port is blocked until a message is
received, or until a user-defined optional timeout occurs. A thread can attempt to
receive a message on several ports at a time. Among the set of ports attached to an
actor, a subset of enabled ports is defined. A thread can attempt to receive a message
sent to any of its actor’s enabled ports. Ports attached to an actor can be enabled or
disabled dynamically. When a port is enabled, it receives a priority value. If several of
the enabled ports hold a message when a thread attempts to receive messages on
them, the port with the highest priority is selected. The actor’s default port might not
necessarily be enabled.

When a port is not enabled, it is disabled. This does not mean that the port cannot
be used to send or receive messages. It only means that the port cannot be used in
multiple-port receive requests. The default value is disabled.

Message Handlers

As described in the preceding section, the conventional way for an actor to consume
messages delivered to its ports is for threads to express receive requests explicitly on
those ports. An alternative to this scheme is the use of message handlers. Instead of
creating threads explicitly, an actor can attach a handler (a routine in its address space)
to the port. When a message is delivered to the port, the handler is executed in the
context of a thread provided by the microkernel.

Message handlers and explicit receive requests are exclusive. When a message handler
has been attached to a port, any attempt by a thread to receive a message on that port
returns an error.

The use of message handlers is restricted to supervisor actors. This allows significant
optimization of the RPC protocol when both the client and server reside on the same
site, avoiding thread context switches (from the microkernel point of view, the client
thread is used to run the handler) and memory copies (copying the message into
microkernel buffers is avoided). The way messages are consumed by the threads or the
handler is totally transparent to the client, the message sender. The strategy is selected
by the server only.

ChorusOS Operating System Features 61

Protection Identifiers (PI)

The IPC feature allocates a Protection Identifier (PI) to each actor and to each port. The
structure of the Protection Identifiers is fixed, but the feature does not associate any
semantics to their values. The microkernel only acts as a secure repository for these
identifiers.

An actor receives, when its IPC context is initialized, a PI equal to that of the actor that
created it. A port also receives a PI equal to that of the actor that created it. A system
thread can change the PI of any actor or port. Subsystem process managers are in
charge of managing the values given to the PI of the actors and ports they control.

When a message is sent, it is stamped with the PI of both the sending actor and its
port. These values can be read by the receiver of the message, which can apply its own
protection policies and thus decide whether it should reject the message. Subsystem
servers can then apply the subsystem-specific protection policies, according to the PI
semantics defined by the subsystem process manager.

Reconfiguration

The microkernel allows the dynamic reconfiguration of services by permitting the
migration of ports. This reconfiguration mechanism requires both servers involved in
the reconfiguration to be active at the same time.

The microkernel also offers mechanisms to manage the stability of the system, even in
the presence of server failures. The concept of port groups is used to establish the
stability of server addresses.

A port group collects several ports together. A server that possesses a port group
capability can insert new ports into the group, replacing the terminated ports that
were attached to servers.

A client that references a group UI (rather than directly referencing the port attached
to a server) can continue to obtain the required services once a terminated port has
been replaced in the group. In other words, the lifetime of a group of ports is
unlimited, because groups continue to exist even when ports in the group have
terminated. Logically, a group needs to contain only a single port, and this only if the
server is alive. Thus clients can have stable services as long as their requests for
services are made by emitting messages to a group.

Transparent IPC

Based on industry standards, transparentIPC allows applications to be distributed
across multiple machines, and to run in a heterogeneous environment that comprises
hardware and software with stark operational and programming incompatibilities.

62 ChorusOS 5.0 Features and Architecture Overview • December 2001

At a lower level, one of the components of the ChorusOS operating system provides
transparent IPC that recognizes whether a given process is available locally, or is
installed on a remote system that is also running the ChorusOS operating system.
When a process is accessed, IPC identifies the shortest path and quickest execution
time that can be used to reach it, and communicates in a manner that makes the
location entirely transparent to the application.

IPC API

The IPC feature API is summarized in the following table:

Function Description

actorPi() Modify the PI of an actor

portCreate() Create a port

portDeclare() Declare a port

portDelete() Destroy a port

portDisable() Disable a port

portEnable() Enable a port

portGetSeqNum() Get a port sequence number

portLi() Acquire the local identifier (LI) of a port

portMigrate() Migrate a port

portPi() Modify the PI of a port

portUi() Acquire the UI of a port

grpAllocate() Allocate a group name

grpPortInsert() Insert a port into a group

grpPortRemove() Remove a port from a group

ipcCall() Send synchronously

ipcGetData() Get the current message body

ipcReceive() Receive a message

ipcReply() Reply to the current message

ipcRestore() Restore a message as the current message

ipcSave() Save the current message

ipcSend() Send asynchronously

ChorusOS Operating System Features 63

Function Description

ipcSysInfo() Get information about the current message

ipcTarget() Construct an address

svMsgHandler() Connect a message handler

svMsgHdlReply() Prepare a reply to a handled message

Optional IPC Services
The ChorusOS operating system offers the following optional IPC services:

� IPC_REMOTE
� Distributed IPC

IPC_REMOTE

When the IPC_REMOTE feature is set, IPC services are provided in a distributed,
location-transparent way, allowing applications distributed across the different nodes,
or sites, of a network to communicate as if they were collocated on the same node.

Without this feature, IPC services can only be used in a single site.

For details, see the IPC_REMOTE(5FEA) man page.

Distributed IPC

The distributed IPC option extends the functionality of local IPC to provide
location-transparent communication between multiple, interconnected nodes.

Mailboxes (MIPC)
The optional MIPC feature is designed to allow an application composed of one or
multiple actors to create a shared communication environment (or message space)
within which these actors can exchange messages efficiently. In particular, supervisor
and user actors of the same application can exchange messages with the MIPC service.
Furthermore, these messages can be allocated initially and sent by interrupt handlers
for later processing in the context of threads.

The MIPC option supports the following:

� Multiple sets of dynamically allocated messages
� Messages of configurable size

64 ChorusOS 5.0 Features and Architecture Overview • December 2001

Message spaces
The MIPC service is designed around the concept of message spaces, that
encapsulates, within a single entity, both a set of message pools shared by all the
actors of the application and a set of message queues through which these actors
exchange messages allocated from the shared message pools.

Each message pool is defined by a pair of characteristics (message size, number of
messages) provided by the application when it creates the message space. The
configuration of the set of message pools depends on the communication needs of
the application. From the point of view of the application, message pool
requirements depend on the size range of the messages exchanged by the
application, and the distribution of messages within the size range.

A message space is a temporary resource that must be created explicitly by the
application. Once created, a message space can be opened by other actors of the
application. A message space is bound to the actor that creates it, and it is deleted
automatically when its creating actor and all actors that opened it have been
deleted.

When an actor opens a message space, the system first assigns a private identifier to
the message space. This identifier is returned to the calling actor and is used to
designate the message space in all functions of the interface. The shared message
pools are then mapped in the address space of the actor, at an address chosen
automatically by the system.

Messages and queues
A message is simply an array of bytes that can be structured and manipulated at
application level through any appropriate convention. Messages are presented to
actors as pointers in their addressing spaces.

Messages are posted to message queues. Inside a message space, a queue is
designated by an unsigned integer that corresponds to its index in the set of
queues. Messages can also have priorities.

All resources of a message space are shared without any restriction by all actors of
the application that open it. Any of these actors can allocate messages from the
shared message pools. In the same way, all actors have both send and receive
rights on each queue of the message space. Most applications only need to create a
single message space. However, the MIPC service is designed to allow an
application to create or open multiple message spaces. Inside these types of
applications, messages cannot be exchanged directly across different message
spaces. In other words, a message allocated from a message pool of one message
space cannot be sent to a queue of another message space.

For details of the MIPC feature, see the MIPC(5FEA) man page.

The MIPC API is summarized in the following table:

ChorusOS Operating System Features 65

Function Description

msgAllocate() Allocate a message

msgFree() Free a message

msgGet() Get a message

msgPut() Post a message

msgRemove() Remove a message from a queue

msgSpaceCreate() Create a message space

msgSpaceOpen() Open a message space

Drivers
The ChorusOS system provides a driver framework, allowing the third-party
programmer to develop device drivers on top of a binary distribution of the ChorusOS
operating system. The driver framework provides a well-defined, structured, and
easy-to-use environment to develop both new drivers and client applications for
existing drivers.

Host bus drivers written with the driver framework are specific to the reference target
board, meaning that they are portable within that target family (UltraSPARC,
PowerPC, Intel x86 processor families). Drivers that occupy a higher place in the
hierarchical bus structure (sub-bus drivers and device drivers) are usually portable
between target families.

Device Driver implementation is based on services, provided by a set of APIs, such as
Peripheral Component Interconnect (PCI) or Industry Standard Architecture (ISA),
which allow the developer to choose the optimizability and portability of the driver
they create. This allows the driver to be written to the parent bus class, and not to the
underlying platform. Drivers written within the driver framework may also take
advantage of processor-specific services, allowing maximum optimization for a
particular target family.

Benefits of Using the Driver Framework
Using the driver framework to build bus and device drivers in the ChorusOS
operating system provides the following benefits:

� A structured framework, easing the task of building drivers

66 ChorusOS 5.0 Features and Architecture Overview • December 2001

� The hierarchical structure of drivers in the driver framework mirrors the hardware
structure

� Ensures compliance and functionality within the ChorusOS operating system

� Enables the user to develop multi-bus device drivers, which may run on all buses
supporting the common bus driver interface

� Drivers built with the driver framework are homogeneous across various system
profiles (flat memory, protected memory, virtual memory)

� Allows dynamic configuration (and reconfiguration) needed for plug-and-play,
hot-plug, and hot-swap support

� Supports the binary driver model

� The APIs are version resilient

� The bus and drivers are adaptive (in terms of the memory footprint and
complexity) to the various system profiles and customer requirements

� Supports the dynamic loading and unloading of driver components

� Meets real-time requirements, by providing non-blocking (asynchronous) run-time
APIs

Framework Architecture Overview
In the ChorusOS operating system, a driver entity is a software abstraction of the
physical bus or device. Creating a device driver using the driver framework allows the
device or bus to be represented and managed by the ChorusOS operating system. The
hierarchical structure of the driver software within the ChorusOS operating system
mirrors the structure of the physical device or bus.

Each device or bus is represented by its own driver. A driver’s component code is
linked separately from the microkernel as a supervisor actor, with the device-specific
code strongly localized in the corresponding device driver.

Driver components are organized, through a service-provider/user relationship, into
hierarchical layers which mirror the hardware bus or device connections.

The ChorusOS operating system diver framework can be considered in two ways:

� A hierarchical set of APIs that defines the services provided for and used by each
bus or device driver at each layer of the architecture. This approach ensures
portability and functionality across various platforms and continued validity of
drivers across subsequent system releases.

� A set of mechanisms implemented by the ChorusOS microkernel, ensuring
compliance and synchronicity with the ChorusOS operating system architecture
and methods.

ChorusOS Operating System Features 67

The driver framwork architecture is shown in the following figure.

FIGURE 3–1 Driver Framerwork Architecture

For details regarding the driver framework, see the ChorusOS 5.0 Board Support Package
Developer’s Guide.

Driver Framework APIs
One of the key attributes allowing portability and modularity of devices constructed
using the driver framework is the hierarchical structure of the APIs, which can also be
seen as the layered interface. Within this model, all calls to the microkernel are
performed through the Driver Kernel Interface (DKI) API, while all calls between
drivers are handled through the Device Driver Interface (DDI) API.

68 ChorusOS 5.0 Features and Architecture Overview • December 2001

Driver/Kernel Interface (DKI)
The DKI interface defines all services provided by the microkernel to driver
components. Following the layered interface model, all services implemented by the
DKI are called by the drivers, and take place in the microkernel.

The DKI provides two types of services:

� Common DKI services common to all platforms and processors, usable by all
drivers, no matter what layer in the hierarchical model they inhabit. These services
are globally designated by the DKI class name.

� Processor family specific DKI (FDKI) services.

Common DKI services cover:

� Synchronization through the DKI thread
� Device tree
� Driver registry
� Device registry
� General purpose memory allocation
� Timeout
� Precise busy wait
� Special-purpose physical memory allocation
� System event management
� Global interrupts masking
� Specific I/O services

Processor family specific DKI (FDKI) services cover:

� Processor interrupts management
� Processor caches management
� Processor specific I/O services
� Physical to virtual memory mapping

All DKI services are implemented as part of the embedded system library
(libebd.s.a). Most of them are implemented as microkernel system calls. The
intro(9DKI) man page gives an entry point to a detailed description of all DKI APIs.

DKI API

The DKI API is summarized in the following table:

Function Description

dataCacheBlockFlush() Cache management

dataCacheBlockFlush_powerpc() PowerPC cache management

ChorusOS Operating System Features 69

Function Description

dataCacheBlockInvalidate() Cache management

dataCacheBlockInvalidate_powerpc() PowerPC cache management

dataCacheBlockInvalidate() Cache management

dataCacheBlockInvalidate_powerpc() PowerPC cache management

dataCacheInvalidate() Cache management

dataCacheInvalidate_powerpc() PowerPC cache management

dcacheBlockFlush() Cache management

dcacheBlockFlush_usparc() UltraSPARC cache management

dcacheFlush() Cache management

dcacheFlush_usparc() UltraSPARC cache management

dcacheLineFlush() Cache management

dcacheLineFlush_usparc() UltraSPARC cache management

DISABLE_PREEMPT() Thread preemption disabling

dtreeNodeAlloc() Device tree operations

dtreeNodeChild() Device tree operations

dtreeNodeDetach() Device tree operations

dtreeNodeFind() Device tree operations

dtreeNodeFree() Device tree operations

dtreeNodeFree() Device tree operations

dtreeNodePeer() Device tree operations

dtreeNodeRoot() Device tree operations

dtreePropAdd() Device tree operations

dtreePropAlloc() Device tree operations

dtreePropAttach() Device tree operations

dtreePropDetach() Device tree operations

dtreePropFind() Device tree operations

dtreePropFindNext() Device tree operations

dtreePropFree() Device tree operations

dtreePropLength() Device tree operations

70 ChorusOS 5.0 Features and Architecture Overview • December 2001

Function Description

dtreePropName() Device tree operations

dtreePropValue() Device tree operations

eieio() I/O services

eieio_powerpc() PowerPC specific I/O services

ENABLE_PREEMPT() Thread preemption enabling

hrt() High Resolution Timer

icacheBlockInval() Cache management

icacheBlockInval_usparc() UltraSPARC cache management

icacheInval() Cache management

icacheInval_usparc() UltraSPARC cache management

icacheLineInval() Cache management

icacheLineInval_usparc() UltraSPARC cache management

imsIntrMask_f() Global interrupt masking

imsIntrUnmask_f() Global interrupt masking

instCacheBlockInvalidate() Cache management

instCacheBlockInvalidate_powerpc() PowerPC cache management

instCacheBlockInvalidate_powerpc() PowerPC cache management

instCacheInvalidate() Cache management

instCacheInvalidate_powerpc() PowerPC cache management

ioLoad16() I/O services

ioLoad16_x86() Intel x86 specific I/O services

ioLoad32() I/O services

ioLoad32_x86() Intel x86 specific I/O services

ioLoad8() I/O services

ioLoad8_x86() Intel x86 specific I/O services

ioRead16() I/O services

ioRead16_x86() Intel x86 specific I/O services

ioRead32() I/O services

ioRead32_x86() Intel x86 specific I/O services

ChorusOS Operating System Features 71

Function Description

ioRead8() I/O services

ioRead8_x86() Intel x86 specific I/O services

ioStore16() I/O services

ioStore16_x86() Intel x86 specific I/O services

ioStore32() I/O services

ioStore32_x86() Intel x86 specific I/O services

ioStore8() I/O services

ioStore8_x86() Intel x86 specific I/O services

ioWrite16() I/O services

ioWrite16_x86() Intel x86 specific I/O services

ioWrite32() I/O services

ioWrite32_x86() Intel x86 specific I/O services

ioWrite8() I/O services

ioWrite8_x86() Intel x86 specific I/O services

loadSwap_16() Specific I/O services

loadSwap_32() Specific I/O services

loadSwap_64() Specific I/O services

loadSwapEieio_16() I/O services

loadSwapEieio_16_powerpc() PowerPC specific I/O services

loadSwapEieio_32() I/O services

loadSwapEieio_32_powerpc() PowerPC specific I/O services

loadSwap_sync_16_usparc() UltraSparc specific I/O services

loadSwap_sync_32_usparc() UltraSparc specific I/O services

loadSwap_sync_64_usparc() UltraSparc specific I/O services

load_sync_16_usparc() UltraSparc specific I/O services

load_sync_32_usparc() UltraSparc specific I/O services

load_sync_64_usparc() UltraSparc specific I/O services

load_sync_8_usparc() UltraSparc specific I/O services

storeSwap_16() Specific I/O services

72 ChorusOS 5.0 Features and Architecture Overview • December 2001

Function Description

storeSwap_32() Specific I/O services

storeSwap_64() Specific I/O services

storeSwapEieio_16() I/O services

storeSwapEieio_16_powerpc() PowerPC specific I/O services

storeSwapEieio_32() I/O services

storeSwapEieio_32_powerpc() PowerPC specific I/O services

storeSwap_sync_16_usparc() UltraSparc specific I/O services

storeSwap_sync_32_usparc() UltraSparc specific I/O services

storeSwap_sync_64_usparc() UltraSparc specific I/O services

store_sync_16_usparc() UltraSparc specific I/O services

store_sync_32_usparc() UltraSparc specific I/O services

store_sync_64_usparc() UltraSparc specific I/O services

store_sync_8_usparc() UltraSparc specific I/O services

svAsyncExcepAttach() Asynchronous exceptions management

svAsyncExcepAttach_usparc() UltraSPARC asynchronous exceptions
management

svAsyncExcepDetach_usparc() UltraSPARC aynchronous exceptions
management

svDeviceAlloc() Device registry operations

svDeviceEntry() Device registry operations

svDeviceEvent() Device registry operations

svDeviceFree() Device registry operations

svDeviceLookup() Device registry operations

svDeviceNewCancel() Device registry operations

svDeviceNewNotify() Device registry operations

svDeviceRegister() Device registry operations

svDeviceRelease() Device registry operations

svDeviceUnregister() Device registry operations

svDkiClose() System event management

svDkiEvent() System event management

ChorusOS Operating System Features 73

Function Description

svDkiInitLevel() Two-stage microkernel initialization

svDkiloRemap() Change debug link device address

svDkiThreadCall() Microkernel initialization level

svDkiOpen() System event management

svDkiThreadCall() Call a routine in the DKI thread context;
trigger a routine in the DKI thread context;
cancel a routine in the DKI thread context

svDkiThreadCancel() Call a routine in the DKI thread context;
trigger a routine in the DKI thread context;
cancel a routine in the DKI thread context

svDkiThreadTrigger() Call a routine in the DKI thread context;
trigger a routine in the DKI thread context;
cancel a routine in the DKI thread context

svDriverCap() Driver registry operations

svDriverEntry() Driver registry operations

svDriverLookupFirst() Driver registry operations

svDriverLookupNext() Driver registry operations

svDriverRegister() Driver registry operations

svDriverRelease() Driver registry operations

svDriverUnregister() Driver registry operations

svIntrAttach() Interrupts management

svIntrAttach_powerpc() PowerPC interrupts management

svIntrAttach_usparc() UltraSPARC interrupts management

svIntrAttach_x86() Intel x86 interrupts management

svIntrCtxGet() Interrupts management

svIntrCtxGet_powerpc() PowerPC interrupts management

svIntrCtxGet_usparc() UltraSPARC interrupts management

svIntrCtxGet_x86() Intel x86 interrupts management

svIntrDetach() Interrupts management

svIntrDetach_powerpc() PowerPC interrupts management

svIntrDetach_usparc() UltraSPARC interrupts management

74 ChorusOS 5.0 Features and Architecture Overview • December 2001

Function Description

svIntrDetach_x86() Intel x86 interrupts management

svMemAlloc() A general purpose memory allocator

svMemFree() A general purpose memory allocator

svPhysAlloc() A special purpose physical memory allocator

svPhysFree() A special purpose physical memory allocator

svPhysMap() Physical to virtual memory mapping

svPhysMap_powerpc() PowerPC physical to virtual memory mapping

svPhysUnmap_usparc() UltraSPARC physical to virtual memory
mapping

svSoftIntrAttach_usparc() UltraSPARC interrupts management

svSoftIntrDetach_usparc() UltraSPARC interrupts management

svTimeoutCancel() Timeout operations

svTimeoutGetRes() Timeout operations

svTimeoutSet() Timeout operations

swap_16() Specific I/O services

swap_32() Specific I/O services

swap_64() Specific I/O services

swapEieio_16() I/O services

swapEieio_16_powerpc() PowerPC I/O services

swapEieio_32() I/O services

swapEieio_32_powerpc() PowerPC I/O services

usecBusyWait() Precise busy wait service

vmMapToPhys() Physical to virtual memory mapping

vmMapToPhys_powerpc() PowerPC physical to virtual memory mapping

vmMapToPhys_usparc() UltraSPARC physical to virtual memory
mapping

vmMapToPhys_x86() Intel x86 physical to virtual memory mapping

ChorusOS Operating System Features 75

Device Driver Interfaces (DDI)
The DDI defines several layers of interface between different layers of device drivers
in the driver hierarchy. Typically an API is defined for each class of bus or device, as a
part of the DDI.

Device Driver Interface API

The DDI API is summarized in the following table:

Function Description

ata() ATA bus driver interface

bench() Bench device driver interface

bus() Common bus driver interface

buscom() Bus communication driver interface

busFi() Common bus Fault Injection driver interface

busmux() Bus multiplexor driver interface

cdrom() CD-ROM driver interface

diag() Diagnostic driver interface

disk() Hard disk device driver interface

diskStat() Hard disk statistics

ether() Ethernet device driver interface

ettherStat() Ethernet statistics

flash() Flash device driver interface

flashCtl() Flash control device driver interface

flashStat() Flash statistics

generic_ata() Generic ATA bus master driver interface for
PCI IDE devices

gpio() gpio bus driver interface

HSC() Hot swap controller driver interface

isa() ISA bus driver interface

isaFi() ISA fault injection driver interface

keyboard() Keyboard device driver interface

76 ChorusOS 5.0 Features and Architecture Overview • December 2001

Function Description

mngt() Management driver interface

mouse() Mouse device driver interface

netFrame() Generic representation of network frames

pci() PCI bus driver interface

pciFi() PCI fault injection driver interface

pcimngr() PCI resource manager driver interface

pcmcia() CMCIA bus driver interface

quicc() QUICC bus driver interface

ric() RIC device driver interface

rtc() RTC device driver interface

timer() TIMER device driver interface

tx39() TX39 bus driver interface

uart() UART device driver interface

uartStat() UART statistics

wdtimer() Watchdog timer device driver interface

Software Interrupts

The ChorusOS operating system DDI and DKI support software interrupts, also
known as soft interrupts. Soft interrupts are not initiated by a hardware device, but
rather are initiated by software. Handlers for these interrupts must also be added to
and removed from the system. Soft interrupt handlers run in the interrupt context and
therefore can be used to do many of the tasks that belong to an interrupt handler.

The software interrupt API (SOFTINTR) is summarized in the following table:

Function Description

svSoftIntrDeclare() Declares a software interrupt descriptor

svSoftIntrTrigger() Triggers execution of a software interrupt

svSoftIntrForget() Detaches a previously declared software
interrupt

For details, see the SOFTINTR(5FEA) man page.

ChorusOS Operating System Features 77

Implemented Drivers
The ChorusOS device driver framework provides many drivers. Most of these drivers,
unless stated otherwise, are generic, non-platform-specific drivers and can be used
regardless of platform since they use either common bus driver interface or
bus-specific (not platform-specific) services.

The following drivers are implemented in the ChorusOS operating system:

Driver Description

amd29xxx am29xxx compatible flash driver

atadisk ATA disk device driver

benchns16550 ns16x50 device driver

benchns16550 ns16x50 device driver

cheerio Sun cheerio 10/100Mbps Ethernet device
driver

dec2115x dec2115x PCI-to-PCI bridges family, PCI bus
driver

dec21x4 dec21x4x Ethernet device driver

ebus Sun PCI/ISA bridge driver

el3 3Com etherlinkIII Ethernet device driver

epfxxxx Watchdog timer device driver for devices
logically programmed in Altera
epf6016/epf8020a PLD

epic100 Epic100 PCI Ethernet device driver

falcon Motorola memory controller, common bus
driver and flash control driver

fccEther QUICC FCC controller Ethernet device driver

generic_ata Generic ATA device driver for PCI based IDE
controller

i8042 i8042 PS/2 keyboard/mouse controller

i8237 Intel i8237 DMA driver

i8254 Intel i8254 timer device driver

i8259 Intel i8259 timer PIC driver

intel28F016SA Intel 28F016SA compatible flash driver

78 ChorusOS 5.0 Features and Architecture Overview • December 2001

Driver Description

intel28fxxx Intel 28fxxx compatible flash driver

isabiosisapci Intel i386AT generic ISA bus driver

isapci Intel i386AT generic PCI/ISA bridge, ISA bus
driver

it8368e IT8368E PCMCIA controller

m48txx SGS m48txx real time clock, NVRAM and
watchdog device driver

mc146818 Motorola mc146818 real time clock device
driver

ne2000 ne2000 Ethernet device driver

ns16650 Generic ns16x50 compatible UART device
driver

pcibios Intel i386AT generic PCI bridge, PCI bus
driver

pciconf PCI configuration space parser driver

pcienumo PCI enumerator driver

pciFi PCI fault injection pseudo-driver

pcimngr PCI resource manager auxiliary driver

quicc8260 QUICC bus driver for Motorola mpc8260
micro-controllers

quicc8xx QUICC bus driver for Motorola mpc8xx
micro-controllers

raven Motorola PCI host bridge, PCI bus driver

ric Sun reset, interrupt and clock controller

sabre Sun PCI host bridge, PCI bus driver

sccEther QUICC SCC controller Ethernet device driver

sccuart QUICC SCC controller UART device driver

simba Sun advanced PCI-to-PCI bridge driver

smc1660 Implements the ISA Ethernet device driver
interface

smc91xx SMC91 family Ethernet device driver

smcuart QUICC SMC controller UART device driver

ChorusOS Operating System Features 79

Driver Description

tbDec PowerPC timebase and decrementer timer
device driver

tx3922 TX3922 bus driver

tx39_uart TX39 UART device driver

vt82c586 vt82c586 VIA Technologies PCI-to-ISA bridge,
ISA bus driver

vt82c586_ata ATA bus driver for VIA Tech VT82C586 IDE
controller

w83c553 Winbond PCI/ISA bridge, ISA bus driver

w83c553_ata ATA bus driver for Winbond W83C553 IDE
controller

z8536 z8536/mcp750 hardware related constants

z85x30 Generic z85x30 hardware related constants

BSP Hot Swap
The ChorusOS Board Support Package (BSP) hot swap feature allows you to remove
and replace a board from an instance of the ChorusOS operating system, without
having to shut the system down. BSP hot swap starts and stops the driver
corresponding to a board that is inserted or removed.

The BSP hot swap features a two-layer implementation:

� A board-dependent layer, the Hot Swap Controller (HSC), that handles the ENUM#
signal. The ENUM# signal notifies the system of an insertion or a removal event
specified by Peripheral Component Interconnect (PCI) hot swap.

� A common layer that implements the handler attached to the ENUM# signal. This is
a PciSwap device driver installed between the bridge-specific PCI bus
implementation and the implementation of the board-specific HSC hot swap
interrupt driver.

Hot Swap Support
ChorusOS BSP hot swap support defines and implements a common layer between
the PCI bus device driver and the HSC device driver. The implementation of the PCI

80 ChorusOS 5.0 Features and Architecture Overview • December 2001

bus (bridge) is chip-specific and is not supposed to be aware of the PCI hot swap
capabilities. However, the handling of the ENUM# event is board-specific, because the
ENUM# signal can be routed to any interrupt source and can even be polled upon
timeout. The detection of this is not parent bus-specific either, but depends on the
implementation of the PCI device inserted.

BSP Hot Swap support is split into three stages:

� Handling the ENUM# signal.

� Accessing the Hot Swap Control/Status Register (HS_CSR)

� Interconnecting with the System Management (system event propagation).

Compact PCI-type devices and the dec2115x bridge family are supported.

Hot Swap Sequences
The BSP hot swap feature of the ChorusOS operating system performs the following
operations upon system start-up and the insertion or removal of a board.

Start up
When started, the PciSwap device driver looks up the device registry for the HSC
device driver specified for its node. If found, the PciSwap driver opens the HSC
device and installs its ENUM# handler. Without an ENUM# handler the PCI bus node
will not support hot swap. The PCI bus driver init-method looks up the device
registry and searches for the instance of the PciSwap driver specified for its device
node. If found, the PCI bus driver opens the connection to this instance and installs its
handlers for insertion and removal events. The PCI bus node now has hot swap
capabilities.

Insertion of a Board
On insertion of a board, the ENUM# signal is detected and neutralized by the HSC
device driver. This event is passed to the PciSwap driver, which detects the slot into
which the board is inserted. The parent PCI bus driver is notified for each insertion.
The PCI bus driver or PciSwap (or both) invokes the PCI enumerator. New device
nodes are created or static nodes are activated. The device-specific driver establishes
the connection to the PCI bus. The PCI bus driver invokes a lock method for each
activated device node in the PciSwap driver. The slot is declared BUSY.

ChorusOS Operating System Features 81

Removal of a Board
The ENUM# signal is detected by the HSC device driver. This event is passed to the
PciSwap driver, which detects which slot to remove. The parent PCI bus driver is
notified for each removal. The PCI bus driver sends the device shutdown event. The
PCI device closes its connection to the PCI bus. The PCI bus driver or PciSwap (or
both) invokes the PCI enumerator. The dynamic (enumerated) device nodes are
deleted or static nodes are deactivated. When the last connection to the PCI bus driver
for the slot is closed, the PCI bus driver invokes the method of the PciSwap driver.
The slot is declared FREE and can be removed.

BSP Hot Swap API
The BSP hot swap feature API is given in the table below:

Function Description

open() Establish a connection between PCI bus and
the Hot Swap Controller device.

lock() Called before device initialization, to show
that the PCI slot is busy.

unlock() Called after device shut down, to show that
the PCI slot is free to extract.

close() Close a connection between PCI bus and the
Hot Swap Controller device.

Hot Restart and Persistent Memory
An important benefit of the ChorusOS operating system is its hot restart capability,
which provides a rapid mechanism for restarting applications or entire systems if a
serious error or failure occurs.

The conventional technique, cold restart, involves rebooting or reloading an
application from scratch. This causes unacceptable downtime in most systems, and
there is no way to return the application to the state in which it was executing when
the error occurred.

The ChorusOS hot restart feature allows execution to recommence without reloading
code or data from the network or disk. When a hot-restartable process fails, persistent
memory is preserved, its text and data segments are reinitialized to their original

82 ChorusOS 5.0 Features and Architecture Overview • December 2001

content without accessing stable storage, and the process resumes at its entry point.
Hot restart is significantly faster than conventional failure recovery techniques
(application reload or cold system reboot) because it protects critical information that
allows the failed portions of a system to be reconstructed quickly, with minimal
interruption in service. Furthermore, the hot restart technique has been applied to the
entire ChorusOS operating system and not only to the applications it runs, thus
ensuring a very high quality of service availability.

The ChorusOS hot restart feature addresses the high-availability requirements of
ChorusOS operating system builders. Traditionally, system recovery from such errors
or failures involves terminating applications and reloading them from stable storage,
or rebooting the system. This causes system downtime, and can mean that important
application data is lost. Such behavior is unacceptable for system builders seeking ’7
by 24’ or ’five nines’ system availability.

The hot restart feature solves the problem of downtime and data loss by using
persistent memory, that is, memory that can persist beyond the lifetime of a particular
run-time instance of an actor. When an actor that uses the hot restart feature fails, or
terminates abnormally, the system uses the actor data stored in persistent memory to
reconstruct the actor without accessing stable storage. This reconstruction of an actor
from persistent memory instead of from stable storage is known as hot restarting (or
simply restarting) the actor. Persistent memory is described in detail in the following
section.

Persistent Memory
The foundation of the hot restart mechanism is the use of persistent memory to store
data that can persist across an actor or site restart. Persistent memory is used
internally by the system to store the actor image (text and data) from which a hot
restartable actor can be reconstructed. Any actor can also allocate persistent memory
to store data. This data could, for example, be used to checkpoint application
execution.

At the lowest level, persistent memory is a bank of memory loaded by the ChorusOS
microkernel at cold boot. The content of this bank of memory is preserved across an
actor or site restart. In the current implementation, the only supported medium for the
persistent memory bank is RAM, that is, persistent memory is simply a reserved area
of physical memory. For this reason, persistent memory resists a hot restart, but not a
board reset. The size of the area of RAM reserved for persistent memory is governed
by a tunable parameter.

The allocation and de-allocation (freeing) of persistent memory are managed by a
ChorusOS actor known as the Persistent Memory Manager (PMM). The Persistent
Memory Manager exports an API for this purpose. This API is distinct from the API

ChorusOS Operating System Features 83

used for allocating and freeing traditional memory regions. See rgnAllocate(2K),
rgnFree(2K), svPagesAllocate(2K) and svPagesFree(2K) for more information
on these APIs.

The Persistent Memory Manager API is described in detail in the
pmmAllocate(2RESTART), pmmFree(2RESTART) and pmmFreeAll(2RESTART) man
pages.

Hot Restart Overview
The ChorusOS hot restart feature comprises an API and run-time architecture that
offer the following services:

� Persistent memory allocation

The hot restart API allows actors to allocate and free portions of persistent memory
while they are executing. This service is available to all ChorusOS actors after hot
restart is configured.

� Actor restart

With hot restart, the system is capable of detecting the abnormal termination of one
or more actors and restarting them automatically from persistent memory. In
addition, actors are organized into restart groups, enabling the simultaneous restart
of all actors in a predefined group when a single actor in the group fails.

� Site restart

With hot restart, in addition to restarting one or more actors, the system is capable
of restarting all restartable actors, plus the microkernel and boot actors, for a given
ChorusOS site.

The combination of these services provides a powerful framework for highly-available
systems and applications, dramatically reducing the time it takes for a failed system or
component to return to service.

Hot Restart API
The hot restart API is summarized in the following table:

Function Description

HR_EXIT_HDL() Macro to mark a Hot Restartable actor for
clean termination

hrfexec() Spawn a Hot Restartable actor

hrfexecl() Spawn a Hot Restartable actor

84 ChorusOS 5.0 Features and Architecture Overview • December 2001

Function Description

hrfexecle() Spawn a Hot Restartable actor

hrfexeclp() Spawn a Hot Restartable actor

hrfexecv() Spawn a Hot Restartable actor

hrfexecve() Spawn a Hot Restartable actor

hrfexecvp() Spawn a Hot Restartable actor

hrGetActorGroup() Query the restart group ID for a restartable
actor

hrKillGroup() Kill a group of restartable actors

Restartable Actors
A restartable actor is any actor that can be restarted rapidly without accessing stable
storage, when it terminates abnormally. A restartable actor is restarted from an actor
image that comprises the actor’s text and initialized data regions. The actor image is
stored in persistent memory (unless the actor is executed in place, in which case the
actor image is the actor’s executable file, stored in non-persistent, physical memory).
Restartable actors can use additional blocks of persistent memory to store their own
data.

Figure 3–2 shows the state of a typical restartable actor at its initialization, during
execution, and once it has been hot restarted as the result of an error. The actor uses
persistent memory to store state data. After hot restart, the actor is reconstructed from
its actor image, also in persistent memory. It is then re-executed from its initial entry
point, and can retrieve the persistent state data that has been stored.

main()
T

D

main()
T

main()
T

Execution Failure and hot restart

Initial load During execution After hot restart

T

D

Text

Data

Allocated persistent memory

Retrieved persistent memory

FIGURE 3–2 A typical restartable actor

In the hot restart architecture, restartable actors are managed by a ChorusOS
supervisor actor called the Hot Restart Controller (HR_CTRL). The HRC monitors

ChorusOS Operating System Features 85

restartable actors to detect abnormal termination and automatically take the
appropriate restart action. In the context of hot restart, abnormal termination includes
unrecoverable errors, such as division by zero, a segmentation fault, unresolved page
fault, or invalid operation code.

Restartable actors, like traditional ChorusOS actors, can be run in either user or
supervisor mode. They can be executed from the sysadm.ini file, from the C_INIT
console, or spawned dynamically during system execution. The restartable nature of
restartable actors remains transparent to system actors because restartable actors do
not declare themselves restartable, but are run as restartable actors. More specifically, the
way in which a restartable actor is initially run determines how it will be restarted
when a restart occurs:

� Restartable actors, run from the sysadm.ini file or directly from the C_INIT
console, are restarted directly by the system when a restart occurs. These actors are
known as direct restartable actors.

� Restartable actors, spawned dynamically during system execution, are restarted by
the actor that initially spawned them. These actors are known as indirect restartable
actors.

The distinction between direct and indirect restartable actors provides a useful
framework for the construction of restartable groups of actors, described in “Restart
Groups” on page 86.

C_INIT and the Hot Restart Controller provide an interface specifically for running
and spawning restartable actors.

Restart Groups
Many applications are made up of not one but several actors, that cooperate to
provide a service. As these actors cooperate closely, a failure in one of them can have
repercussions in the others. For example, assume that actors A and B cooperate closely,
using the ChorusOS operating system over IPC, and that A fails. Simply terminating,
reloading, or hot-restarting A will probably not be sufficient, and will almost certainly
cause B to fail, or to go through some special recovery action. This recovery action
may in turn affect other actors that cooperate with actor B. Building cooperating
applications that can cope with the large number of potential fault scenarios is a
complex task that grows exponentially with the number of actors.

In response to this problem, the hot restart feature uses restart groups. A restart group
is essentially a group of cooperating restartable actors that can be restarted in the
event of the failure or abnormal termination of one or more actors within the group. In
other words, when one actor in the group fails, all actors in the group are stopped and
then restarted (either directly, by the system, or indirectly, through spawning). In this
way, closely cooperating actors are guaranteed a consistent, combined operating state.

86 ChorusOS 5.0 Features and Architecture Overview • December 2001

Every restartable actor in a ChorusOS operating system is a member of a restart group.
Restart groups of actors are mutually exclusive and, as such, a running actor can only
be a member of one actor group (declared when the actor is run), and group
containment is not permitted. A restart group is created dynamically when a direct
actor is declared to be a member of the group. Thus, each group contains at least one
direct actor. An indirect actor is always a member of the same group as the actor that
spawned it. A restart group is therefore populated through spawning from one or
more direct, restartable actors.

The following figure illustrates the possible organization of restartable actors into
groups within a system.

IA

DA

IA

IA
DA

DA

IA

IA
DA

IA
IA

IA

Restart group 1

DA
DA

Restart group 2

Restart group 3

Restart group 4

DA

IA Indirect restartable actor

Direct restartable actor

FIGURE 3–3 Restart Groups in a ChorusOS Operating System

When a group is restarted, it is restarted from the point at which it initially started. Figure
Figure 3–4 shows the state of a group of restartable actors when the group is initially
created, during execution, and when it is restarted following the failure of one of its
member actors. The group contains two direct actors and one indirect (spawned) actor.
The failure of the indirect actor causes a group restart. The two direct actors
automatically execute their code again from their initial entry point. Time runs
vertically down the page.

ChorusOS Operating System Features 87

main()

main()main()

Crash

main()main()

Spawn actor

main()

Initial state
(group created)

Actor crash

Group restarted

direct actor direct actor

Spawn actor

T
IM

E

indirect actor

FIGURE 3–4 Group restart

Note – Simply restarting a group of actors may still not bring the system to the
error-free state desired. Such a situation is possible when the failure that provokes an
actor group restart is, in fact, the consequence of an error or failure elsewhere in the
system. For this reason, the hot restart feature supports the concept of site restart,
described in the next section.

Site Restart
A site restart is the reinitialization of an entire ChorusOS site (system) following the
repeated failure of a group of restartable actors. It is the most severe action that can be
invoked automatically by the Hot Restart Controller. A site restart involves the
following:

88 ChorusOS 5.0 Features and Architecture Overview • December 2001

� The microkernel and boot actors are reinitialized from the system image. This step
is sometimes called a ’hot reboot’ of the system, as opposed to a cold reboot, which
involves a board reset and initial system loading steps. See the ChorusOS 5.0 Board
Support Package Developer’s Guide for details on a cold reboot.

� All restartable actor groups are restarted.

The precise number of group restarts to invoke a site restart is determined by the
system’s restart policy. The policy implemented by the hot restart feature is based on a
set of system tunable parameters. You can extend the basic restart policy within your
own applications, by choosing to invoke a group or site restart when particular
application-specific exceptions are raised, or when particular events occur.

Hot Restart Components
The ChorusOS hot restart feature uses the following two restart-specific actors to
implement hot restart services:

� A supervisor actor called the persistent memory manager (PMM), which offers
services for allocating and freeing persistent memory blocks.

� A supervisor actor called the hot restart controller, (HR_CTRL). It offers the system
calls that create and kill restartable actors, monitors restartable actors for abnormal
termination, and takes the appropriate restart action when a failure occurs.

The Persistent Memory Manager and Hot Restart Controller principally use the
services of the following:

� The C_INIT actor, for the interpretation of hot restart-specific commands entered
on the target or host console.

� The system actor C_OS, solicited by the hot restart controller for loading and
running restartable actors.

� The ChorusOS microkernel, for the low-level allocation of persistent memory, and
for support for site restart.

The resulting architecture is summarized in Figure 3–5. Hot restart-specific
components appear in gray, together with the API calls they provide. Other
components appear in white. Arrows from A to B depict A calling functions which are
implemented in B.

ChorusOS Operating System Features 89

C_INIT

HR_CTRL

PMM

Microkernel

arun -g
akill -g
aps

shutdown

hrKillGroup(2RESTART)

hrfexec(2RESTART)

hrGetActorGroup(2RESTART)

pmmAllocate(2RESTART)

pmmFree(2RESTART)

pmmFreeAll(2RESTART)

sysShutdown(2K)

C_OS

FIGURE 3–5 Hot Restart Architecture

For details of how to implement hot restart, see the ChorusOS 5.0 Application
Developer’s Guide .

POSIX Features
The ChorusOS operating system implements the following POSIX APIs:

POSIX Signals (POSIX-SIGNALS)
The ChorusOS operating system supports POSIX basic signal management system
calls. The POSIX signals API is only available to user-mode processes.

90 ChorusOS 5.0 Features and Architecture Overview • December 2001

POSIX signals API
The POSIX signals API is summarized in the following table:

Function Description

kill() Send a signal to a process

sigemptyset() Set a set of signals to NULL

sigfillset() Set all signals in a set

sigaddset() Add an individual signal to a set

sigdelset() Delete an individual signal from a set

sigismember() Test whether a signal is member of a set

sigaction() Set/Examine action for a given signal.

pthread_sigmask() Set/Examine signal mask for a pthread

sigprocmask() Set/Examine signal mask for a process

sigpending() Examine pending signals

sigsuspend() Wait for a signal

sigwait() Accept a signal

pthread_kill() Send a signal to a given thread

alarm() Schedule delivery of an alarm signal

pause() Suspend process execution

sleep() Delay process execution

POSIX Real-Time Signals
(POSIX_REALTIME_SIGNALS)
The real-time extension of POSIX signals (POSIX_REALTIME_SIGNALS) provides
functions to send and receive queued signals. In the basic POSIX signals
implementation, a particular signal is only received once by a process. Multiple
occurrences of a pending signal are ignored. The real-time signals API allows multiple
occurences of a signal to remain pending. POSIX real-time signals include a value that
is allocated to the receiver of the signal upon reception by sigwaitinfo() or
sigtimedwait(). Signals are then handled according to the value allocated to the
receiver. As a consequence, the number of signals sent always corresponds to the
number of signals received. This behavior is reserved for specific signals included in a
special range.

ChorusOS Operating System Features 91

POSIX Real-Time Signals API
The POSIX real-time signals API is summarized in the following table:

Function Description

sigqueue() Queue a signal to a process

sigwaitinfo() Accept a signal and get info

sigtimedwait() Accept a signal, wait for bounded time

POSIX Threads (POSIX-THREADS)
The POSIX-THREADS API is a compatible implementation of the POSIX 1003.1
pthread API.

POSIX threads API
The POSIX threads API is summarized in the following table:

Function Description

pthread_attr_init() Initialize a thread attribute object

pthread_attr_destroy() Destroy a thread attribute object

pthread_attr_setstacksize() Set the stacksize attribute

pthread_attr_getstacksize() Get the stacksize attribute

pthread_attr_setstackaddr() Set the stackaddr attribute

pthread_attr_getstackaddr() Get the stackaddr attribute

pthread_attr_setdetachstate() Set the detachstate attribute

pthread_attr_getdetachstate() Get the detachstate attribute

pthread_attr_setscope() Set the contention scope attribute

pthread_attr_getscope() Get the contention scope attribute

pthread_attr_setinheritsched() Set the scheduling inheritance attribute

pthread_attr_getinheritsched() Get the scheduling inheritance attribute

pthread_attr_setschedpolicy() Set the scheduling policy attribute

92 ChorusOS 5.0 Features and Architecture Overview • December 2001

Function Description

pthread_attr_getschedpolicy() Get the scheduling policy attribute

pthread_attr_setschedparam() Set the scheduling parameter attribute

pthread_attr_getschedparam() Get the scheduling parameter attribute

pthread_cancel() Cancel execution of a thread

pthread_cleanup_pop() Pop a thread cancellation clean-up handler

pthread_cleanup_push() Push a thread cancellation clean-up handler

pthread_cond_init() Initialize a condition variable

pthread_cond_destroy() Destroy a condition variable

pthread_cond_signal() Signal a condition variable

pthread_cond_broadcast() Broadcast a condition variable

pthread_cond_wait() Wait on a condition variable

pthread_cond_timedwait() Wait with timeout on a condition variable

pthread_condattr_init() Initialize a condition variable attribute object

pthread_condattr_destroy() Destroy a condition variable attribute object

pthread_create() Create a thread

pthread_equal() Compare thread identifiers

pthread_exit() Terminate the calling thread

pthread_join() Wait for thread termination

pthread_key_create() Create a thread-specific data key

pthread_key_delete() Delete a thread-specific data key

pthread_kill() Send a signal to a thread

pthread_mutex_init() Initialize a mutex

pthread_mutex_destroy() Delete a mutex

pthread_mutex_lock() Lock a mutex

pthread_mutex_trylock() Attempt to lock a mutex without waiting

pthread_mutex_unlock() Unlock a mutex

pthread_mutexattr_init() Initialize a mutex attribute object

pthread_mutexattr_destroy() Destroy a mutex attribute object

pthread_once() Initialize a library dynamically

ChorusOS Operating System Features 93

Function Description

pthread_self() Get the identifier of the calling thread

pthread_setcancelstate() Enable or disable cancellation

pthread_setschedparam() Set the current scheduling policy and
parameters of a thread

pthread_getschedparam() Get the current scheduling policy and
parameters of a thread

pthread_setspecific() Associate a thread-specific value with a key

pthread_testcancel() Create cancellation point in the caller

pthread_getspecific() Retrieve the thread-specific value associated
with a key

pthread_yield, sched_yield() Yield the processor to another thread

sched_get_priority_max() Get maximum priority for policy

sched_get_priority_min() Get minimum priority for policy

sched_rr_get_interval() Get time quantum for SCHED_RR policy

sysconf() Get configurable system variables

POSIX Timers (POSIX-TIMERS)
The POSIX-TIMERS API is a compatible implementation of the POSIX 1003.1
real-time clock/timer API. This feature is simply a library that might or might not be
linked with an application. It is not a feature that can be turned on or off when
configuring a system.

POSIX Timers API
The POSIX timers API is summarized in the following table:

Function Description

clock_settime() Set clock to a specified value

clock_gettime() Get value of clock

clock_getres() Get resolution of clock

nanosleep() Delay the current thread with high resolution

94 ChorusOS 5.0 Features and Architecture Overview • December 2001

Function Description

timer_create() Create a timer

timer_delete() Delete a timer

timer_settime() Set and arm or disarm a timer

timer_gettime() Get remaining interval for an active timer

timer_getoverrun() Get current overrun count for a timer

POSIX Message Queues (POSIX_MQ)
The POSIX_MQ feature is a compatible implementation of the POSIX 1003.1 real-time
message queue API. POSIX message queues can be shared between user and
supervisor processes.

POSIX Message Queue API
The POSIX message queues API is summarized in the following table:

Function Description

fpathconf() Return value of configurable limit (same as for
regular files)

mq_close() Close a message queue

mq_getattr() Retrieve message queue attributes

mq_open() Open a message queue

mq_receive() Receive a message from a message queue

mq_send() Send a message to a message queue

mq_setattr() Set message queue attributes

mq_unlink() Unlink a message queue

POSIX Semaphores (POSIX-SEM)
The POSIX-SEM API is a compatible implementation of the POSIX 1003.1 semaphores
API. For general information on this feature, see the POSIX standard (IEEE Std 1003.1 -
1993). This feature is simply a library that might or might not be linked to an
application. It is not a feature that can be turned on or off when configuring a system.

ChorusOS Operating System Features 95

POSIX Semaphores API
The POSIX semaphores API is summarized in the following table. Some of the calls
listed are also included in other features:

Function Comment

sem_open() Open/initialize a semaphore

sem_close() Close a semaphore

sem_init() Initialize a semaphore

sem_destroy() Delete a semaphore

sem_wait() Wait on a semaphore

sem_trywait() Attempt to lock a semaphore

sem_post() Signal a semaphore

sem_getvalue() Get semaphore counter value

sem_unlink() Remove a named semaphore

POSIX Shared Memory (POSIX_SHM)
The POSIX_SHM feature is a compatible implementation of the POSIX 1003.1 real-time
shared memory objects API. For general information on this feature, see the POSIX
standard (IEEE Std 1003.1b-1993).

POSIX Shared Memory API
The POSIX shared memory API is summarized in the following table. Some of the
calls listed are also included in other features:

Function Description

close() Close a file descriptor

dup() Duplicate an open file descriptor

dup2() Duplicate an open file descriptor

fchmod() Change mode of file

fchown() Change owner and group of a file

96 ChorusOS 5.0 Features and Architecture Overview • December 2001

Function Description

fcntl() File control

fpathconf() Get configurable pathname variables

fstat() Get file status

ftruncate() Set size of a shared memory object

mmap() Map actor addresses to memory object.

munmap() Unmap previously mapped addresses

shm_open() Open a shared memory object

shm_unlink() Unlink a shared memory object

POSIX Sockets (POSIX_SOCKETS)
The POSIX_SOCKETS feature provides POSIX-compatible socket system calls. For
general information on this feature, see the POSIX draft standard P1003.1g. The
POSIX_SOCKETS provides support for the AF_LOCAL, AF_INET, AF_INET6, and
AF_ROUTE domains. The AF_UNIX domain is only supported when the AF_LOCAL
feature is present. The AF_INET6 domain is only supported when the IPv6 feature is
present.

POSIX Sockets API
The POSIX_SOCKETS feature API is summarized in the following table. Some of the
calls listed are also included in other features:

Function Description

accept() Accept a connection on a socket

bind() Bind a name to a socket

close() Close a file descriptor

connect() Initiate a connection on a socket

dup() Duplicate an open file descriptor

dup2() Duplicate an open file descriptor

fcntl() File control

getpeername() Get name of connected peer

ChorusOS Operating System Features 97

Function Description

getsockname() Get socket name

setsockopt() Set options on sockets

getsockopt() Get options on sockets

ioctl() Device control

listen() Listen for connections on a socket

read() Read from a socket

recv() Receive a message from a socket

recvfrom() Receive a message from a socket

recvmsg() Receive a message from a socket

select() Synchronous I/O multiplexing

send() Send a message from a socket

sendto() Send a message from a socket.

sendmsg() Send a message from a socket

shutdown() Shut down part of a full-duplex connection

socket() Create an endpoint for communication

socketpair() Create a pair of connected sockets

write() Write on a socket

Input/Output (I/O)
When ChorusOS actors use the ChorusOS Console Input/Output API, all I/O
operations (such as printf() and scanf()) will be directed to the system console of
the target.

If an actor uses the ChorusOS POSIX Input/Output API and is spawned from the host
with rsh, the standard input and output of the application will be inherited from the
rsh program and sent to the terminal emulator on the host on which the rsh
command was issued.

In fact, the API is the same in both cases, but the POSIX API uses a different file
descriptor.

98 ChorusOS 5.0 Features and Architecture Overview • December 2001

I/O Options
The ChorusOS operating system provides the following optional I/O services:

FS_MAPPER

The FS_MAPPER feature provides support for swap in the IOM. It requires
SCSI_DISK to be configured, as well as VIRTUAL_ADDRESS_SPACE and
ON_DEMAND_PAGING.

The FS_MAPPER feature exports the swapon() system call.

For details, see the FS_MAPPER(5FEA) man page.

DEV_CDROM

The DEV_CDROM feature provides an interface to access SCSI CD-ROM drives.

The DEV_CDROM feature does not itself export an API.

DEV_MEM

The DEV_MEM feature provides a raw interface to memory devices such as
/dev/zero, /dev/null, /dev/kmem, and /dev/mem.

The DEV_MEM feature does not export an API itself, but allows access to the devices
listed in the preceding paragraphs.

For details, see the DEV_MEM(5FEA) man page.

DEV_NVRAM

The DEV_NVRAM feature provides an interface to the NVRAM memory device.

For details, see the NVRAM(5FEA) man page.

RAM_DISK

The RAM_DISK feature provides an interface to chunks of memory that can be seen
and handled as disks. These disks may then be initialized and used as regular file
systems, although their contents will be lost at system shutdown time. This feature is

ChorusOS Operating System Features 99

also required to get access to the MS-DOS file system, which is usually embedded as
part of the system boot image.

The RAM_DISK feature does not export any APIs itself.

For details, see the RAM_DISK(5FEA) man page.

FLASH

The FLASH feature provides an interface to access a memory device. The flash memory
may then be formatted, labelled, and used to support regular file systems. The FLASH
feature relies on the flash support based on the Flite 1.2 BSP, and is not supported for
all target family architectures. See the appropriate book in the ChorusOS 5.0 Target
Platform Collection for details of which target family architecture supports the Flite 1.2
BSP.

The FLASH feature does not itself export an API.

For details, see the FLASH(5FEA) man page.

RAWFLASH

The RAWFLASH feature provides an interface to access a raw memory device. The flash
memory may then be formatted, and written to with utilities such as dd. The
RAWFLASH feature is mostly used to flash the boot image onto the raw memory device.

For details, see the RAWFLASH(5FEA) man page.

VTTY

The VTTY feature provides support for serial lines on top of the BSP driver for higher
levels of protocols. It is used by the PPP feature (see“Point-to-Point Protocol (PPP)”
on page 138).

The VTTY feature does not itself export any APIs.

For details, see the VTTY(5FEA) man page.

SCSI_DISK

The SCSI_DISK feature provides an interface to access SCSI disks. The SCSI_DISK
feature relies on the SCSI bus support provided by the BSP to access disks connected
on that bus.

100 ChorusOS 5.0 Features and Architecture Overview • December 2001

The SCSI_DISK feature does not itself export an API.

For details, see the SCSI_DISK(5FEA) man page.

File Systems
This section introduces the file systems supported by the ChorusOS operating system.
For full details of the implementation of these file systems, see “Introduction to File
System Administration for ChorusOS” in ChorusOS 5.0 System Administrator’s Guide.

UNIX File System (UFS)
The UNIX file system option provides support for a disk-based file system, namely,
the file system resides on physical media such as hard disks.

The UNIX file system option supports drivers for the following types of physical
media:

� SCSI disks
� IDE disks
� RAM disks

The UFS feature provides POSIX-compatible file I/O system calls on top of the UFS
file system on a local disk. Thus, it requires a local disk to be configured and accessible
on the target system. At least one of the RAM_DISK, or SCSI_DISK features must be
configured. UFS must be embedded in any configuration that exports local files
through NFS.

The UFS feature API is identical to the API exported by the NFS_CLIENT feature.
However, some system calls in this API will return with error codes since the
underlying file system layout does not support all these operations. For general
information on the API provided by this feature, see the POSIX standard (IEEE Std
1003.1b-1993).

UFS API

The UFS feature API is summarized in the following table. It is identical to the API
exported by the NFS_CLIENT feature. However, some system calls in this API will
return with error codes since the underlying file system layout does not support all
these operations. For general information on the API provided by this feature, see the
POSIX standard (IEEE Std 1003.1b-1993). Some of the calls listed are also included in
other features.

ChorusOS Operating System Features 101

Command Description

access Check access permissions

chdir, fchdir Change current directory

chflags Modify file flags (BSD command)

chmod, fchmod Change access mode

chown, fchown Change owner

chroot Change root directory

close Close a file descriptor

dup, dup2 Duplicate an open file descriptor

fcntl File control

flock Apply or remove an advisory lock on an open
file

fpathconf Get configurable pathname variables

fsync Synchronize a file’s in-core statistics with
those on disk

getdents Read directory entries

getdirentries Get directory entries in a file system
independent format

getfsstat Get list of all mounted file systems

ioctl Device control

link Make a hard file link

lseek Move read/write file pointer

mkdir Make a directory file

mkfifo Make FIFOs

mknod Create a special file

mount, umount Mount or unmount a file system

open Open for reading or writing

read, readv Read from file

readlink Read a value of a symbolic link

rename Change the name of a file

revoke Invalidate all open file descriptors (BSD
command)

102 ChorusOS 5.0 Features and Architecture Overview • December 2001

Command Description

rmdir Remove a directory file

stat, fstat, lstat Get file status

statfs, fstatfs Get file system statistics

symlink Make a symbolic link to a file

sync Synchronize disk block in-core status with that
on disk

truncate, ftruncate Truncate a file

umask Set file creation mode mask

unlink Remove a directory entry

utimes Set file access and modification times

write, writev Write to a file

The following library calls do not support multithreaded applications:

Function Description

opendir() Open a directory

closedir() Close a directory

readdir() Read directory entry

rewinddir() Reset directory stream

scandir() Scan a directory for matching entries

seekdir() Set the position of the next readdir() call in
the directory stream

telldir() Return current location in directory stream

First-in, First-Out File System (FIFOFS)
The FIFOFS feature provides support for named pipes. It requires either NFS_CLIENT
or UFS to be configured as well as POSIX_SOCKETS and AF_LOCAL.

For details, see the FIFOFS(5FEA) man page.

ChorusOS Operating System Features 103

FIFOFS API

The FIFOFS feature does not have its own API, but enables nodes created using
mkfifo() to be used as pipes.

Network File System (NFS)
The Network File System (NFS) option provides transparent access to remote files on
most UNIX (and many non-UNIX) platforms. For example, this facility can be used to
load applications dynamically from the host to the target.

NFS_CLIENT

The NFS_CLIENT feature provides POSIX-compatible file I/O system calls on top of
the NFS file system. It provides only the client side implementation of the protocol
and thus requires a host system to provide the server side implementation of the NFS
protocol. The NFS_CLIENT feature can be configured to run on top of either Ethernet
or the point-to-point protocol (PPP). The NFS_CLIENT requires the POSIX_SOCKETS
feature to be configured.

The NFS protocol is supported over IPv4 or IPv6 and supports both NFSv2 and NFSv3
over the user datagram protocol (UDP) and transmission control protocol (TCP).

The NFS_CLIENT feature API is summarized in the following table. For general
information on the API provided by this feature, see the POSIX standard (IEEE Std
1003.1b-1993). Note that some of the calls listed are also included in other features.

Function Description

access() Check access permissions

chdir, fchdir() Change current directory

chflags() Modify file flags (BSD function)

chmod, fchmod() Change access mode

chown, fchown() Change owner

chroot() Change root directory

close() Close a file descriptor

dup, dup2() Duplicate an open file descriptor

fcntl() File control

flock() Apply or remove an advisory lock on an open
file

104 ChorusOS 5.0 Features and Architecture Overview • December 2001

Function Description

fpathconf() Get configurable pathname variables

fsync() Synchronize a file’s in-core stats with those on
disk

getdents() Read directory entries

getdirentries() Get directory entries in a file system
independent format

getfsstat() Get list of all mounted file systems

ioctl() Device control

link() Make a hard file link

lseek() Move read/write file pointer

mkdir() Make a directory file

mkfifo() Make FIFOs

mknod() Create a special file

mount, umount() Mount or unmount a file system

open() Open for reading or writing

read, readv() Read from file

readlink() Read a value of a symbolic link

rename() Change the name of a file

revoke() Invalidate all open file descriptors (BSD
function)

rmdir() Remove a directory file

stat, fstat, lstat() Get file status

statfs, fstatfs() Get file system statistics

symlink() Make a symbolic link to a file

sync() Synchronize disk block in-core status with that
on disk

truncate, ftruncate() Truncate a file

umask() Set file creation mode mask

unlink() Remove a directory entry

utimes() Set file access and modification times

write, writev() Write to a file

ChorusOS Operating System Features 105

The following library calls do not support multi-threaded applications:

Function Description

opendir() Open a directory

closedir() Close a directory

readdir() Read directory entry

rewinddir() Reset directory stream

scandir() Scan a directory for matching entries

seekdir() Set the position of the next readdir() call in
the directory stream

telldir() Return current location in directory stream

For details, see NFS_CLIENT(5FEA).

NFS_SERVER

The NFS_SERVER feature provides an NFS server on top of a local file system, most
commonly UFS, but possibly MSDOSFS. It provides only the server side
implementation of the protocol, the client side being provided by the NFS_CLIENT
feature. The NFS_SERVER requires the POSIX_SOCKETS and UFS features.

The NFS protocol is supported over IPv4 and IPv6; it supports both NFSv2 and NFSv3
over UDP and TCP.

The NFS_SERVER feature API is summarized in the following table. For general
information on the API provided by this feature, see the POSIX standard (IEEE Std
1003.1b-1993). Some of the calls listed are also included in other features.

Function Description

getfh() Get file handle

nfssvc() NFS services

For details, see the NFS_SERVER(5FEA) man page.

106 ChorusOS 5.0 Features and Architecture Overview • December 2001

MS-DOS File System (MSDOSFS)
The MSDOSFS feature provides POSIX-compatible file I/O system calls on top of the
MSDOSFS file system on a local disk. This feature requires a local disk to be configured
and accessible on the target system.

At least one of RAM_DISK or SCSI_DISK must be configured. It is usually embedded
in any configuration which uses a file system as part of the boot image of the system.
MSDOSFS is frequently used with Flash memory.

The MSDOSFS feature supports long file names and file access tables (FATs) with 12, 16,
or 32-bit entries.

For details, see MSDOSFS(5FEA).

MSDOSFS API

The MSDOSFS feature API is identical to the API exported by the NFS_CLIENT feature.
However, some system calls in this API will return with error codes since the
underlying file system layout does not allow support all of these operations; for
example, symlink() and mknod(). For general information on the API provided by
this feature, see the POSIX standard (IEEE Std 1003.1b-1993). Some of the calls listed
are also included in other features.

FS_MAPPER

The FS_MAPPER feature provides support for swap in the system. It requires either the
SCSI_DISK to be configured, as well as VIRTUAL_ADDRESS_SPACE. Swap is only
supported on local disks. Swapping to a remote device or file over NFS is not
supported. This feature uses a dedicated file system layout on disks.

The FS_MAPPER feature exports the swapon() system call.

For details, see the FS_MAPPER(5FEA) man page.

ISOFS

The ISOFS file system is used to access CD_ROM media.

PROCFS

The ChorusOS operating system provides a /proc file system derived from the
FreeBSD 4.1 implementation of /proc. Due to major differences in the

ChorusOS Operating System Features 107

implementation of the two systems, only a subset of the FreeBSD /proc file system
has been retained. However, due to enhancements of the process model introduced by
the ChorusOS operating system, such as the support of multi-threaded processes,
extensions have been introduced to reflect the multi-threaded nature of the processes.

Such a file system is usually mounted, by convention, under the /proc directory. This
directory is then populated and depopulated dynamically and automatically
depending on the life cycle of the processes. ChorusOS actors are not reflected in this
file system. Upon process creation (using fork() or posix_spawn()) an entry
whose name is derived from the process identifier is created in the /proc directory.
This per-process entry is in turn a directory whose layout is almost identical from one
process to another. Threads running in this process are also represented by a regular
file in the /proc file system (on a basis of one-to-one correspondence).

PROCFS API

The API supported by the PROCFS file system are similar to those exported by the UFS
file system, although many of calls that do not have any significance when applied to
a process will return with an error code. The list of entries that are supported below
each process are listed in the following table.

Entry Description

/proc Mount point

/proc/curproc Symbolic link to the current process

/proc/xxx Per-process directory (where xxx is the PID of
the process)

/proc/xxx/file Symbolic link to the executable file

/proc/xxx/stats Per-process instrumentation

/proc/xxx/status Process status information mostly used by
ps(1)

/proc/xxx/threads/ Process threads directory

/proc/xxx/threads/tt Per-thread directory (where tt is the id of the
thread)

/proc/xxx/threads/tt/stats Per-thread instrumentation

PDEVFS

The PDEVFS feature is a file system that has been specifically developed for ChorusOS.
By convention, it is usually mounted in the /dev and /image directories. It enables

108 ChorusOS 5.0 Features and Architecture Overview • December 2001

an application to create device nodes without having an actual file system such as
MSDOSFS, UFS or NFS available. All data structures are maintained in memory and
have to be recreated upon each reboot.

It is also used internally by the ChorusOS operating system at system startup time.
File types supported are:

� Block/character devices
� Directories

Regular files and FIFOs are not supported in this PDEVFS file system.

PDEVFS API

The PDEVFS API is the one exported by any file system, although most of the system
calls will return with an error, since only a limited subset of operations are supported
and meaningful. By default, the system mounts the PDEVFS file system as the root.

Processes
The ChorusOS operating system offers the following process management services:

� Memory Management
� Time Management
� Trace Management
� Environment Variables
� Private Data
� Password Management

Memory Management
The ChorusOS operating system offers various services which enable an actor to
extend its address space dynamically by allocating memory regions. An actor may also
shrink its address space by freeing memory regions. The ChorusOS operating system
offers the possibility of sharing an area of memory between two or more actors,
regardless of whether these actors are user or supervisor actors. There are three
memory management models, MEM_FLAT, MEM_PROTECTED, and MEM_VIRTUAL (see
“Memory Management Models” on page 111 for details on memory management
models).

ChorusOS Operating System Features 109

Note – For some reference target boards, the ChorusOS operating system does not
implement all memory management models. For example, the ChorusOS operating
system for UltraSPARC IIi-based boards does not implement the MEM_VIRTUAL
model.

Basic Concepts
Each memory management module provides semantics for subsets or variants of these
concepts. These semantics and variants are introduced, but are not covered in detail, in
the following sections.

Address Spaces

The address space of a processor is split into two subsets: the supervisor address space
and the user address space. A separate user address space is associated with each user
actor. The address space of an actor is also called the memory context of the actor.

A memory management module supports several different user address spaces, and
performs memory context switches when required in thread scheduling.

The supervisor address space is shared by every actor, but is only accessible to threads
running with the supervisor privilege level. The microkernel code and data are located
in the supervisor address space.

In addition, some privileged actors, that is, supervisor actors, also use the supervisor
address space. No user address space is allocated to supervisor actors.

Regions

The address space is divided into non-overlapping regions. A region is a contiguous
range of logical memory addresses, to which certain attributes are associated, such as
access rights. Regions can be created and destroyed dynamically by threads. Within
the limits of the protection rules, a region can be created remotely in an actor other
than the thread’s home actor.

Protections

Regions can be created with a set of access rights or protections.

The virtual pages that constitute a memory region can be protected against certain
types of accesses. Protection modes are machine-dependent, but most architectures

110 ChorusOS 5.0 Features and Architecture Overview • December 2001

provide at least read-write and read-only. Any attempt to violate the protections
triggers a page fault. The application can provide its own page fault handler.

Protections can be set independently for sub-regions inside a source region. In this
case, the source region is split into several new regions. Similarly, when two
contiguous regions get the same protections, they are merged into one region. The
programmer is warned that abusing this module could result in consuming too many
of the microkernel resources associated with regions.

Memory Management Models
The model used is determined by the settings of the VIRTUAL_ADDRESS_SPACE and
ON_DEMAND_PAGING features. See the MEM(5FEA) man page for details.

Flat memory (MEM_FLAT)

The microkernel and all applications run in one unique, unprotected address space.
This module provides simple memory allocation services.

The flat memory module, MEM_FLAT, is suited for systems that do not have a memory
management unit (MMU), or when use of the memory management unit is required
for reasons of efficiency only.

Virtual addresses match physical addresses directly. Applications cannot allocate more
memory than is physically available.

Address Spaces
A unique supervisor address space, matching the physical address space, is
featured. Any actor can access any part of physically mapped memory, such as
ROM, memory mapped I/O, or anywhere in RAM.

On a given site, memory objects can be shared by several actors. Sharing of
fractions of one memory object is not available.

At region creation time, the memory object is either allocated from free physical
RAM memory or shared from the memory object of another region.

The concept of sharing of memory objects is provided to control the freeing of
physical memory. The memory object associated with a region is returned to the
pool of free memory when the associated region is removed from its last context.
This concept of sharing does not prevent an actor from accessing any part of the
physically mapped memory.

Regions
The context of an actor is a collection of non-overlapping regions. The microkernel
associates a linear buffer of physical memory to each region, consisting of a
memory object. The memory object and the region have the same address and size.

ChorusOS Operating System Features 111

It is not possible to wait for memory at the moment of creation of a region. The
memory object must be obtainable immediately, either by sharing or by allocating
free physical memory.

Protections
There is no default protection mechanism.

Protected Memory (MEM_PROTECTED)

The protected memory module (MEM_PROTECTED) is suited to systems with memory
management, address translation, and where the application programs are able to
benefit from the flexibility and protection offered by separate address spaces. Unlike
the full virtual memory management module (MEM_VIRTUAL), it is not directly
possible to use secondary storage to emulate more memory than is physically
available. This module is primarily targeted at critical and non-critical real-time
applications, where memory protection is mandatory, and where low-priority access to
secondary storage is kept simple.

Protected memory management supports multiple address spaces and region sharing
between different address spaces. However, no external segments are defined; for
example, swap and on-demand paging are not supported. Access to programs or data
stored on secondary devices, such as video RAM and memory-mapped I/O, must be
handled by application-specific file servers.

Regions
The microkernel associates a set of physical pages with each region. This set of
physical pages is called a memory object.

At the moment of creation of the region, the memory object is either allocated from
free physical memory or shared with the memory object of another region. Sharing
has a semantic of physical sharing.

At the moment of creation of the region, you can initialize a region from another
region. This initialization has a semantic of physical allocation and copying
memory at region creation time. To keep the MEM_PROTECTED module small, no
deferred on-demand paging technique is used. An actor region maps a memory
object to a given virtual address, with the associated access rights.

The size of a memory object is equal to the size of the associated region(s).

It is not possible to wait for memory at region-creation time. The memory object
must be obtainable immediately, either by sharing or by allocating free physical
memory.

Protections
Violations of memory protection trigger memory fault exceptions that can be
handled at the application level by supervisor actors.

112 ChorusOS 5.0 Features and Architecture Overview • December 2001

For typical real-time applications, memory faults denote a software error that
should be logged properly for offline analysis. It should also trigger an
application-designed fault recovery procedure.

Virtual memory (MEM_VIRTUAL)

The virtual memory module, MEM_VIRTUAL, is suitable for systems with page-based
memory management units and where the application programs need a high-level
virtual memory management system to handle memory requirements greater than the
amount of physical memory available. It supports full virtual memory, including the
ability to swap memory in and out on secondary devices such as video RAM and
memory-mapped I/O. The main functionalities are:

� Support of multiple, protected address spaces.

� On systems with secondary storage (the usual case), applications can use much
more virtual memory than the memory physically available. This module supports
full virtual memory with swapping in and out on secondary devices. This module
is designed specifically to implement distributed UNIX subsystems on top of the
microkernel.

� Pages are automatically swapped in and out when appropriate.

Segments
The segment is the unit of representation of information in the system.

Segments are usually located in secondary storage. The segment can be persistent
(for example, files), or temporary, with a lifetime tied to that of an actor or a thread
(for example, swap objects).

The microkernel itself implements special forms of segment, such as the memory
objects that are allocated along with the regions.

Like actors, segments are designated by capabilities.

Regions
An actor region maps a portion of a segment to a given virtual address with the
associated access rights.

The memory management provides the mapping between regions inside an actor
and segments (for example, files, swap objects, and shared memory).

The segments and the regions can be created and destroyed dynamically by
threads. Within the limits of the protection rules, a region can be created remotely
in an actor other than the requesting actor.

Often, regions can define portions of segments that do or do not overlap. Different
actors can share a segment. Segments can thus be shared across the network.

The microkernel also implements optimized region copying (copy -on-write).

ChorusOS Operating System Features 113

Protections
Regions can be created with a set of access rights or protections.

The virtual pages constituting a memory region can be protected against certain
types of access. An attempt to violate the protections triggers a page fault. The
application can provide its own page fault handler.

Protections can be set independently for sub-regions inside a source region. In this
case, the source region is split into several new regions. Similarly, when two
contiguous regions get the same protections, they are combined into one region.

Note – Abusing the MEM_VIRTUAL module could result in consuming too many of
the microkernel resources associated with regions.

Explicit access to a segment
Memory management also allows explicit access to segments (namely, copying)
without mapping them into an address space. Object consistency is thus guaranteed
during concurrent accesses on a given site. The same cache management
mechanism is used for segments representing program text and data, and files
accessed by conventional read/write instructions.

Optional Memory Management Features
The ChorusOS operating system offers the following optional memory management
features:

VIRTUAL_ADDRESS_SPACE

The VIRTUAL_ADDRESS_SPACE feature enables separate virtual address space
support using the MEM_PROTECTED memory management model. If this feature is
disabled, all the actors and the operating system share one single, flat, address space.
When this feature is enabled, a separate virtual address space is created for each user
actor.

ON_DEMAND_PAGING

The ON_DEMAND_PAGING feature enables on demand memory allocation and paging
using the MEM_VIRTUAL model. ON_DEMAND_PAGING is only available when the
VIRTUAL_ADDRESS_SPACE feature is enabled.

Normally when a demand is made for memory, the same amount of physical and
virtual memory is allocated by the operating system. When the ON_DEMAND_PAGING
feature is enabled, virtual memory allocation of the user address space does not

114 ChorusOS 5.0 Features and Architecture Overview • December 2001

necessary mean that physical memory will be allocated. Instead, the operating system
may allocate the corresponding amount of memory on a large swap disk partition.
When this occurs, physical memory will be used as a cache for the swap partition.

Non-Volatile Memory (NVRAM)
The NVRAM feature provides a raw interface to non-volatile memory devices, such as
/dev/knvram and /dev/nvramX.

The NVRAM feature does not itself export an API.

Memory Management API
The memory management API is summarized in the following table:

Function Description Flat Protected Virtual

rgnAllocate() Allocate a region + + +

rgnDup() Duplicate an address space + +

rgnFree() Free a region + + +

rgnInit() Allocate a region initialized from a
segment

+

rgnInitFromActor()Allocate a region initialized from
another region

+ +

rgnMap() Create a region and map it to a segment +

rgnMapFromActor()Allocate a region mapping another
region

+ + +

rgnSetInherit() Set inheritance options for a region +

rgnSetPaging() Set paging options for a region +

rgnSetProtect() Set protection options for a region + + +

rgnStat() Get statistics of a region + + +

svCopyIn() Byte copy from user address space + + +

svCopyInString() String copy to user address space + + +

svCopyOut() Byte to user address space + + +

svPagesAllocate()Supervisor address space page allocator + + +

ChorusOS Operating System Features 115

Function Description Flat Protected Virtual

svPagesFree() Free memory allocated by
svPagesAllocate()

+ + +

svPhysAlloc() Physical memory page allocator + + +

svPhysFree() Free memory allocated by
svPhysAlloc()

+ + +

svPhysMap() Map a physical address to the
supervisor space

+ + +

svPhysUnMap() Destroy a mapping created by
svPhysMap()

+ + +

svMemMap() Map a physical address to the
supervisor space

+ + +

svMemUnMap() Destroy a mapping created by
svMemUnMap()

+ + +

vmCopy() Copy data between address spaces + + +

vmFree() Free physical memory +

vmLock() Lock virtual memory in physical
memory

+

vmMapToPhys() Map a physical address to a virtual
address

+ +

vmPageSize() Get the page or block size + + +

vmPhysAddr() Get a physical address for a virtual
address

+ + +

vmSetPar() Set the memory management
parameters

+

vmUnLock() Unlock virtual memory from physical
memory

+

Time Management
The ChorusOS operating system provides the following time management features:

� General interval timing
� Virtual timer
� Time of day (universal time)
� Real-time Clock
� Watchdog timer
� Benchmark timing

116 ChorusOS 5.0 Features and Architecture Overview • December 2001

� High resolution timing

The interrupt-level timing feature is always available and provides a traditional,
one-shot, timeout service. Time-outs and the timeout granularity are based on a
system-wide clock tick.

When the timer expires, a caller-provided handler is executed directly at the interrupt
level. This is generally on the interrupt stack, if one exists, and with thread scheduling
disabled. Therefore, the execution environment is restricted accordingly.

General Interval Timer (TIMER)
The TIMER feature implements a high-level timer service for both user and supervisor
actors. One-shot and periodic timers are provided, with timeout notification via the
execution of a user-provided upcall function by a handler thread in the application
actor. Handler threads can invoke any microkernel or subsystem system call. This
service is implemented using the TIMEOUT feature.

The extended timer facility uses the concept of a timer object in the actor environment.
Timers are created and deleted dynamically. Once created, they are addressed by a
local identifier in the context of their owning actor, and are deleted automatically
when that actor terminates. Timer objects provide a naming mechanism and a locus of
control for timing activities. All high-level timer operations, for example, setting,
modifying, querying, or canceling pending timeouts, refer to timer objects. Timer
objects are also involved in coordination with the threads used to execute
application-level notification handlers.

Applications will typically use extended timer functions via a standard
application-level library (see “POSIX Timers (POSIX-TIMERS)” on page 94). Timer
handler threads are created and managed by this library. The library is expected to
preallocate stack area for the notification functions, create the thread, and initialize the
thread’s priority, per-thread data, and all other aspects of its execution context, using
standard system calls. The thread then declares itself available for execution of the tier
notification (timerThreadPoolWait(2K)) system call to wait for the first or next
relevant timeout event. Event arrival will cause the thread to return from the system
call, at which point the library code can call the application’s handler. The thread pool
interface is designed to allow one or a small number of handler threads to service an
arbitrary number of timers. An application can thus create a large number of handlers
without the expense of a dedicated handler thread for each one.

At most, a single notification will be active for a given timer at any point in time. If no
handler thread is available when the timer interval expires, either because the
notification function is still executing from a previous expiration or because the
handler thread(s) is(are) occupied executing notifications for other timers, an overrun
occurs. When a handler thread becomes available (namely, re-executes
timerThreadPoolWait()), it will return immediately and the notification function
can be invoked immediately. At return from timerThreadPoolWait(), an overrun

ChorusOS Operating System Features 117

count is delivered to the thread. An overrun count value pertains to a particular
execution of the notification function. The overrun count is defined as the number of
timer expirations that have occurred since the preceding invocation of the notifying
function without a handler thread being available. Thus for a periodic timer, an
overrun count equal to one indicates that the current invocation was delayed, but by
less than the period interval.

For details, see the TIMER(5FEA) man page.

TIMER API

The general interval timer (TIMER) API is summarized in the following table:

Function Description

timerThreadPoolInit() Initialize a thread pool

timerThreadPoolWait() Wait for timer events

timerCreate() Create a timer

timerDelete() Delete a timer

timerGetRes() Get timer resolution

timerSet() Set a timer

Virtual Timer (VTIMER)
The VTIMER feature is responsible for all functions pertaining to measurement and
timing of thread execution. It exports a number of functions that are used typically by
higher-level operating system subsystems, such as, UNIX.

VTIMER functions include thread accounting (threadTimes(2K)) and virtual
timeouts (svVirtualTimeoutSet(2K) and svVirtualTimeoutCancel(2K)). A
virtual timeout handler is entered as soon as the designated thread or threads have
consumed the specified amount of execution time. Virtual timeouts can be set either
on individual threads, for support of subsystem-level virtual timers (for example,
SVR4, setitimer, VIRTUAL, and PROF timers), or on entire actors, for support of
process CPU limits.

A virtual timeout handler is entered as soon as one or more designated threads have
consumed the specified amount of execution time.

Execution time accounting can be limited to execution in the thread’s home actor
(internal execution time), or can include cross-actor invocations such as system calls
(total execution time).

118 ChorusOS 5.0 Features and Architecture Overview • December 2001

The svThreadVirtualTimeout() and svThreadActorTimeout() handlers are
invoked at thread level and thus can use any API service, including blocking system
calls. Timeout events are delivered to application threads, such as threadAbort(),
that is, a thread executes a virtual time handler on its own behalf.

For details about virtual time, see the VTIMER(5FEA) man page

VTIMER API

The virtual time API is summarized in the following table:

Function Description

svActorVirtualTimeoutCancel() Cancel an actor virtual timeout

svActorVirtualTimeoutSet() Set an actor virtual timeout

svThreadVirtualTimeoutCancel() Cancel a thread virtual timeout

svThreadVirtualTimeoutSet() Set a thread virtual timeout

svVirtualTimeoutCancel() Cancel a virtual timeout

svVirtualTimeoutSet() Set a virtual timeout

threadTimes() Get thread execution times

virtualTimeGetRes() Get virtual time resolution

Time of Day (DATE)
The DATE feature maintains the time of day expressed in Universal Time, which is
defined as the interval since 1st January 1970. Since the concept of local time is not
supported directly by the operating system, time-zones and local seasonal adjustments
must be handled by libraries outside the microkernel.

For details, see the DATE(5FEA) man page.

DATE API

The DATE API is summarized in the following table:

Function Description

univTime() Get time of day

ChorusOS Operating System Features 119

Function Description

univTimeAdjust() Adjust time of day

univTimeGetRes() Get time of day resolution

univTimeSet() Set time of day

Date Management
ChorusOS 5.0 provides time and date management services that comply to Time Zone
and Day Light Saving Time behaviors.

Date Management API

The date management utilities and API is summarized in the following table:

Function Description

date() Print or/and set the date

settimeoftheday() System call to set the time of the day

gettimeoftheday() System call to get the time of the day

adjtime() System call to adjust the time of the day
smoothly (used by the Network Time Protocol,
NTP)

ctime() Returns time argument as local time in ASCII
string

localtime() Returns time argument as local time in a
structure

gmtime() Returns time argument without local
adjustment

asctime() Returns ASCII time from time structure
argument

mktime() Returns time value from time structure
argument

strftime() Format printf like time from structure
argument

tzset() Set time zone information for time conversion
routines

120 ChorusOS 5.0 Features and Architecture Overview • December 2001

Real-Time Clock (RTC)
The RTC feature indicates whether a real-time clock (RTC) device is present on the
target machine. When this feature is set and an RTC is present on the target, the DATE
feature will retrieve time information from the RTC. If the RTC feature is not set,
indicating an RTC is not present on the target, the DATE feature will emulate the RTC
in software.

For details, see the RTC(5FEA) man page.

Watchdog Timer (WDT)
The watchdog timer feature enables a two-step watchdog mechanism on hardware. It
consists of a lower-level system layer provided by the driver, that exposes a DDI, and
a higher-level layer that hides the DDI and provides an easier API for any user
program. The watchdog itself has two steps:

The interrupt step: If the watchdog is not patted within a certain delay, an
interrupt handler provided by the system is invoked. This
interrupt handler attempts to shut down the system and to
perform a system dump of the node to collect evidence of the
problem.

The reset step: If the interrupt step gets stuck or lasts too long, the watchdog
resets the board, causing it to reboot.

The watchdog is either started by the system at system initialization or possibly by the
boot loader. It is expected that a dedicated user-level process will be responsible for
patting the watchdog throughout the normal life of the system. A failure in the patting
process will lead to the interrupt step of the watchdog mechanism.

To cope gracefully with transitions at initialization time, as well as at system
shut-down time, the system is designed to pat the watchdog by itself for a
configurable amount of time at system initialization and system shut down. During
these periods, where a patting process in user mode might not be possible, the system
will play that role implicitly. However, the duration of these initialization and
shut-down periods is bound to system configurable values, so it is impossible for
initialization to reach the point where the user-level patting process begins without the
watchdog interrupt occurring. Similarly, shut down is guaranteed to be bound, or the
watchdog interrupt will occur.

Some hardware can support more than one watchdog. The API copes with such
situations by associating handles to watchdogs. The WDT feature API is similar to the
watchdog API for the Solaris operating environment.

For details on watchdog timer, see the WDT(5FEA) man page.

ChorusOS Operating System Features 121

WDT API

The watchdog timer API is summarized in the following table:

Function Description

wdt_pat() Pat (reload) the watchdog timer

wdt_alloc() Allocate a watchdog timer

wdt_realloc() Reallocate a watchdog timer

wdt_free() Disarm and free a watchdog timer

wdt_get_maxinterval() Get the maximum limit (hardware) of a
watchdog

wdt_set_interval() Set the interval duration of a watchdog

wdt_get_interval() Get the interval duration of a watchdog

wdt_arm() Arm a watchdog

wdt_disarm() Disarm a watchdog

wdt_is_armed() Check whether a watchdog is armed

wdt_startup_commit() Tells the system the initialiazation phase is
over

wdt_shutdown() Tells the system to start patting for shut down

Note – The wdt_realloc() function enables a process to regain control over a
watchdog allocated by a possibly dead process.

Benchmark Timing (PERF)
The benchmark timing (PERF) feature provides a very precise measurement of short
events. It is used primarily for performance benchmarking.

The PERF API closely follows that of the TIMER feature.

For details, see the PERF(5FEA) man page.

122 ChorusOS 5.0 Features and Architecture Overview • December 2001

High Resolution Timing
The high resolution timer feature provides access to a fine-grained counter source for
applications. This counter is used for functions such as fine-grained ordering of events
in a node, measurements of short segments of code and fault-detection mechanisms
between nodes.

The high resolution timer has a resolution better than or equal to one microsecond,
and does not roll over more than once per day.

High Resolution Timer API

The high resolution timer API is summarized in the following table:

Function Description

hrTimerValue() Get the current value of the fine-grained timer
in ticks

hrTimerFrequency() Get the frequency of the fine-grained timer in
Hertz

hrTimerPeriod() Get the difference between the minimum and
the maximum of the possible values of the
fine-grained timer in ticks

Trace Management
Trace management in the ChorusOS operating system is provided by the logging,
black box, system dump, and core dump features.

Logging (LOG and syslog)
The LOG feature provides support for logging traces into a circular buffer on a target
system. This feature has always been present in the ChorusOS operating system, and
is retained for backward-compatibility reasons. A new, richer service called BLACKBOX
has been introduced and has its equivalent in the Solaris operating environment (see
“Black Box (BLACKBOX)” on page 124).

The higher layers of the system also support a POSIX syslog facility. This service
enables applications to write records that are marked with one of the possible
predefined tags and a severity level. The records are sent to a syslog daemon that
processes them according to a configuration file. Configuration of the daemon allows

ChorusOS Operating System Features 123

filtering of the records based on their tags and priority, and either appends them to a
file, or sends them to a remote site. Records can also be ignored and discarded.

For details, see the LOG(5FEA) man page.

Logging API

The logging API is summarized in the following table:

Function Description

sysLog() Log a message in the circular buffer of the
microkernel

vsyslog() Write a log record (variable argument list)

openlog() Open the log channel setting a default tag

closelog() Close the log channel

setlogmask() Set the priority mask level

In addition to the API, some other commands are provided:

Command Description

syslogd Daemon managing filtering and storing

logger Write a message in a log

syslogd.conf Configuration file for syslogd

Black Box (BLACKBOX)
The BLACKBOX feature provides an enhanced means for tracing and can be configured
into or out of the system independently of the LOG feature.

The black box feature relies on multiple in-memory circular buffers that are managed
by the system. One circular buffer is active at any time, which means that traces are
added sequentially to that buffer. The buffer then wraps around when full. A buffer
can be frozen through an explicit request indicating to the system which other buffer
will be activated next. Records can be read from a frozen black box. Filtering control
routines enables black box records to be discarded without the producer of such traces
knowing about this filtering. Black box buffers are always part of the system dump in
the case of a node failure leading to a dump.

124 ChorusOS 5.0 Features and Architecture Overview • December 2001

The ChorusOS black box feature closely resembles the black box feature of the the
Solaris operating environment.

For details, see BLACKBOX(5FEA).

Black Box API

The black box API common with the Solaris operating environment is summarized in
the following table:

Function Description

bb_event() Write a record in the current black box

bb_freeze() Freeze the current black box

bb_list() Get the list and status of system black boxes

bb_open() Open a frozen black box

bb_read() Read the content of an open black box

bb_close() Close an open black box

bb_release() Unfreeze a frozen black box

bb_getfilters() Retrieve current filters

bb_setfilters() Set filters

bb_getseverity() Retrieve severity level filter

bb_setseverity() Set severity level filter

bb_getprodids() Retrieve producer ID filter list

bb_setprodids() Set producer ID filter list

The ChorusOS microkernel-specific API for BLACKBOX is as follows:

Function Description

bbEvent() Adds an event to the black box

bbFreeze() Freezes the currently active black box and
directs all future events to another black box

bbRelease() Frees up a frozen black box

bbSeverity() Gets and/or sets the global severity bitmap for
the node

ChorusOS Operating System Features 125

Function Description

bbGetNbb() Gets the number of black boxes configured on
the node

bbList() Gives information about the set of black boxes
on the node

bbFilters() Gets and/or sets the filter list and the filtered
severity bitmap for the node

bbProdids() Gets and/or sets the list of producers that
have been registered to use the filter list and
the filtered severity bitmap on this node

bbOpen() Obtains access to a frozen black box

bbClose() Releases access to a frozen black box

bbReset() Resets a frozen black box

bbName() Gets and/or sets the symbolic name of a
persistent store used to hold the given black
box

System Dump (SYSTEM_DUMP)
The system dump feature enables the system to collect data in case of a crash. In the
ChorusOS operating system, data collection is defined as the content of the black box
buffers. On system crash, these data are copied to a persistent memory area, or dump
area, which is based on the HOT_RESTART feature of the ChorusOS operating system.
The system is then hot-restarted so that the persistent memory area is preserved. This
reboot operation gives control back to the ChorusOS bootMonitor, which initiates the
transfer of collected data to a configurable local or remote location. Remote transfer is
based on the TFTP protocol.

For details, see the SYSTEM_DUMP(5FEA) man page.

System Dump API

The SYSTEM_DUMP API is summarized in the following table:

Function Description

systemDumpCopy() Copy the black box and system information in
the dump area

systemDumpTransfer() Transfer the dump area to the storage location

126 ChorusOS 5.0 Features and Architecture Overview • December 2001

Core Dump (CORE_DUMP)
The core dump feature allows offline, postmortem analysis of actors or processes that
are killed by exceptions. This is performed in three steps:

� Gathering the relevant information from the actor or process to be killed

� Dumping the information into a core file on a stable storage medium

� Reloading the core file on the host machine for analysis

The core file is generated in the case of a fatal exception, upon request from the
debugging server or agent or upon request from any actor or process. The following
information is collected in the core file:

� The current threads and their characteristics, namely, all hardware and software
registers, the scheduling characteristics, and the thread’s name and ID

� The actor or process name, ID, capability, and type

� Dynamic and shared library informations, such as path names and relocation
information

� Memory regions in use

For details, see the CORE_DUMP(5FEA) man page.

Environment Variables (ENV)
The ChorusOS environment variables (ENV) provide users and applications the ability
to define configuration parameters at various stages of system construction and
operation, for example at boot and run time. They also allow applications to get the
values of these parameters at run time. These dynamic configuration parameters take
the form of a string environment, namely, a set of string pairs (name, value).

For details, see the ENV(5FEA) man page.

Environment Variable API
The ENV API is summarized in the following table:

Function Description

sysGetEnv() Get a value.

sysSetEnv() Set a value

sysUnsetEnv() Delete a value

ChorusOS Operating System Features 127

Private Data (PRIVATE-DATA)
The PRIVATE-DATA API implements a high-level interface for management of private
per-thread data in the actor address space. It also provides a per-actor data service for
supervisor actors only. This service is complemented by POSIX libraries, that are
defined in the POSIX-THREADS(5FEA) feature, for example
pthread_key_create(3POSIX) and pthread_setspecific(3POSIX).

For details, see the PRIVATE-DATA(5FEA) man page.

Private Data API
The PRIVATE-DATA API is summarized in the following table:

Function Description

padGet() Return actor-specific value associated with key

padKeyCreate() Create an actor private key

padKeyDelete() Delete an actor private key

padSet() Set actor key-specific value

ptdErrnoAddr() Return thread-specific errno address

ptdGet() Return thread-specific value associated with
key

ptdKeyCreate() Create a thread-specific data key

ptdKeyDelete() Delete a thread-specific data key

ptdRemoteGet() Return a thread-specific data value for another
thread

ptdRemoteSet() Set a thread-specific data value for another
thread

ptdSet() Set a thread-specific value

ptdThreadDelete() Delete all thread-specific values and call
destructors

ptdThreadId() Return the thread ID

128 ChorusOS 5.0 Features and Architecture Overview • December 2001

Password Management
The bases for password management in the ChorusOS operating system are the
classical /etc/master.passwd and /etc/group files. The ChorusOS operating
system provides regular routines to access these files. These databases can be
supported by either local files, NIS, or LDAP.

For details of password management, see the ChorusOS 5.0 System Administrator’s
Guide.

Password Management API
The password management API is summarized in the following table:

Function Description

ldap.conf() LDAP configuration file

getpwuid() Password database operation

getgrent() Group database operation

getgrgid() Group database operation

getgrnam() Group database operation

setgroupent() Group database operation

setgrent() Group database operation

endgrent() Group database operation

getpwent() Group database operation

getpwnam() Group database operation

getpwuid() Group database operation

setpassent() Group database operation

setpwent() Group database operation

endpwent() Group database operation

getusershell() Password database operation

pwd_mkdb() Generate password databases

passwd() Modify a user’s password

group() Format of the group permissions file

ChorusOS Operating System Features 129

Administration
The administration facilities available in the ChorusOS operating system mostly
consist of a set of commands activated in three different ways:

� Through a remote execution mechanism based on the remote shell feature

� Through a local command interpreter mechanism known as the LOCAL_CONSOLE
feature

� At system start-up time, using the sysadm.ini file that can be embedded into the
system image

Command Interpreter
In the ChorusOS operating system, commands are interpreted by the C_INIT actor.
The C_INIT is loaded when the system is started and is not invoked by a user, but by
the ChorusOS operating system. The C_INIT actor is also responsible for
authentication of users that issue C_INIT commands.

For details, see the C_INIT(1M) man page.

The C_INIT actor offers the following options:

� Remote shell
� Local console

Remote Shell
The remote shell (RSH) feature gives access to C_INIT commands. When this feature
is set, the C_INIT command rshd starts the rsh daemon. The rshd daemon is
usually run from the end of the sysadm.ini file. It can also be run from the local
console if it is available.

The RSH feature affects the configuration of the C_INIT actor. When configured, it
starts running the C_INIT command interpreter in an rsh daemon thread on the
target system forever. This allows a ChorusOS operating system to be administered
from a host without needing to access the local console of the target system. This
feature is not exclusive to the C_INIT LOCAL_CONSOLE feature. Both can be set,
enabling the C_INIT command interpreter to be accessed either locally or remotely
through the rsh protocol simultaneously.

See the RSH(5FEA) man page for details.

130 ChorusOS 5.0 Features and Architecture Overview • December 2001

Remote Shell API

The RSH feature does not have its own API. All commands defined by C_INIT can be
typed in on the target console. It is accessed from the host using the standard rsh
protocol.

Local Console
This feature gives access to C_INIT commands through the local console of the target.
When this feature is set, the C_INIT console command starts the command
interpreter on the local console. The console command is usually run at the end of
the sysadm.ini file. It can also be run through rsh if it is available.

See the LOCAL_CONSOLE(5FEA) man page for details.

Local Console API

The LOCAL_CONSOLE feature does not have its own API.

The sysadm.ini File
When the system is started, once all system components have initialized, the C_INIT
component looks for a file named /etc/sysadm.ini in the embedded file system
boot image. This script file is executed as the last step of the system initialization and
you can customize it to run selected applications directly upon system start-up. The
most usual tasks performed by sysadm.ini are as follows:

� Creating appropriate device entries in the /dev directory

� Parsing the device tree of the system and associating actual devices to correlated
/dev entries

� Initializing the network interface, for example, to use DHCP or ifconfig

� Mounting local or remote file systems, or both

� Starting the local console command interpreter or the remote command interpreter,
or both

System Administration Commands
The ChorusOS operating system offers a range of commands for system
administration, which can be accessed via the command interpreter or included in the
sysadm.ini file.

ChorusOS Operating System Features 131

Command Description

akill Kills an actor

aps Displays the list of all actors running on the
target system

arp Address resolution display and control

arun Runs actor_name on the target system

chat Automated conversational script with a
modem

chorusNSinet ChorusOS name servers

chorusNSsite ChorusOS name servers

chorusStat Print information about ChorusOS resources

configurator ChorusOS configuration utility

console Starts a command interpreter on the console of
the target system

cp Copy files

cs Report the status of ChorusOS resources

date Print and set the date

dd Convert and copy a file

df Display free disk space

dhclient Dynamic Host Configuration Protocol client

disklabel Read and write disk pack label

domainname Set or display the name of the current YP/NIS
domain

dtree Displays all connected devices in the target
device tree

echo Echoes arguments to standard output

env Displays the current environment

ethIpcStackAttach Attaches the IPC stack to an Ethernet device

flashdefrag Defragment a flash memory device

format Format a Flash memory device

fsck File system consistency check and interactive
repair

132 ChorusOS 5.0 Features and Architecture Overview • December 2001

Command Description

fsck_dos Create an MS-DOS (FAT) file system

ftp ARPANET file transfer program

ftpd Internet File Transfer Protocol server

help Displays a brief message summarizing
available commands

hostname Set or print name of current host system

ifconfig Configure network interface parameters

ifwait Waits for an interface to be set up

inetNS Internet name servers

inetNSdns Internet name servers

inetNShost Internet name servers

inetNSien116 Internet name servers

inetNSnis Internet name servers

ls List directory contents

memstat Displays information about current memory
usage

mkdev Creates a device interface

mkfd Create a bootable floppy disk from a
ChorusOS boot image

mkdir Create directories

mkfifo Make FIFOs

mkfs Replaced by newfs

mkmerge Create a merged tree

mknod Build special file

mount Mount file systems

mountd NFS daemon providing remote mount services

mount_msdos Mount an MSDOS file system

mount_nfs Mount an NFS file system

mv Move files

netstat Show network status

ChorusOS Operating System Features 133

Command Description

newfs Construct a new file system

newfs_dos Create an MS-DOS (FAT) file system

nfsd NFS daemon providing remote NFS services

nfsstat Display NFS statistics

pax Read and write file archives and copy
directory hierarchies

ping Requests an ICMP ECHO_RESPONSE from the
specified host

pppclose Requests that pppstart daemon starts a
thread to open a PPP line on device

pppd Point-to-Point Protocol command

pppstart Enables client PPP connections

pppstop Disables PPP services on the target system

PROF ChorusOS profiler server

profctl ChorusOS profiling control tool

profrpg ChorusOS profiling report generator

rarp Sets the IP address of the Ethernet interface

rdbc ChorusOS remote debugging daemon

reboot Kills all actors on the target system

restart Restarts the system

rm Remove directory entries

rmdir Remove directories

route Manipulate the routing tables manually

rpcbind DARPA port to RPC program number mapper

rshd Command interpreter based on the remote
shell protocol

setenv Sets an environment variable

shutdown Shut down and reboot or restart the system,
change system state

sleep Suspends execution of current thread

source Reads and executes commands in file

134 ChorusOS 5.0 Features and Architecture Overview • December 2001

Command Description

swapon Specify additional device for swapping

syncd Update disks periodically

sysctl Get or set microkernel state

sysenv ChorusOS operating system environment

telnetd Telnet Protocol server

touch Change file access and modification times

ulimit Sets or displays resource limits

umask Displays or sets the file creation mask

umount Unmount file systems

uname Display information about the system

unsetenv Sets the environment variable

ypbind NIS binder process

ypcat Print the values of all keys in a YP database

ypmatch Print the values of one or more keys in a YP
database

ypwhich Return the name of the NIS server or map
master

Networking
This section introduces the network protocols, libraries, and commands offered by the
ChorusOS operating system. For full details of networking with the ChorusOS
operating system, see the ChorusOS 5.0 System Administrator’s Guide.

Network Protocols
The ChorusOS operating system provides TCP/IP and UDP/IP stacks
(POSIX-SOCKETS), both over IPv4 and IPv6.

IPv4 and IPv6 can be present and used simultaneously.

ChorusOS Operating System Features 135

IPv4
IPv4 provides the host capabilities as defined by the Internet Engineering Task Force
(IETF). The following IPv4 protocols are supported:

IPv4 RFC Description

RFC 1122 Requirements for Internet Hosts,
Communication Layers

RFC 1123 Requirements for Internet Hosts, Application
and Support

RFC 791 Internet Protocol

RFC 792 Internet Control Message Protocol

RFC 768 User Datagram Protocol

RFC 793 Transmission Control Protocol

RFC 2236 Internet Group Multicast Protocol

RFC 950 Internet Standard Subnetting Procedure

RFC 1058 Routing Information Protocol

RFC 1112 Host Extensions for IP Multicast

RFC 854 Telnet Protocol Specification

RFC 855 Telnet Option Specification

RFC 959 File Transfer Protocol

RFC 783 TFTP Protocol

RFC 1350 The TFTP Protocol (Revision 2)

RFC 1034 Domain Names - Concepts and Facilities

RFC 1035 Domain Names - Implementation and
Specification

RFC 1055 Transmission of IP over Serial Lines

RFC 826 Address Resolution Protocol

RFC 903 A Reverse Address Resolution Protocol

RFC 1661 Point-to-Point Protocol

RFC 1570 PPP LCP Extensions

RFC 2131 Dynamic Host Configuration Protocol

RFC 951 Bootstrap Protocol

136 ChorusOS 5.0 Features and Architecture Overview • December 2001

IPv4 RFC Description

RFC 1497 BOOTP Vendor Information Extensions

RFC 1532 Clarifications and Extensions for the Bootstrap
Protocol

RFC 1577 Classical IP and ARP over ATM

RFC 2453 RIP Version 2

IPv6
The following IPv6 RFCs are supported:

IPv6 RFC Description

RFC 1981 Path MTU Discovery for IPv6

RFC 2292 Advanced Sockets API for IPv6

RFC 2373 IPv6 Addressing Architecture: supports node
required addresses, and conforms to the scope
requirement.

RFC 2374 An IPv6 Aggregatable Global Unicast Address
Format supports 64-bit length of Interface ID

RFC 2375 IPv6 Multicast Address Assignments Userland
applications use the well known addresses
assigned in the RFC

RFC 2460 IPv6 specification

RFC 2461 Neighbor discovery for IPv6

RFC 2462 IPv6 Stateless Address Autoconfiguration

RFC 2463 ICMPv6 for IPv6 specification

RFC 2464 Transmission of IPv6 Packets over Ethernet
Networks

RFC 2553 Basic Socket Interface Extensions for IPv6.
IPv4 mapped address and special behavior of
IPv6 wild card bind socket are supported

RFC 2675 IPv6 Jumbograms

RFC 2710 Multicast Listener Discovery for IPv6

The following utilities are available with IPv6 functionality:

ChorusOS Operating System Features 137

Command Description

ifconfig Assign address to network interface and
configure interface parameters

netstat Symbolically displays contents of various
network-related data structures

ndp Symbolically displays the contents of the
Neighbor Discovery cache

route Manually manipulate the network routing
tables

ping6 Elicit an ICMP6_ECHO_REPLY from a host or
gateway

rtsol Send only one Router Solicitation message to
the specified interface and exit

rtsold Send ICMPv6 Router Solicitation messages to
the specified interfaces

gifconfig Configures the physical address for the
generic IP tunnel interface

ftp Transfer files to and from a remote network
site

tftp Transfer files to and from a remote machine

For a full description of the implementation of IPv6 in the ChorusOS operating
system, see “IPv6 and the ChorusOS System” in ChorusOS 5.0 System Administrator’s
Guide.

Point-to-Point Protocol (PPP)
The PPP feature allows serial lines to be used as network interfaces using the
Point-to-Point Protocol. This feature needs to be configured for the ChorusOS
operating system to fully support the various PPP-related commands provided by the
ChorusOS system. These PPP-related commands are listed below:

pppstart: Enables client PPP connections

pppstop: Disables PPP services on the system by killing the pppstart
daemon

pppclose: Requests that the pppstart daemon close a previously opened
PPP line

pppd: Starts a PPP line

138 ChorusOS 5.0 Features and Architecture Overview • December 2001

These services are complemented by chat(), which defines a conversational
exchange between the computer and the modem. Its primary purpose is to establish
the connection between the Point-to-Point Protocol daemon (pppd) and a remote pppd
process.

The PPP feature does not export any APIs itself. It simply adds support of the PPP
ifnet to the system.

For details, see the PPP(5FEA) man page.

Network Time Protocol (NTP)
The Network Time Protocol is implemented in the ChorusOS operating system as a set
of daemons and commands whose purpose is to synchronize dates for different
ChorusOS operating systems.

The NTP feature does not provide any specific API and relies on the following utilities
and daemons:

ntpd: Client/server daemon. The server feature provides a reference
clock available to all systems on the network. The client feature is
used to compute a clock according to other sources and keep the
system clock synchronized with it.

ntptrace: Determines where a given NTP server gets its time, and follows
the chain of NTP servers back to their master time source.

ntpq: The Network Time Protocol Query Program dynamically gets or
sets the ntpd configuration.

ntpdate: Sets the local date from the one provided by a remote NTP server

NTP services rely on the adjtime() system call.

Note – The ChorusOS operating system supports the client side of the NTP protocol
(RFC 1305).

Berkley Packet Filtering (BPF)
The BPF feature provides a raw interface to data link layers in a protocol independent
fashion. All packets on the network, even those destined for other hosts, are accessible
through this mechanism. It must be configured when using the Dynamic Host
Configuration Protocol (DHCP) client (dhclient(1M)).

For details, see the BPF(5FEA) man page.

ChorusOS Operating System Features 139

DHCP
The ChorusOS operating system supports DHCP as a client and as a server. The
ChorusOS boot framework has also been enhanced so that it can use the DHCP
protocol to retrieve the system image and boot it on the local node, provided there is a
correctly configured DHCP server on the network. The client side of DHCP is
provided by the ChorusOS dhclient(1M) utility.

NFS
The ChorusOS operating system supports both NFSv2 and NFSv3, from client and
server points of view. This is described in “Network File System (NFS)” on page 104.

NFS works over TCP or UDP on IPv4.

IOM_IPC

The IOM_IPC feature provides support for the ethIpcStackAttach(2K) system call
and the corresponding built-in C_INIT(1M) command, ethIpcStackAttach. If the
feature is not configured, the ethIpcStackAttach(2K) system call of the built-in
C_INIT command will display an error message.

If the IOM_IPC feature is set to true, an IPC stack is included in the IOM system
actor. The IPC stack may be attached to an Ethernet interface.

For details, see the IOM_IPC(5FEA) man page.

IOM_OSI

The IOM_OSI feature provides support for the ethOSIStackAttach(2K) system call.

If the IOM_OSI feature is set to true, an OSI stack is included in the IOM system
actor. The OSI stack may be attached to an Ethernet interface.

For details, see the IOM_OSI(5FEA) man page.

POSIX_SOCKETS

The POSIX_SOCKETS feature is explained in “POSIX Sockets (POSIX_SOCKETS)”
on page 97.

140 ChorusOS 5.0 Features and Architecture Overview • December 2001

Network Libraries
This section describes the network libraries provided with the ChorusOS product.

RPC
The RPC library is compatible with Sun RPC, also known as ONC+. Extensions have
been introduced into the library provided with the ChorusOS operating system, as
well as into the Solaris operating environment, to support asynchronous
communication.

The RPC library calls are available with the POSIX_SOCKETS feature. These calls
support multithreaded applications. This feature is simply a library that might or
might not be linked to an application. It is not a feature that can be turned on or off
when configuring a system.

For details about RPC in the ChorusOS operating system, see RPC(5FEA).

LDAP
The Lightweight Directory Access Protocol (LDAP) provides access to X.500 directory
services. These services can be a stand-alone part of a distributed directory service.
Both synchronous and asynchronous APIs are provided. Also included are various
routines to parse the results returned from these routines.

The basic interaction is as follows. Firstly, a session handle is created. The underlying
session is established upon first use, which is commonly an LDAP bind operation.
Next, other operations are performed by calling one of the synchronous or
asynchronous search routines. Results returned from these routines are interpreted by
calling the LDAP parsing routines. The LDAP association and underlying connection
is then terminated. There are also APIs to interpret errors returned by LDAP server.

The LDAP API is summarized in the following table:

Function Description

ldap_add() Perform an LDAP adding operation

ldap_init() Initialize the LDAP library

ldap_open() Open a connection to an LDAP server

ldap_get_values() Retrieve attribute values from an LDAP entry

ldap_search_s() Perform synchronous LDAP search

ChorusOS Operating System Features 141

Function Description

ldap_search_st() Perform synchronous LDAP search, with
timeout

ldap_abandon() Abandon an LDAP operation

ldap_abandon_ext() Abandon an LDAP operation

ldap_delete_ext() Perform an LDAP delete operation

ldap_delete_ext_s() Perform an LDAP delete operation
synchronously

ldap_control_free() Dispose of a single control or an array of
controls allocated by other LDAP APIs

ldap_controls_free() Dispose of a single control or an array of
controls allocated by other LDAP APIs

ldap_extended_operation_s()

ldap_msgtype() Returns the type of an LDAP message

ldap_msgid() Returns the ID of an LDAP message

ldap_count_values() Count number of values in an array

ldap_explode_dn() Takes a domain name (DN) as returned by
ldap_get_dn() and breaks it into its
component parts

ldap_dn2ufn() Turn a DN as returned by ldap_get_dn()
into a more user- friendly form

ldap_explode_dns() Take a DNS-style DN and break it up into its
component parts

ldap_dns_to_dn() Converts a DNS domain name into an X.500
distinguished name

ldap_value_free() Free an array of values

ldap_is_dns_dn() Returns non-zero if the DN string is an
experimental DNS-style DN

ldap_explode_rdn() Breaks an RDN into its component parts

ldap_bind() Perform an LDAP bind operation

ldap_bind_s() Perform an LDAP bind operation
synchronously

ldap_simple_bind() Initiate asynchronous bind operation and
return message ID of the request sent

142 ChorusOS 5.0 Features and Architecture Overview • December 2001

Function Description

ldap_simple_bind_s() Initiate synchronous bind operation and
return message ID of the request sent

ldap_sasl_cram_md5_bind_s() General and extensible authentication over
LDAP through the use of the Simple
Authentication Security Layer (SASL)

ldap_init() Allocates an LDAP structure but does not
open an initial connection

ldap_modify_ext_s() Perform an LDAP modify operation

ldap_modrdn_s() Perform an LDAP modify RDN operation
synchronously

ldap_search() Perform LDAP search operations

For details, see the ldap(3LDAP) man page.

FTP
The FTP utility is the user interface to the ARPANET standard File Transfer Protocol.
The program allows a user to transfer files to and from a remote network site.

The FTP API is summarized in the following table:

Function Description

ftpd() Internet File Transfer Protocol server

ftpdStartSrv() Initializes FTP service

ftpdHandleCnx() Manages an FTP connection

lreply() Reply to an FTP client

perror_reply() Reply to an FTP client

reply() Reply to an FTP client

ftpdGetCnx() Accepts a new FTP connection

ftpdOob() Check for out-of-band data on the control
connection

For details, see the ChorusOS man pages section 3FTPD: FTP Daemon Library.

ChorusOS Operating System Features 143

Telnet
You can perform remote login operations on the ChorusOS operating system using the
Telnet virtual terminal protocol. The Telnet API is summarized in the following table:

Function Description

inetAccept() Wait for a new INET connection

inetBind() Bind, close INET sockets

inetClient() Wait for a new INET connection

inetClose() Bind, close INET socket

telnetdFlush() Write or flush a Telnet session

telnetdFree() Initialize or free a Telnet session

telnetdGetTermState() Get or set Telnet terminal state

telnetdInit() Initialize or free a Telnet session

telnetdPasswd() Telnet session authentication

telnetdRead() Read from a Telnet session

telnetdReadLine() Read a line of characters from a Telnet session

telnetdSetTermState() Get or set Telnet terminal state

telnetdUser() Telnet session authentication

telnetdWrite() Write or flush a Telnet session

See the ChorusOS man pages section 3TELD: Telnet Services.

Network Commands
The ChorusOS operating system offers the following network commands:

TABLE 3–1 ChorusOS Network Commands

Command IPv4 Compatible IPv6 Compatible

arp Yes N/A

ftp Yes Yes

ftpd Yes No

144 ChorusOS 5.0 Features and Architecture Overview • December 2001

TABLE 3–1 ChorusOS Network Commands (Continued)
Command IPv4 Compatible IPv6 Compatible

gifconfig Yes Yes

ifconfig Yes Yes

ndp No Yes

netstat Yes Yes

nfsd Yes No

nfsstat Yes No

ping Yes N/A

ping6 N/A Yes

pppstart Yes No

route Yes Yes

rpcbind Yes Yes

rpcinfo Yes Yes

teld Yes No

tftpd Yes Yes

ypcat Yes No

ypmatch Yes No

ypwhich Yes No

dhclient Yes No

dhcpd Yes No

ntpd Yes No

ntpdate Yes No

ntpq Yes No

tcpdump Yes Yes

rtsol N/A Yes

rtsold N/A Yes

traceroute Yes No

ChorusOS Operating System Features 145

Naming Services
Naming services in the ChorusOS operating system are provided by DNS and NIS.

The Domain Name System (DNS) commands provide a standard, stable and robust
architecture used for the naming architecture on the Internet Protocol. DNS is used
widely on the Internet.

Name resolution is ensured by DNS servers (named), one of which is the primary
server. This server reads the name records stored in a database on disk (this database
file is managed by the administrator). The other servers are secondary, which means
that they acquire the name records from the primary server, and do not read them
from the main database file. However, these secondary servers may store records in a
cache file on disk to improve restart performances. These cache files are not intended
to be edited manually. The user program performs the name resolution by sending
queries to DNS name servers. Generally, each host is configured such that it knows the
addresses of all name servers (primary and secondary).

The ChorusOS operating system can also be bound to a Network Information Service
(NIS) database.

The naming service API is summarized in the following table:

Command Description

named DNS server

named-xfer Perform an inbound zone transfer

gethostbyname Convert name into IP address

gethostbyaddress Convert IP address into name

gethostbyname2 Perform lookups in address families other
than AF_INET

gethostbyaddr Get network host entry from IP address

gethostent Reads /etc/hosts, and opens file if
necessary

sethostent Opens and/or rewinds /etc/hosts

endhostent Closes the file

herror Print an error message describing a failure

hstrerror Returns a string which is the message text
corresponding to the value of the err
parameter

146 ChorusOS 5.0 Features and Architecture Overview • December 2001

Command Description

getaddrinfo Protocol-independent nodename-to-address
translation

freeaddrinfo Frees structure pointed to by the ai argument

gai_strerror Returns a pointer to a string describing a
given error code

getnetent Get network entry

getnetbyaddr Search for net name by address

getnetbyname Search for net address by name

setnetent Opens and rewinds the file

endnetent Closes the file

System Instrumentation
The ChorusOS operating system provides instrumentation to inform applications of
the current use of the various resources managed by the system. Several kinds of
instrumentation are exported by the system:

Attributes: Static read-only values that show how the system is configured.
These attributes are usually tunable values set when you build
your system.

Counters: Values that increase constantly, such as, the number of bytes
transferred on a disk, or the number of packets received on a
network interface. Such counters can only be read by the
application. Some counters can be reset.

Gauges: Values that increase and decrease depending upon the activity of
the system, such as, the amount of memory used or the number of
open file descriptors used. Most of the time, gauges are associated
with watermarks. The ChorusOS operating system manages one
high and one low watermark per gauge. Gauges can only be read,
while watermarks can be read or reset.

Thresholds: Gauges with watermarks can also be associated with either a high
or a low threshold, depending upon the semantics of the resource
being instrumented. A threshold is represented by two values:

� a rise value, such that when the gauge’s value passes the rise
value a system event will be generated and posted to the

ChorusOS Operating System Features 147

application level
� a clear value, such that when the gauge’s value passes the clear

value, another system event will be generated and posted to
application level

Rise and clear values are illustrated in the following figures:

Resourc

ar value

Time

Rise value

Sysevent CLEAR alarm

High Threshold

FIGURE 3–6 Rise and Clear Values for a High Threshold

Resourc

Rise value

Time

Clear value

Sysevent RISE alarm

Sysevent CLEAR alarm

Low Threshold

FIGURE 3–7 Rise and Clear Values for a Low Threshold

You can modify the value of the threshold rise and clear values dynamically. At
system initialization time, the thresholds are disabled until they are set explicitly by an
application.

148 ChorusOS 5.0 Features and Architecture Overview • December 2001

In addition, the system exhibits a number of tunable values that you can modify
dynamically to affect the behavior of the system. These values might, for example,
represent the maximum number of open file descriptors per process, or IP forwarding
behavior.

The values exposed are given symbolic names according to a tree schema, or they can
be accessed through an object identifier (OID), obtained from the symbolic name of the
value. The API for getting or setting, or getting and setting, these values is based on
the sysctl() facility defined by FreeBSD systems. See the following section for
details.

The sysctl Facility
The sysctl facility allows the retrieval of information from the system, and allows
processes with appropriate privileges to set system information.

The information available from sysctl consists of integers, strings, tables, or opaque
data structures. This information is organized in a tree structure containing two types
of node:

Proxy leaf nodes Access data acquired dynamically on demand. These
nodes transparently handle the information exposed
by the microkernel

Dynamically created nodes Represent the information exposed by the devices, as it
appears and disappears dynamically

Only proxy leaf nodes have data associated with them.

The sysctl nodes are natively identified using a management information base
(MIB) style name, an OID, in the form of a unique array of integers.

sysctl API
Two sysctl system calls are provided:

Function Description

sysctl() Get/set a value identified by its OID

sysctlbyname() Get/set a value identified by its name

For details, see the sysctl(1M) man page.

ChorusOS Operating System Features 149

Device Instrumentation and Management
The sysctl() facility is used to expose the instrumentation information maintained
by the device drivers. This information is retrieved via the Device Driver Manager
(DDM).

The Device Driver Manager is a system component that enables a supervisor
application to manage devices. Only the devices that export a management DDI
interface or that have a parent that exports this DDI can be managed in this way. The
DDM is an abstraction of the DKI and the management DDI.

The DDM is implemented as a set of functions that are organized in a library, and can
only be used by one client at a time.

The DDM implements a tree of manageable devices with the following properties and
features:

� A device can be in one of the following three run states: DDM_RUNSTATE_ONLINE,
DDM_RUNSTATE_OFFLINE, and DDM_RUNSTATE_INACTIVE.

� A device can also be in one of the following availability states simultaneously:
DDM_AVSTATE_ENABLED and DDM_AVSTATE_DISABLED.

� A device in an online state is able to audit its own health, and export some statistics
(in addition to standard operation).

� A device in an offline state can only perform internal diagnostics

� A device in the inactive state does not perform any operations, although it is able
to change its state to another value. One of the purposes of the shut-down state is
to be able to change a property of the device in the device tree.

� A device in the DDM_AVSTATE_ENABLED state is able to have a driver running to
manage it. However, a device in the DDM_AVSTATE_DISABLED state is locked and
no drivers can be started to manage it.

Availability and run states are completely independent of each other, despite the fact
that a disabled device may eventually be inactive.

The state of a device is changed on request from the DDM client or by external events,
such as hardware failure or device hot swap. In both cases the DDM client is notified
of the successful state change through a handler (callback) that is defined at the time
of opening.

Device Tree
The initial internal device tree is built by taking all devices that satisfy the following
criteria:

� All devices that export the mngt DDI.

� All devices that export the diag DDI.

150 ChorusOS 5.0 Features and Architecture Overview • December 2001

� All devices that have a bus parent that exports the mngt DDI. This means that the
child drivers can be shut down or initialized via their bus parent.

The tree of devices exposed by the DDM to its client is only a subset of the internal
tree managed by the DDM. This in turn is a subset of the complete device tree for the
current board. The way in which it is built is described in the preceding section.

The devices that are exposed via the DDM are:

� All devices that have a parent (so that they can be shut down or reinitialized).

� All diagnostic devices, as they are generally leaf devices, and not bus parent nodes.

The device tree API is summarized in the following table:

Function Description

svDdmAudit() Runs non-intrusive tests on an online device

svDdmClose() Closes a previously made connection to the
device driver manager

svDdmDiag() Runs diagnostics on a node that is currently
offline

svDdmDisable() Locks the specified device node in the
disabled state

svDdmEnable() Enables a client to set the availability state of
the specified device node to
DDM_AVSTATE_ENABLED

svDdmGetInfo() Enables the client of the DDM to obtain
information on the specified node in the
manageable device tree

svDdmGetState() Enables the client of the DDM to get the state
value of the specified node

svDdmGetStats() Returns raw I/O statistics (counters) for an
online device

svDdmOffline() Enables the DDM client to set the run state of
the specified node to
DDM_RUNSTATE_OFFLINE

svDdmOnline() Enables the DDM client to set the run state of
the specified node to
DDM_RUNSTATE_ONLINE

svDdmOpen() Opens a connection to the device driver
manager and obtains access to the
management of the current device driver
instances

ChorusOS Operating System Features 151

Function Description

svDdmShutdown() Enables the DDM client to request that the
driver running on the specified node is shut
down

Related sysctl() entries
A number of sysctl() entries are present in the sysctl tree. Each device appears as
a sysctl node that holds per-device information, under the top-level dev node.
Available information about the device includes:

Name Per-device information is stored in a sysctl node whose name
derives from the canonical physical pathname of the device.

Class This string holds the device class, if provided by the DDM. If no
value is supplied, the content of this entry defaults to ’?’.

Status The integer contains both the availability and run status of the
device, as provided by the DDM.

Statistics This structure holds the device-class-specific statistics. Reading
this node returns an error if the device does not export statistics.

Diagnostics This entry triggers the diagnostic process of a device by writing a
magic value to it (1), retrieves the result of the last diagnostic by
reading it. An error may be returned if the device does not support
diagnostics or if the diagnostics cannot run because the device is
not in the appropriate state.

Audit Similar to device diagnostics, this entry triggers the audit process
and retrieves the result of the previous audit.

System Events
The SYSTEM_EVENTS feature enables a user-level application to be notified of the
occurrence of events in the system and/or drivers. The following events are posted by
the system and received by the application:

� Gauges crossing their threshold
� Creation or destruction of processes and, optionally, actors
� File system mounts and unmounts
� Detection of error in a driver
� Detection of error in the operating system

System events are carried by messages that are placed in different queues, depending
upon the kind of events. In the ChorusOS operating system, the system events feature

152 ChorusOS 5.0 Features and Architecture Overview • December 2001

relies on the MIPC microkernel feature. The maximum number of system events that
can be queued by the system is fixed by a tunable, set when you build the system.

The system events feature is also available to user-level applications to exchange
events and is not restricted to system-level communication.

In the context of system events, the following terms are defined:

� An event is something that happens inside one entity corresponding to a change in
the abstract state of that subsystem or application. Events are not generally
observable from outside the entity, and cannot correspond to a change in the actual
state of the entity. The entity in which the event occurs can notify certain user
applications of the occurrence.

� An event publisher is the entity that notifies other entities of the occurrences of a
particular set of events. Notification of occurrences of events can be made directly
to interested entities or through an intermediary dispatcher. The events can be
generic to a particular technology or specific to the event publisher.

� An event subscriber is an entity that is interested in the occurrence of certain events.
It can subscribe its interest directly with the event publisher or with some
intermediary entity to receive event notifications.

� An event buffer is passed from an event publisher to an event consumer to indicate
that an event has occurred. The buffer includes information to describe the
occurrence of an event in a particular publisher. The event buffer can be passed
directly from the publisher to the consumer, or through an intermediary dispatcher.

At a minimum, an event is described by its event type, event identifier and publisher
ID. These three fields combine to form the event buffer header. The goal is to provide a
simple and flexible way to describe the occurrence of an event. If additional
information is required to describe the event further, a publisher can provide a list of
self-defined attributes. Event attributes contain an event attribute name/value pair
that combine to define that attribute. Event attributes are used in event objects to
provide self-defining data as part of the event buffer. The name of the event attribute
is a character string. The event attribute value is a self-defining data structure that
contains a data-type specifier and the appropriate union member to hold the value of
the data specified.

Applications are provided a libnvpair to handle the attribute list and to provide a
set of interfaces for manipulating name-value pairs. The operations supported by the
library include adding and deleting name-value pairs, looking up values, and packing
the list into contiguous memory to pass it to another address space. The packed and
unpacked data formats are freshened internally. New data types and encoding
methods can be added with backward compatibility.

To enable the code of this library to be linked to the Solaris kernel or to the ChorusOS
operating system, the standard errno variable is not used to notify the caller that an
error occurred. Error values are returned by the library functions directly.

ChorusOS Operating System Features 153

System Events API
The system events API is summarized in the following table:

Function Description

sysevent_get_class_name() Get the class name of the event

sysevent_get_subclass_name() Get the subclass name

sysevent_get_size() Get the event buffer size

sysevent_get_seq() Get the event buffer size

sysevent_get_time() Get the time stamp

sysevent_free() Free memory for system event handle

sysevent_post_event() Post a system event from userland

sysevent_get_event() Wait for a system event

sysevent_get_attr_list() Get the attribute list pointer

sysevent_get_vendor_name() Get the publisher vendor name

sysevent_get_pub_name() Get the publisher name

sysevent_get_pid() Get the publisher PID

sysevent_lookup_attr() Search the attribute list

sysevent_attr_next() Returns the next attribute associated with
event

sysevent_dup() Duplicate a system event

OS_GAUGES
The OS_GAUGES module generates system events related to the OS component of the
ChorusOS operating system, following alarms or signals generated by gauges,
counters and thresholds. These system events are passed to the C_OS.

The OS_GAUGES module has no dedicated system calls, but rather reads and controls
counters, gauges and thresholds through sysctl(), sysctlbyname(), and the
/PROCFS file system.

For details, see the INSTRUMENTATION(5FEA) man page.

154 ChorusOS 5.0 Features and Architecture Overview • December 2001

Microkernel Statistics (MKSTAT)
Statistics regarding the microkernel are provided to the C_OS by the MKSTAT module.
Statistics for events such as alarms and creation or deletion of ChorusOS actors and
POSIX processes are retrieved by sysctl and /proc and then grouped by function
type in the MKSTAT module.

For details, see the INSTRUMENTATION(5FEA) man page.

MKSTAT API
The MKSTAT API is summarized in the following table:

Function Description

mkStatMem() Memory statistics

mkStatSvPages() Supervisor page statistics

mkStatActors() mkStatThreads

mkStatThreads() Execution statistics

mkStatCpu() CPU statistics

mkStatActorMem() Per-actor statistics

mkStatActorSvPages() Supervisor per-actor statistics

mkStatThreadCpu() Per-thread statistics

mkStatEvtCtrl() Event control statistics

mkStatEvtWait() Events waiting statistics

Microkernel Memory Instrumentation
The C_OS implements the microkernel memory instrumentation via the sysctl
kern.mkstats.mem node. The OS_GAUGES feature must be set to true.

Instrumentation related to memory use comprises the following measurements:

Function Instrument Type Description

physPagesEquiped() Attribute Measures the amount of
physical pages of memory
available on the node

ChorusOS Operating System Features 155

Function Instrument Type Description

physPagesavail() Gauge (low threshold) Measures the amount of
physical pages of memory
currently available

allocFailures() Counter Number of memory allocation
failures since boot

pageSize() Attribute Size in bytes of physical page

Microkernel Supervisor Page Instrumentation
The C_OS implements the microkernel supervisor page instrumentation via the
sysctl kern.mkstats.svpages node. The OS_GAUGES feature must be set to
true.

Instrumentation related to use of supervisor pages comprises the following
measurement:

Function Instrument Type Description

svPages() Gauge (high threshold) Measures number of
supervisor pages currently
allocated

Microkernel Execution Instrumentation
The C_OS implements the microkernel execution instrumentation via the sysctl
kern.mkstats.actors and kern.mkstats.threads nodes. The OS_GAUGES
feature must be set to true.

Instrumentation related to microkernel execution function comprises the following
measurements:

Function Instrument Type Description

maxActors() Attribute Measures the maximum
number of actors that can be
created

actors() Gauge (high threshold) Measures the current number
of actors in use

156 ChorusOS 5.0 Features and Architecture Overview • December 2001

Function Instrument Type Description

maxThreads() Attribute Measures the maximum
number of threads that can be
created

threads() Gauge (high threshold) Measures the current number
of threads in use

Microkernel CPU Instrumentation
The C_OS implements the microkernel CPU instrumentation via the sysctl
kern.mkstats.cpu node.

Instrumentation related to microkernel CPU use comprises the following
measurements:

Function Instrument Type Description

total_cpu() Counter Measures the number of
milliseconds CPU has been
used since boot

external() Counter Measures the number of
milliseconds the CPU has
been used outside execution
actor since boot (similar to
UNIX supervisor mode)

internal() Counter Measures the number of
milliseconds the CPU has
been used inside execution
actor supervisor mode since
boot (similar to UNIX user
mode)

This basic instrumentation provides only raw measurements on top of which
applications can compute ratios of CPU use according to their needs.

POSIX Process Instrumentation
The C_OS implements the microkernel POSIX process instrumentation via the sysctl
kern.mkstats.procs node.

ChorusOS Operating System Features 157

Instrumentation related to microkernel processes comprises the following
measurements:

Function Instrumentation Type Description

procs() Gauge (high threshold) Measures the current number
of processes in use on the
node

nb_syscalls() Counter Counts the number of system
calls performed since boot

nb_syscalls_failures() Counter Counts the number of failed
system calls since boot

nb_fork_failures() Counter Counts the number of failed
fork() system calls since
boot

File Instrumentation
The C_OS implements the microkernel file instrumentation via the sysctl
kern.mkstats.files node.

Instrumentation related to microkernel file use comprises the following
measurements:

Function Instrument Type Description

open_files() Gauge (high threshold) Measures the current number
of open files

vnodes() Gauge (high threshold) Current number of used
virtual nodes (vnodes)

158 ChorusOS 5.0 Features and Architecture Overview • December 2001

Per-File System Instrumentation
The following instrumentation is available for each mounted file system:

Function Instrument Type Description

fs_status() Attribute Determines availability of
threshold controls (for
example, a read-only mounted
file system has no threshold
control)

fs_max_size() Attribute Size of the file system in
blocks

fs_bsize() Attribute Size in bytes of the block

fs_space_free() Gauge (low threshold) Number of blocks currently
available in the file system

fs_max_files() Attribute Maximum number of files that
can be created on the file
system

fs_nb_files() Gauge Current number of files
created on the file system

Per-Actor and Per-Process Instrumentation
For each actor or process currently active on the system, the following information is
available to the C_OS via the stats entry of the process directory in the /proc file
system:

Function Instrument Type Description

virtpages() Gauge (high threshold) Counts the number of virtual
memory pages used by an
actor

physPages() Simple Gauge Counts the number of
physical memory pages used
by an actor

lockPages() Simple Gauge Number of locked memory
pages used by an actor

process_virt_pages() Gauge (high threshold) Number of virtual memory
pages used by a process

ChorusOS Operating System Features 159

Function Instrument Type Description

process_phys_pages() Simple Gauge Number of physical memory
pages used by a process

process_lock_pages() Simple Gauge Number of locked memory
pages used by a process

open_files() Gauge (high threshold) Current number of open file
descriptors

internal_cpu() Counter Cumulated (all threads)
internal CPU usage in
milliseconds (similar to user
mode)

external_cpu() Counter Cumulated (all threads)
external CPU usage in
milliseconds (similar to
system mode)

Microkernel Per-Thread Instrumentation
For each thread currently active on the system, the following information is available
via the stats entry of the process directory in the /proc file system:

Function Instrument Type Description

internal_cpu() Counter Internal CPU time spent in
milliseconds (similar to user
mode)

external_cpu() Counter External CPU time spent in
milliseconds (similar to
supervisor mode)

waiting_cnt() Counter Number of times the thread
has been blocked

Optional Java Functionality
The ChorusOS operating system offers the following optional Java functionalities.

160 ChorusOS 5.0 Features and Architecture Overview • December 2001

Java Runtime Environment (JRE)
The ChorusOS Java Runtime Environment (JRE) component allows you to develop
and implement Java applications on the ChorusOS operating system. The ChorusOS
Java Runtime Environment provides the following services:

Java 2 Platform Micro Edition (J2ME) Compatibility
The ChorusOS JRE offers conformity with the Java 2 Platform Micro Edition (J2ME)
specification, and meets the criteria of the Java 2 Technology Conformance Kit (TCK).
It supports the APIs for J2ME Connected Device Configuration (CDC) and the
Foundation profile. The pre-FCS RMI profile can also be used with source deliveries.

C Virtual Machine (CVM)
A C virtual machine (CVM) allows applications written in the Java programming
language to be portable across different hardware environments and operating
systems. The CVM mediates between the application and the underlying platform,
converting the application’s bytecodes into machine-level code appropriate for the
hardware and the ChorusOS operating system. The CVM supports all ChorusOS
CPUs and it uses native ChorusOS threads with tunable priority levels. It is possible
for several CVMs to run simultaneously.

The ChorusOS CVM offers the following characteristics:

� The CVM and user Java applications can be launched directly from an image,
embedded in flash or read-only memory. The CVM also offers Execute-in-Place
(XIP) functionality, reducing the size of the footprint of your application.

� A Java Native Interface (JNI).

� The CVM uses a generational garbage collector (GC), and supports the fastest
CVM locking mode, using atomic operations.

Java Platform Debugger Architecture (JPDA)
The ChorusOS JRE provides debugging support via the Java Platform Debugger
Architecture (JPDA). JPDA provides the infrastructure needed to build end-user
debugger applications. JPDA consists of the layered APIs:

Java Debug Interface (JDI)
A high-level Java programming language interface, including support for remote
debugging.

ChorusOS Operating System Features 161

Java Debug Wire Protocol (JDWP):
Defines the format of information and requests transferred between the debugging
process and the debugger front-end.

Java Virtual Machine Debug Interface (JVDMI):
A low-level native interface. Defines the services a Java virtual machine must
provide for debugging.

The Sun Forte™ for Java debugger fully supports JPDA.

Java Dynamic Management Kit (JDMK)
The ChorusOS operating system supports the Java Dynamic Management Kit (JDMK).

JDMK allows you to develop Java technology-based agents on your platform. These
agents can access your resources through the Java Native Interface or you can take
advantage of the Java programming language to develop new resources in the Java
Dynamic Management agent.

The Java Dynamic Management Kit provides scheduling, monitoring, notifications,
class loading, and other agent-side services. Agents running in the CVM are
completely scalable, meaning that both resources and services may be added or
removed dynamically, depending on platform constraints and run-time needs.
Connectors and protocol adaptors let you develop Java technology-based
management applications that may access and control any number of agents
transparently through protocols such as RMI, HTTP, SNMP, and HTML.

Tools
The ChorusOS operating system provides the following tools:

Ews Graphic Configuration Tool
The ChorusOS operating system offers a graphic configuration tool, called Ews, to
help you configure your system. The Ews configuration tool allows you to:

� Configure the system image, to include or exclude different features and
components

� Configure the features and tunables in your system image

� Set the environment variables

162 ChorusOS 5.0 Features and Architecture Overview • December 2001

� Add actors to the system image.

For details about using the Ews graphic configuration tool, see the ChorusOS 5.0
Application Developer’s Guide.

Built-in Debugging Tools
The ChorusOS operating system provides embedded debugging tools that debug all
parts of the operating system, including the boot.

Debugging Architecture
The ChorusOS operating system includes an open debugging architecture, as specified
by the ChorusOS 5.0 Debugging Guide. The debug architecture relies on a host-resident
server which abstracts the target platform to host tools, in particular debuggers.

The debug server is intended to connect to various forms of target systems, through
connections such as target through serial line or target through Ethernet.

This debug architecture provides support for two debugging modes:

� Application debug
� System debug

In the application debugging mode, debuggers connect to multi-threaded processes or
actors. Debugging an actor is non-intrusive for the system and other actors, except for
actors expecting services from the actor.

In system debugging mode, debuggers connect to the operating system seen as a
virtual single multi-threaded process. Debugging the system is highly intrusive, since
a breakpoint will stop all system operations. System debugging is designed to allow
debugging of all the various parts of the operating system, for example: the boot
sequence, the microkernel, the BSP and the system protocol stacks.

Tools support
The ChorusOS operating system provides the following features to support
debugging.

ChorusOS Operating System Features 163

LOG

The LOG feature provides support for logging console activity on a target system.

For details, see sysLog(2K).

PERF

The PERF feature provides an API to share the system timer (clock) in two modes:

� A free-running mode, which causes the timer to overflow after reaching its
maximum value and continue to count up from its minimum value. This mode can
be used for fine-grained execution measurement. This deactivates the system clock.

� A periodic mode, where the system timer is shared between the application and
the system tick. The timer will generate an interrupt at a set interval. The
application handler will be invoked at the required period. This mode can be used
by applications such as profilers.

The PERF API closely follows the timer(9DDI) device driver interface.

For details, see PERF(5FEA).

MON

The MON feature provides a means to monitor the activity of microkernel objects such
as threads, actors, and ports. Handlers can be connected to the events related to these
objects so that, for example, information related to thread-sleep/wake events can be
known. Handlers can also monitor global events, affecting the entire system.

For details, see MON(5FEA).

SYSTEM_DUMP

The ChorusOS operating system dump feature is also used for debugging the system
in the event of a crash. See “System Dump (SYSTEM_DUMP)” on page 126 for details.

DEBUG_SYSTEM

The DEBUG_SYSTEM feature enables remote debugging with the GDB Debugger for
the ChorusOS operating system. GDB communicates with the ChorusOS debug server
(see chserver(1CC)) through the RDBD protocol adapter (see rdbd(1CC)), both
running on the host. The debug server in turn communicates with the debug agent
running on the target. The debug server exports an open Debug API, which is
documented and available for use by third party tools.

164 ChorusOS 5.0 Features and Architecture Overview • December 2001

For details, see DEBUG_SYSTEM(5FEA).

ChorusOS Operating System Features 165

166 ChorusOS 5.0 Features and Architecture Overview • December 2001

APPENDIX A

Optional ChorusOS Operating System
Components

This Appendix lists the optional features of the ChorusOS operating system, broken
down according to function.

The following table shows the optional component groups.

TABLE A–1 Optional Operating System Components

Component Name

Actor management

User-mode extension support USER_MODE

Dynamic libraries DYNAMIC_LIB

Compressed file management GZ_FILE

Scheduling

FIFO scheduling SCHED_FIFO

Multi-class scheduling SCHED_CLASS

Round robin scheduling class SCHED_CLASS_RR

Real-time scheduling class SCHED_CLASS_RT

Memory management

Virtual (user and supervisor) address space VIRTUAL_ADDRESS_SPACE

On-demand paging ON_DEMAND_PAGING

System Instrumentation

Microkernel statistics MKSTAT

Solaris system events SOLARIS_SYSEVENTS

167

TABLE A–1 Optional Operating System Components (Continued)
Component Name

Operating system gauges OS_GAUGES

High Availability

Hot restart HOT_RESTART

Watchdog timer WDT

Black box BLACKBOX

System dump SYSTEM_DUMP

Inter-thread synchronization

Semaphores SEM

Event flag sets EVENT

Mutexes MUTEX

Mutual exclusion locks supporting thread priority
inversion avoidance

RTMUTEX

Management

Periodic timers TIMER

Thread and actor virtual timer VTIMER

Date and time of day DATE

Real-time clock RTC

Environment variables ENV

Inter-thread communication

Location-transparent inter-process communication IPC

Remote (inter-site) IPC support IPC_REMOTE

Mailbox-based communications mechanism MIPC

Inter-thread synchronization MONITOR

POSIX I/O system calls POSIX-FILEIO

POSIX semaphores POSIX-SEM

POSIX sockets POSIX_SOCKETS

POSIX threads POSIX-THREADS

POSIX timers POSIX-TIMERS

POSIX message queues POSIX_MQ

168 ChorusOS 5.0 Features and Architecture Overview • December 2001

TABLE A–1 Optional Operating System Components (Continued)
Component Name

POSIX shared memory objects POSIX_SHM

POSIX real-time signals POSIX_REALTIME_SIGNALS

Private per-thread data PRIVATE-DATA

Local name server for LAP binding LAPBIND

LAP validity-check option LAPSAFE

Tools support

System logging SYSLOG

Message logging LOG

Profiling and benchmark support PERF

System monitoring MON

System debugging DEBUG_SYSTEM

Core dump CORE_DUMP

C_INIT

Basic command interpreter on target LOCAL_CONSOLE

Remote shell RSH

File system options

Named pipes FIFOFS

NFS client NFS_CLIENT

NFS server NFS_SERVER

MS-DOS file system MSDOSFS

PDE file system PDEVFS

/proc file system PROCFS

UFS file system UFS

ISO9000 file system ISOFS

I/O management

/dev/mem, /dev/kmem, /dev/zero DEV_MEM

Support for RAM disk RAM_DISK

Chorus Mapper (supports virtual memory only) FS_MAPPER

Optional ChorusOS Operating System Components 169

TABLE A–1 Optional Operating System Components (Continued)
Component Name

Support for FLASH media FLASH

Access raw memory device RAWFLASH

Virtual TTY VTTY

Driver for SCSI disk SCSI_DISK

NVRAM device DEV_NVRAM

CD-ROM device DEV_CDROM

Networking

POSIX 1003.1g-compliant sockets POSIX_SOCKETS

Point-to-point protocols PPP

Local sockets and pipes (used by POSIX_SOCKETS) AF_LOCAL

Socket routing (used by POSIX_SOCKETS) AF_ROUTE

IPv4 sockets (used by POSIX_SOCKETS) AF_INET

IPv6 sockets (used by the IPV6 feature) AF_INET6

Internet Protocol version 6 IPV6

Berkley Packet Filter BPF

Support for OSI IOM_OSI

Support for IPC IOM_IPC

Network Time Protocol NTP

170 ChorusOS 5.0 Features and Architecture Overview • December 2001

APPENDIX B

Complete List of Available ChorusOS
System Calls

Below is the complete list of system calls available in the ChorusOS operating system.

POSIX APIs

POSIX System Calls (2POSIX)

accept access adjtime

bind chdir chflags

chmod chown chroot

close connect dup

dup2 fchdir fchflags

fchmod fchown fcntl

flock fpathconf fstat

fstatfs fsync ftruncate

getdirentries getdomainname getegid

geteuid getfh getfsstat

getgid gethostname getpeername

getpgid getpgrp getpid

171

getppid getrlimit getsid

getsockname getsockopt gettimeofday

getuid hostname ioctl

issetugid kill link

listen lseek lstat

mkdir mkfifo mknod

mmap mount mq_close

mq_getattr mq_open mq_receive

mq_send mq_setattr mq_unlink

munmap nfssvc nvramapi

open pathconf pipe

poll posix_spawn posix_spawnp

read readlink readv

recv recvfrom recvmsg

rename rmdir select

send sendmsg sendto

setdomainname setegid seteuid

setgid sethostname setpgid

setpgrp setrlimit setsid

setsockopt settimeofday setuid

shm_open shm_unlink shutdown

sigaction sigpending sigprocmask

sigqueue sigsuspend sigtimedwait

sigwait sigwaitinfo socket

socketpair stat statfs

swapon symlink sync

truncate umask unlink

unmount utimes wait

write writev

172 ChorusOS 5.0 Features and Architecture Overview • December 2001

FTP Daemon Library (3FTPD)

ftpdGetCnx ftpdHandleCnx ftpdOob

ftpdStartSrv lreply perror_reply

reply systemAsciiOff systemBeany

systemBesuper systemBeuser systemChdir

systemCommand systemDelete systemFileSize

systemGunique systemListFiles systemLog

systemLogwtmp systemMkdir systemPass

systemReceiveAscii systemReceiveBin systemRename

systemRmdir systemSendAscii systemSendBin

systemSetThreadTitle systemSleep systemUser

systemVlog

Mathematical Libraries (3M)

acos acosh asin

asinh atan atan2

atanh cabs cbrt

ceil copysign cos

cosh drem erf

erfc exp expm1

finite floor fmod

gamma hypot ieee

infnan j0 j1

jn lgamma log

log10 log1p logb

pow rint scalb

sin sinh sqrt

Complete List of Available ChorusOS System Calls 173

tan tanh y0

y1 yn

POSIX Library Functions (3POSIX)

Clocks and Timers

clock_gettime clock_settime clock_getres

timer_create timer_delete timer_getoverrun

timer_gettime timer_settime nanosleep

Threads

pthread_attr_destroy pthread_attr_getdetachstate

pthread_attr_getinheritsched pthread_attr_getschedparam

pthread_attr_getschedpolicy pthread_attr_getscope

pthread_attr_getstackaddr pthread_attr_getstacksize

pthread_attr_init pthread_attr_setdetachstate

pthread_attr_setinheritsched pthread_attr_setschedparam

pthread_attr_setschedpolicy pthread_attr_setscope

pthread_attr_setstackaddr pthread_attr_setstacksize

pthread_cond_broadcast pthread_cond_destroy

pthread_cond_init pthread_cond_signal

pthread_cond_timedwait pthread_cond_wait

pthread_condattr_destroy pthread_condattr_init

pthread_create pthread_equal

pthread_exit pthread_getschedparam

pthread_getspecific pthread_join

pthread_key_create pthread_key_delete

pthread_kill pthread_mutex_destroy

pthread_mutex_init pthread_mutex_lock

174 ChorusOS 5.0 Features and Architecture Overview • December 2001

Threads

pthread_mutex_trylock pthread_mutex_unlock

pthread_mutexattr_destroy pthread_mutexattr_init

pthread_self pthread_setschedparam

pthread_setspecific pthread_yield

pthread_once

Baud RateFunctions

cfgetispeed cfgetospeed

cfmakeraw cfsetispeed

cfsetospeed cfsetspeed

Terminal Interface Control

tcgetattr tcsetattr

Execution Scheduling

sched_get_priority_max sched_get_priority_min

sched_rr_get_interval sched_yield

Synchronization

sem_destroy sem_getvalue

sem_init sem_post

sem_trywait sem_wait

Other POSIX Library Functions

err closedir

directory getcwd

getwd opendir

readdir rewinddir

seekdir sysconf

Complete List of Available ChorusOS System Calls 175

Other POSIX Library Functions

sysctl sysctlbyname

telldir

Other

btree cancellation

dbopen endnetent

endnetgrent endprotoent

endservent getdiskbyname

getmntinfo getnetbyaddr

getnetbyname getnetent

getnetgrent getprotobyname

getprotobynumber getprotoent

getservbyname getservbyport

getservent glob

globfree hash

innetgr link_addr

link_ntoa mpool

ns_addr ns_ntoa

recno

setnetent setnetgrent

setprotoent setservent

verr verrx

vwarn vwarnx

warn warnx

RPC Services (3RPC)

auth_destroy authnone_create

176 ChorusOS 5.0 Features and Architecture Overview • December 2001

authsys_create authsys_create_default

clnt_call clnt_control

clnt_create clnt_create_timed

clnt_create_vers clnt_create_vers_timed

clnt_destroy clnt_dg_create

clnt_freeres clnt_geterr

clnt_pcreateerror clnt_perrno

clnt_perror clnt_raw_create

clnt_send clnt_spcreateerror

clnt_sperrno clnt_sperror

clnt_tli_create clnt_tp_create

clnt_tp_create_timed clnt_vc_create

endnetpath endrpcent

getnetpath getrpcbyname

getrpcbynumber getrpcent

getrpcport rpc

rpc_broadcast rpc_broadcast_exp

rpc_call rpc_clnt_auth

rpc_clnt_calls rpc_clnt_create

rpc_control rpc_createerr

rpc_reg rpc_svc_calls

rpc_svc_create rpc_svc_err

rpc_svc_reg rpc_xdr

rpcb_getaddr rpcb_getmaps

rpcb_gettime rpcb_rmtcall

rpcb_set rpcb_unset

rpcbind setnetpath

setrpcent svc_add_input

svc_auth_reg svc_control

svc_create svc_destroy

Complete List of Available ChorusOS System Calls 177

svc_dg_create svc_dg_enablecache

svc_done svc_exit

svc_fd_create svc_fdset

svc_freeargs svc_getargs

svc_getreq_common svc_getreq_poll

svc_getreqset svc_getrpccaller

svc_max_pollfd svc_pollfd

svc_raw_create svc_reg

svc_run svc_sendreply

svc_tli_create svc_tp_create

svc_unreg svc_vc_create

svcerr_auth svcerr_decode

svcerr_noproc svcerr_noprog

svcerr_progvers svcerr_systemerr

svcerr_weakauth xdr

xdr_accepted_reply xdr_admin

xdr_array xdr_authsys_parms

xdr_bool xdr_bytes

xdr_callhdr xdr_callmsg

xdr_char xdr_complex

xdr_control xdr_create

xdr_destroy xdr_double

xdr_enum xdr_float

xdr_free xdr_getpos

xdr_hyper xdr_inline

xdr_int xdr_long

xdr_longlong_t xdr_opaque

xdr_opaque_auth xdr_pointer

xdr_quadruple xdr_reference

xdr_rejected_reply xdr_replymsg

178 ChorusOS 5.0 Features and Architecture Overview • December 2001

xdr_setpos xdr_short

xdr_simple xdr_sizeof

xdr_string xdr_u_char

xdr_u_hyper xdr_u_int

xdr_u_long xdr_u_longlong_t

xdr_u_short xdr_union

xdr_vector xdr_void

xdr_wrapstring xdrmem_create

xdrrec_create xdrrec_endofrecord

xdrrec_eof xdrrec_readbytes

xdrrec_skiprecord xdrstdio_create

xprt_register xprt_unregister

Standard C Library Functions (3STDC)
These services are available to applications using the POSIX subsystem.

_assert _ldexp _stdc_assert

abort abs addr2ascii

alarm alphasort ascii2addr

asctime asctime_r assert

atexit atof atoi

atol bcmp bcopy

bsearch bstring byteorder

bzero calloc cgetcap

cgetclose cgetent cgetfirst

cgetmatch cgetnext cgetnum

cgetset cgetstr cgetustr

clearerr closelog crypt

ctime ctime_r ctype

Complete List of Available ChorusOS System Calls 179

difftime div dn_comp

dn_expand endgrent endhostent

endnetconfig endpwent errno

ether_aton ether_hostton ether_line

ether_ntoa ether_ntohost ethers

exit fabs fclose

fdopen feof ferror

fflagstostr fflush ffs

fgetc fgetpos fgets

fileno flockfile fopen

fprintf fputc fputs

fread free freenetconfigent

freopen fscanf fseek

fsetpos ftell ftrylockfile

funlockfile fwrite gai_unlocked

getaddrinfo getbsize getc

getc_unlocked getchar getchar_unlocked

getenv getgrent getgrid

getgrnam gethostbyaddr gethostbyname

gethostbyname2 gethostent getnetconfig

getnetconfigent getopt getpwent

getpwname getpwuid gets

getsitebyaddr getsitebyname getsubopt

getw gmtime gmtime_r

herror htonl htons

if_freenameindex if_indextoname if_nameindex

if_nametoindex index inet

inet6_option_alloc inet6_option_append inet6_option_find

inet6_option_init inet6_option_next inet6_option_space

inet6_rthdr_add inet6_rthdr_getaddr inet6_rthdr_getflags

180 ChorusOS 5.0 Features and Architecture Overview • December 2001

inet6_rthdr_init inet6_rthdr_lasthop inet6_rthdr_reverse

inet6_rthdr_segments inet6_rthdr_space inet_addr

inet_aton inet_lnaof inet_makeaddr

inet_netof inet_network inet_ntoa

inet_ntop inet_pton initstate

isalnum isalpha isascii

isatty iscntrl isdigit

isgraph isinf islower

isnan isprint ispunct

isspace isupper isxdigit

killpg labs ldexp

ldiv localtime localtime_r

longjmp malloc memccpy

memchr memcmp memcpy

memmove memory memset

mkstemp mktemp mktime

modf nc_perror nc_sperror

netdir netdir_free netdir_getbyaddr

netdir_getbyname netdir_mergeaddr netdir_options

netdir_perror netdir_sperror ntohl

ntohs openlog pause

pclose perror popen

printerr printf putc

putc_unlocked putchar putchar_unlocked

putenv puts putw

qsort rand rand_r

random realloc realpath

regcomp regerror regex

regexec regfree remove

res_init res_mquery res_query

Complete List of Available ChorusOS System Calls 181

res_search res_send resolver

rewind rindex scandir

scanf setbuf setenv

setgrent setgroupent sethostent

setjmp setlogmask setnetconfig

setpassent setpwent setstate

setvbuf snprintf sprintf

srand srandom sscanf

stdarg strcasecmp strcat

strchr strcmp strcoll

strcpy strcspn strdup

strerror strftime string

strlen strncasecmp strncat

strncmp strncpy strpbrk

strrchr strsep strspn

strstr strtod strtofflags

strtok strtok_r strtol

strtoul strxfrm swab

sys_errlist sys_nerr syslog

taddr2uaddr tempnam thread_once

time tmpfile tmpnam

toascii tolower toupper

tzset uaddr2taddr ungetc

unlocked unsetenv vfprintf

vprintf vsnprintf vsprintf

vsyslog

182 ChorusOS 5.0 Features and Architecture Overview • December 2001

Telnet Services (3TELD)

inetAccept inetBind inetClient

inetClose telnetdFlush telnetdFree

telnetdGetTermState telnetdInit telnetdPasswd

telnetdRead telnetdReadLine telnetdSetTermState

telnetdUser telnetdWrite

Legacy POSIX-Like Extended APIs
These APIs are provided for backward compatibility only. To facilitate the migration of
ChorusOS microkernel applications to POSIX, the POSIX equivalent, if applicable, is
indicated below. A “-” is used to indicate that no equivalent service is provided.

Pre-POSIX service POSIX equivalent service

acap -

aconf sysconf

acreate -

acred getuid, geteuid, getgid, getegid, setuid, setgid,
seteuid, setegid

afexec posix_spawn

afexecl execl

afexecle execle

afexeclp execlp

afexecv execv

afexecve execve

afexecvp execvp

agetalparam -

agetId getpid, getppid

akill kill

Complete List of Available ChorusOS System Calls 183

Pre-POSIX service POSIX equivalent service

aload -

alParamBuild -

alParamUnpack -

astart -

astat pstat

atrace ptrace

await waitpid

awaits wait

dladdr dladdr

dlclose dlclose

dlerror dlerror

dlopen dlopen

dlsym dlsym

New POSIX-Like Extended APIs

POSIX System Calls (2POSIX)

creat execve fork

getegid geteuid getgid

getgroups getpid getppid

getuid kill nvramapi

setegid seteuid setgid

setuid sigaction sigpending

sigprocmask sigqueue sigsuspend

sigtimedwait sigwait sigwaitinfo

184 ChorusOS 5.0 Features and Architecture Overview • December 2001

wait waitpid

POSIX Library Functions (3POSIX)

alarm exec execl

execle execlp execv

execvp fnmatch pause

pthread_cancel pthread_setcancelstate pthread_setcanceltype

pthread_testcancel pthread_cleanup_push pthread_cleanup_pop

ptrace sem_close sem_open

sem_unlink sigaddset sigdelset

sigemptyset sigfillset sigismember

sigsetops sleep times

uname utime

System Microkernel APIs
The microkernel APIs include the services listed below. For convenience, these services
have been divided into the corresponding man page sections.

Microkernel System Calls (2K)

_exit actorCreate

actorDelete actorName

actorPi actorPrivilege

actorSelf actorStart

actorStat actorStop

bbClose bbEvent

Complete List of Available ChorusOS System Calls 185

bbFilters bbFreeze

bbGetNbb bbList

bbName bbProdis

bbRead bbRelease

bbReset bbSeverity

ethIpcStackAttach ethOsiStackAttach

eventClear eventInit

eventPost eventWait

grpAllocate grpPortInsert

grpPortRemove ipcCall

ipcGetData ipcReceive

ipcReply ipcRestore

ipcSave ipcSend

ipcSysInfo ipcTarget

lapDescDup lapDescIsZero

lapDescZero lapInvoke

lapResolve mkStatActorMem

mkStatActorSvPages mkStatActors

mkStatCpu mkStatEvtCtrl

mkStatEvtWait mkStatMem

mkStatSvPages mkStatThreadCpu

mkStatThreads monitor

monitorGet monitorInit

monitorNotify monitorNotifyAll

monitorRel monitorWait

msgAllocate msgFree

msgGet msgPoolStat

msgPut msgQueueStat

msgRemove msgSpaceCreate

msgSpaceOpen mutexGet

186 ChorusOS 5.0 Features and Architecture Overview • December 2001

mutexInit mutexRel

mutexTry padGet

padKeyCreate padKeyDelete

padSet portCreate

portDeclare portDelete

portDisable portEnable

portGetSeqNum portLi

portMigrate portPi

portUi ptdErrnoAddr

ptdGet ptdKeyCreate

ptdKeyDelete ptdRemoteGet

ptdRemoteSet ptdSet

ptdThreadDelete ptdThreadId

rgnAllocate rgnDup

rgnFree rgnInitFromActor

rgnMapFromActor rgnSetInherit

rgnSetOpaque rgnSetPaging

rgnSetProtect rgnStat

rtMutexGet rtMutexInit

rtMutexRel rtMutexTry

schedAdmin semInit

semP semV

svAbortHandler svActorAbortHandler

svActorAbortHandlerConnect svActorAbortHandlerDisconnect

svActorAbortHandlerGetConnected svActorExcHandler

svActorExcHandlerConnect svActorExcHandlerDisconnect

svActorExcHandlerGetConnected svActorStopHandler

svActorStopHandlerConnect svActorStopHandlerDisconnect

svActorStopHandlerGetConnected svActorVirtualTimeout

svActorVirtualTimeoutCancel svActorVirtualTimeoutSet

Complete List of Available ChorusOS System Calls 187

svCopyIn svCopyInString

svCopyOut svDdmAudit

svDdmClose svDdmDiag

svDdmDisable svDdmEnable

svDdmGetInfo svDdmGetState

svDdmGetStats svDdmOffline

svDdmOnline svDmOpen

svDdmShutdown svExcHandler

svFpuContext svGetInvoker

svIntrLevel svLapBind

svLapCreate svLapDelete

svLapUnbind svMaskedLockGet

svMaskedLockInit svMaskedLockRel

svMaskedLockTry svMemRead

svMemWrite svMsgHandler

svMsgHdlReply svPagesAllocate

svPagesFree svPreemptable

svSoftIntrDeclare svSoftIntrForget

svSoftIntrTrigger svSpinLockGet

svSpinLockInit svSpinLockRel

svSpinLockTry svSysCtx

svSysPanic svSysTimeout

svSysTimeoutCancel svSysTimeoutSet

svSysTrapHandler svSysTrapHandlerConnect

svSysTrapHandlerDisconnect svSysTrapHandlerGetConnected

svThreadVirtualTimeout svThreadVirtualTimeoutCancel

svThreadVirtualTimeoutSet svTimeoutGetRes

svTrapConnect svTrapDisConnect

svVirtualTimeoutCancel svVirtualTimeoutSet

sysBench sysGetConf

188 ChorusOS 5.0 Features and Architecture Overview • December 2001

sysGetEnv sysLog

sysPoll sysRead

sysReboot sysSetEnv

sysShutdown sysTime

sysTimeGetRes sysTimer

sysTimerGetCounterFrequency sysTimerGetCounterPeriod

sysTimerReadCounter sysTimerStartFreerun

sysTimerStartPeriodic sysTimerStop

sysUnsetEnv sysWrite

threadAbort threadAborted

threadActivate threadBind

threadContext threadCreate

threadDelay threadDelete

threadLoadR threadName

threadResume threadScheduler

threadSelf threadSemInit

threadSemPost threadSemWait

threadStart threadStat

threadStop threadStoreR

threadSuspend threadTimes

timerCreate timerDelete

timerGetRes timerSet

timerThreadPoolInit timerThreadPoolWait

uiBuild uiClear

uiEqual uiGetSite

uiIsLocal uiLocalSite

uiSiteBuild uiValid

univTime univTimeAdjust

univTimeSet virtualTimeGetRes

vmCopy vmFree

Complete List of Available ChorusOS System Calls 189

vmLock vmPageSize

vmPhysAddr vmSetPar

vmStat vmUnLock

wdt_get_interval wdt_alloc

wdt_arm wdt_disarm

wdt_free wdt_get_maxinterval

wdt_get_mininterval wdt_is_armed

wdt_pat wdt_realloc

wdt_set_interval wdt_shutdown

wdt_startup_commit

Data Link Services (2DL)

svDataLink svDataLinkAttach

svInputFrameDeliver svLinkFailure

svOutFrameFree

Monitoring Services (2MON)

KcModule svActorMonConst

svActorPortList svActorProbeConnect

svActorProbeDisconnect svActorThreadList

svPortMonConst svPortProbeConnect

svPortProbeDisconnect svSiteActorList

svSiteMonConst svSiteProbeConnect

svSiteProbeDisconnect svThreadMonConst

svThreadProbeConnect svThreadProbeDisconnect

threadMonUser UcModule

190 ChorusOS 5.0 Features and Architecture Overview • December 2001

Virtual Memory Segment Services (2SEG)

dcAlloc dcCluster

dcFillZero dcFlush

dcFree dcGetPages

dcIsDirty dcPgNumber

dcPxmDeclare dcRead

dcSync dcTrunc

dcWrite lcCap

lcClose lcFillZero

lcFlush lcOpen

lcPushData lcRead

lcSetRights lcStat

lcTrunc lcWrite

MpCreate MpGetAccess

MpPullIn MpPushOut

MpRelease pageIoDone

pageMap pagePhysAddr

pageSetDirty pageSgId

pageUnmap PxmClose

PxmGetAcc PxmOpen

PxmPullIn PxmPushOutAsyn

PxmRelAccLock PxmStat

PxmSwapOut rgnFlush

rgnInit rgnInitFromDtCache

rgnMap rgnMapFromDtCache

sgFlush sgRead

sgStat sgSyncAll

sgWrite vmFlush

Complete List of Available ChorusOS System Calls 191

Device Driver Interfaces (9DDI)

ata bench bus

busFi buscom busmux

diag disk diskStat

ether etherStat flash

flashCtl flashStat generic_ata

gpio hsc isa

keyboard mii mngt

mouse netFrame nvram

pci pciFi pcimngr

pciswap pcmcia phy

quicc ric rtc

timer uart uartStat

vme wdtimer

Driver to Kernel Interfaces (9DKI)

dataCacheBlockFlush

dataCacheBlockFlush_powerpc dataCacheBlockInvalidate

dataCacheBlockInvalidate_powerpc dataCacheFlush

dataCacheInvalidate dataCacheInvalidate_powerpc

dcacheBlockFlush dcacheBlockFlush_usparc

dcacheFlush dcacheFlush_usparc

dcacheLineFlush dcacheLineFlush_usparc

DISABLE_PREEMPT dtreeNodeAlloc

dtreeNodeChild dtreeNodeDetach

dtreeNodeFind dtreeNodeFree

dtreeNodeParent dtreeNodePeer

192 ChorusOS 5.0 Features and Architecture Overview • December 2001

dtreeNodeRoot dtreePropAdd

dtreePropAlloc dtreePropAttach

dtreePropDetach dtreePropFind

dtreePropFindNext dtreePropFree

dtreePropLength dtreePropName

dtreePropValue eieio

eieio_powerpc ENABLE_PREEMPT

hrTimerFrequency hrTimerFrequency_powerpc

hrTimerFrequency_usparc hrTimerFrequency_x86

hrTimerPeriod hrTimerPeriod_powerpc

hrTimerPeriod_usparc hrTimerPeriod_x86

hrTimerValue hrTimerValue_powerpc

hrTimerValue_usparc hrTimerValue_x86

hrt hrt_powerpc

hrt_usparc hrt_x86

icacheBlockInval icacheBlockInval_usparc

icacheInval icacheInval_usparc

icacheLineInval icacheLineInval_usparc

imsIntrMask_f imsIntrUnmask_f

instCacheBlockInvalidate instCacheBlockInvalidate_powerpc

instCacheInvalidate instCacheInvalidate_powerpc

ioLoad16 ioLoad16_x86

ioLoad32 ioLoad32_x86

ioLoad8 ioLoad8_x86

ioRead16 ioRead16_x86

ioRead32 ioRead32_x86

ioRead8 ioRead8_x86

ioStore16 ioStore16_x86

ioStore32 ioStore32_x86

ioStore8 ioStore8_x86

Complete List of Available ChorusOS System Calls 193

ioWrite16 ioWrite16_x86

ioWrite32 ioWrite32_x86

ioWrite8 ioWrite8_x86

load_sync_16_usparc load_sync_32_usparc

load_sync_64_usparc load_sync_8_usparc

loadSwap_16 loadSwap_32

loadSwap_64 loadSwap_sync_16_usparc

loadSwap_sync_32_usparc loadSwap_sync_64_usparc

loadSwapEieio_16 loadSwapEieio_16_powerpc

loadSwapEieio_32 loadSwapEieio_32_powerpc

store_sync_16_usparc store_sync_32_usparc

store_sync_64_usparc store_sync_8_usparc

storeSwap_16 storeSwap_32

storeSwap_64 storeSwap_sync_16_usparc

storeSwap_sync_32_usparc storeSwap_sync_64_usparc

storeSwapEieio_16 storeSwapEieio_16_powerpc

storeSwapEieio_32 storeSwapEieio_32_powerpc

svAsyncExcepAttach svAsyncExcepAttach_usparc

svAsyncExcepDetach svAsyncExcepDetach_usparc

svDeviceAlloc svDeviceEntry

svDeviceEvent svDeviceFree

svDeviceLookup svDeviceNewCancel

svDeviceNewNotify svDeviceRegister

svDeviceRelease svDeviceUnregister

svDkiClose svDkiEvent

svInitLevel svIoRemap

svDkiOpen svDkiThreadCall

svDkiThreadCancel svDkiThreadTrigger

svDriverCap svDriverEntry

svDriverLookupFirst svDriverLookupNext

194 ChorusOS 5.0 Features and Architecture Overview • December 2001

svDriverRegister svDriverRelease

svDriverUnregister svIntrAttach

svIntrAttach_powerpc svIntrAttach_usparc

svIntrAttach_x86 svIntrCtxGet

svIntrCtxGet_powerpc svIntrCtxGet_usparc

svIntrCtxGet_x86 svIntrDetach

svIntrDetach_powerpc svIntrDetach_usparc

svIntrDetach_x86 svMemAlloc

svMemFree svPhysAlloc

svPhysFree svPhysMap

svPhysMap_powerpc svPhysMap_usparc

svPhysMap_x86 svPhysUnmap

svPhysUnmap_powerpc svPhysUnmap_usparc

svPhysUnmap_x86 svSoftIntrAttach_usparc

svSoftIntrDetach_usparc svTimeoutCancel

svTimeoutGetRes svTimeoutSet

svTimerIntrAttach_usparc svTimerIntrDetach_usparc

swap_16 swap_32

swap_64 swapEieio_16

swapEieio_16_powerpc swapEieio_32

swapEieio_32_powerpc usecBusyWait

vmMapToPhys vmMapToPhys_powerpc

vmMapToPhys_usparc vmMapToPhys_x86

vmMapToPhys_x86

Driver Implementations (9DRV)

amd29xxx atadisk benchns16550

bench_softint bench_tbDec buscom_loopback

Complete List of Available ChorusOS System Calls 195

buscom_nexus buseth busmux

cheerio dec2115x dec2155x

dec21x4x ebus e100

el3 epfpld epic100

falcon falcon_flashCtl fccEther

flashdisk fpga generic_ata

gpiohsc harrier hawk

i8042 i8254 i8259

intel28fxxx isabios isaFi

isapci m48txx mc146818

muxtst ne2000 ns16550

openpic pcibios pcicom_dec2155x_master

pcicom_dec2155x_slave pcicom_host pciconf

pcienum pciFi pcimngr

pciswap pitTimer quicc8260

quicc8xx raven raven_wdtimer

ric rio sabre

sccEther sccUart simba

siuWdt smc1660 smc91xx

smcUart sym53c8xx tbDec

universe univRemCom usparchsc

vt82c586 vt82c586_ata w83c553

w83c553_ata z8536 z85x30

Standard C Library Functions (3STDC)
These services are available to applications that do not link with the POSIX subsystem.

196 ChorusOS 5.0 Features and Architecture Overview • December 2001

Note – When you are not using the POSIX subsystem, only basic C++ programming is
permitted. In particular, the STDC++ library is not available outside the POSIX
subsytem, restricting applications from the use of io and exception classes.

abort abs atexit

atof atoi atol

bcmp bcopy bsearch

bzero calloc div

exit fabs ffs

free getchar getenv

getopt getsubopt getw

htonl htons isinf

isnan isprint labs

ldexp ldiv longjmp

malloc memccpy memchr

memcmp memcpy memmove

memory memset mkstemp

mktemp mktime modf

ntohl ntohs perror

printerr printf putc

putchar putenv puts

putw qsort rand

rand_r random realloc

realpath regcomp regerror

regex regexec regfree

remove rewind rindex

scandir scanf setbuf

setenv setjmp setstate

setvbuf snprintf sprintf

srand srandom sscanf

Complete List of Available ChorusOS System Calls 197

stdarg strcasecmp strcat

strchr strcmp strcoll

strcpy strcspn strdup

strerror strftime string

strlen strncasecmp strncat

strncmp strncpy strpbrk

strrchr strsep strspn

strstr strtod strtok

strtok_r strtol strtoul

strxfrm swab sys_errlist

sys_nerr taddr2uaddr tempnam

thread_once time tmpfile

tmpnam toascii tolower

toupper tzset uaddr2taddr

ungetc unlocked unsetenv

vfprintf vprintf vsnprintf

vsprintf

General Microkernel APIs
� IPC
� MIPC
� LAP
� Black Box

198 ChorusOS 5.0 Features and Architecture Overview • December 2001

Glossary

absolute binary A binary file where all addresses have been resolved and computed.

actor See ChorusOS actor.

ADMIN The ADMIN actor administers high-level operating system services.

See also C_OS.

application A generic term to describe code running on ChorusOS (either a process
or an actor).

asynchronous
communication mode

The sender of an asynchronous message is only blocked for the time
taken for the system to process the message locally. There is no
guarantee that the message has been deposited at the destination.

See also synchronous communication mode.

basic profile A lightweight configuration of the ChorusOS operating system. This
configuration is pre-built and part of the binary delivery. The
configurator utility can be used to change the profile.

See also configurator, and extended profile.

binary delivery The binary delivery of Sun Embedded Workshop includes the
development environment for ChorusOS and the ChorusOS operating
system in binary, along with the BSPs for the reference target boards in
the supported target family.

See also source delivery.

black box Black box provides a means for tracing the activity of the system and
applications using multiple in-memory buffers managed by the
system.

board See target board.

199

Board Support Package The BSP (Board Support Package) is the set of files that can be
customized to run ChorusOS on specific board architectures. It is
provided in source with the binary product, allowing you to port to
another board within the same target family. The BSP contains the boot
and the generic and processor specific drivers required for your board.

boot The boot provides system boot, system reboot, and debug services.

boot kernel interface
(BKI)

The BKI is the interface between the microkernel and the boot. It is a
set of rules used when the microkernel is launched. It is split into a
generic part that is common to all target families and a specific part
that applies to a single target family.

bootMonitor See initial loader.

BSP See Board Support Package.

c_actor No longer used. See POSIX process.

C_INIT The command interpreter of the ChorusOS operating system invoked
by the system when it is loaded. C_INIT can be accessed by RSH or
LOCAL_CONSOLE.

C_OS An actor that manages input/output and provides the POSIX interface
to applications. C_OS also manages file system, networking, and
shared memory.

CBDI See Common Bus Driver Interface (CBDI).

CDC Connected Device Configuration, is part of J2ME. See J2ME.

ChorusOS actor A unit of execution for an application. Serves as the encapsulation unit
to associate all system resources used by the application and the
threads running within the actor. ChorusOS actors are restricted to the
microkernel API, that is, the APIs exported by the microkernel to run
either:

� The "system" software, that is, hardware-related software (BSPs), or
software related to OS services (networking, file administration,
and so on).

� Services provided by the ChorusOS microkernel that cannot be
used by POSIX processes. Exceptions are IPC, MIPC, and LAP,
which can be used by both ChorusOS actors and POSIX processes.

ChorusOS actors can be user and supervisor, or trusted and non-trusted.

See also POSIX process, ChorusOS 4.x legacy application, user actor,
supervisor actor.

ChorusOS 4.x legacy
application

Applications developed for 4.x releases of the ChorusOS operating
system. ChorusOS 5.0 fully supports 4.x legacy applications to help 4.x

200 ChorusOS 5.0 Features and Architecture Overview • December 2001

users transition to 5.x, but users are not encouraged to develop new 4.x
legacy applications since no compatibility is planned beyond
ChorusOS 5.0.

See also POSIX process, and ChorusOS actor.

Common Bus Driver
Interface (CBDI)

An interface that is independent of bus type, offering a set of services
common for all bus classes.

component The ChorusOS operating system is made up of several components
that can be specified when building the system image. Some
components are mandatory for the system, such as the kernel, DRV,
and the bsp components. Other components include, os, tools, the X11
libraries, and the examples.

configurator A command-line tool used to configure the ChorusOS system image.

See also Ews, and configuring a system image.

configure A tool to configure your build directory with the paths of the
components to be included in your system image.

configuring a system
image

This refers to including optional components in your system image,
turning features on or off, and changing the value of tunable
parameters and environment variables in your ChorusOS system
image. This can be carried out using different tools, including
configure, configurator, Ews. The configuration is stored in a number
of different ECML files.

core dump Core dump allows offline, post-mortem, analysis of actors or processes
that are killed by exceptions.

core executive The core executive provides essential services to support real-time
applications. It supports multiple, multi-applications running in both
user and supervisor memory space.

It implements the basic ChorusOS execution model and provides the
framework for all other features that can be configured. Every system
includes a core executive.

The core executive exports the basic set of microkernel abstractions
and services:

� The unit of application modularization (actor)
� The unit of execution (thread)
� Thread control operations
� Exception management services
� A minimal interrupt management service

No synchronization, scheduling, time, communication, or memory
management policies are provided by the core executive. These

Glossary 201

policies and services are provided by additional features, which the
user may select depending on particular hardware and software
requirements.

CVM CVM (C Virtual Machine), is a compact Java virtual machine, part of
the J2ME provided with ChorusOS. It allows you to implement Java
applications on a ChorusOS system.

See also J2ME.

device driver framework A framework that is provided with ChorusOS that allows
programmers to develop device drivers on top of a binary distribution
of the ChorusOS operating system. The device driver framework
provides a structured and easy-to-use environment to develop both
new drivers and client applications for existing drivers.

device driver interface
(DDI)

The device driver interface defines the interfaces between different
layers of device drivers in the driver hierarchy. Typically, an API is
defined for each class of device or bus, as a part of the DDI.

device kernel interface
(DKI)

The device kernel interface defines all services provided by the
microkernel to driver components. Following a layered interface
model, all services implemented by the DKI are called by the drivers,
and take place in the microkernel.

device tree The ChorusOS device tree is a data structure that describes hardware
topology and device properties. It is constructed in terms of
parent/child relationships between devices. Device properties are
specific to each device and defined in name/value pairs.

The initial device tree is built by the bootstrap program using the DKI
tree browsing API.

DHCP See Dynamic Host Configuration Protocol.

DNS See Domain Name Service (DNS).

Domain Name Service
(DNS)

Standard naming architecture used for naming on the Internet Protocol
(IP).

DRV DRV is the ChorusOS component that contains all generic microkernel
drivers and all board specific drivers.

dynamic loading On actor start-up, the runtime linker loads the actor or process and
performs the necessary relocations. It also loads and links the actor
dependencies (the required dynamic libraries).

dynamic and static
identifiers

See static and dynamic identifiers.

Dynamic Host
Configuration Protocol

A communications protocol that lets network administrators manage
centrally and automate the assignment of Internet Protocol (IP)
addresses in an organization’s network.

202 ChorusOS 5.0 Features and Architecture Overview • December 2001

embedded actor An actor can be embedded, which means that it becomes part of the
system image and is launched at boot time. Embedded actors that are
not boot actors can be loaded by other embedded actors using the
afexec() system call.

Typically, drivers are embedded actors. Drivers do not require the
services of the POSIX subsystem and can be started dynamically
through the afexec() system call.

Embedded Component
Mark Language (ECML)

The Embedded Component Mark Language provides a unique
interface to the configurable information of the ChorusOS operating
system. ECML is defined using XML syntax, making it benefit from
existing XML tools, especially browsers and parsers. The configuration
of ChorusOS is defined in a number of EMCL files that can be edited
using the configurator and Ews tools.

Ews A graphical configuration tool used to view and modify the
configuration of a ChorusOS operating system through a set of ECML
configuration files.

See also configuring a system image, Embedded Component Mark
Language (ECML), configurator.

execution actor The actor on behalf of which the thread currently executes. Any thread
has the right to access and manage the resources of its execution actor.

See also home actor, and ChorusOS actor.

extended profile A full configuration of the ChorusOS operating system, selected at
installation.

See also basic profile.

feature Services that can be selected when you configure your system image.
You can configure features using either the command-line utility,
configurator, or the graphical utility, Ews. Some features have tunable
parameters associated with them.

See also configurator, Ews, and tunable parameter.

flat memory Simple memory allocation service. The microkernel and all
applications run in one unique, unprotected address space. Virtual
addresses match physical addresses directly. This is used for systems
without an MMU or when the MMU is bypassed.

home actor The actor in which the thread was created. The home actor of a thread
is constant over the life of the thread. Also called owning actor.

host A machine running the Solaris operating environment that hosts the
development environment, Sun Embedded Workshop, for building
and configuring a ChorusOS system image and applications that run
on it.

Glossary 203

See also Sun Embedded Workshop software (SEW).

hot restart Mechanism for restarting applications or entire systems if a serious
error or failure occurs. This feature addresses the high-availability
requirements of the operating system, reducing the time taken for a
failed system or component to return to service.

See also Hot Restart Controller (HR_CTRL).

Hot Restart Controller
(HR_CTRL)

An actor that monitors restartable actors to detect abnormal
termination and automatically take the appropriate restart action.
Abnormal termination includes unrecoverable errors, such as, division
by zero, a segmentation fault, unresolved page fault, or invalid
operation code.

See also hot restart, restartable actors, and persistent memory.

hot swap A ChorusOS feature that allows you to remove and replace a board
from an instance of the ChorusOS operating system without having to
shut down the system.

See also Hot Swap Controller (HSC).

Hot Swap Controller
(HSC)

A board-dependent layer that handles the ENUM# signal, which
notifies the system of an insertion or removal event specified by cPCI
hot swap.

See also hot swap, and PCI.

HR_CTRL See Hot Restart Controller (HR_CTRL).

ICMPv6 See Internet Control Message Protocol.

Industry Standard
Architecture (ISA)

Industry Standard Architecture is a standard bus (computer
interconnection) architecture that is associated with the IBM AT
motherboard.

initial loader The initial loader enables a system image to be located on the network
or local device, booted on the target board. The initial loader provided
by ChorusOS is bootMonitor. This functionality is also provided by
the target firmware (depending on your target).

Internet Control
Message Protocol

ICMP is a message control and error-reporting protocol between a host
server and a gateway to the Internet. ICMP uses Internet Protocol (IP)
datagrams, but the messages are processed by the IP software and are
not directly apparent to the application user.

inter-process
communication (IPC)

IPC provides synchronous (RPC) and asynchronous communication
features allowing threads to communicate and synchronize when they
do not share memory. Communications rely on the exchange of
messages through ports.

204 ChorusOS 5.0 Features and Architecture Overview • December 2001

See also Remote Procedure Call (RPC), asynchronous communication
mode, static and dynamic identifiers, and MIPC.

IPC See inter-process communication (IPC).

IPv4 and IPv6 Internet Protocol versions 4 and 6.

ISA See Industry Standard Architecture (ISA).

J2ME Java 2 Platform Micro Edition technology covers the range of
embedded devices. The ChorusOS port of this technology includes the
Foundation profile and the Connected Device Configuration (CDC),
which provides a virtual machine and basic class libraries to support
Java language applications on consumer electronic and embedded
devices.

JNI Java Native Interface

JPDA Java Platform Debugger Architecture

JVMDI Java Virtual Machine Debug Interface

JDWP Java Debug Wire Protocol

LAP See Local Access Point (LAP).

Lightweight Directory
Access Protocol (LDAP)

LDAP in ChorusOS provides access to X.500 directory services. These
services can be a standalone part of a distribution service. An LDAP
client library is available with ChorusOS that provides programmatic
access to the LDAP.

Local Access Point
(LAP)

A generic software interface for microkernel-mediated calls from one
actor to another on the local site. A LAP is a microkernel object that
represents a handler function that has been exported by a supervisor
actor for invocation by client actors. It is a super-fast inter-actor
communication facility provided by the operating system.

makefile target An optional argument supplied to the make command that
corresponds to a set of commands in the makefile. This enables you to
specify more than one set of actions in a single makefile. For example,
the make kernonly command allows you to build a system image
containing just the microkernel and some OS services.

Management
Information Base (MIB)

The Management Information Base is the language to describe the
parameters managed through the SNMP protocol.

message handlers Message handlers are an alternative to threads. Instead of creating
threads explicitly, an actor can attach a handler (a routine in its address
space) to the port. When a message is delivered to the port, the
handler is executed in the context of a thread provided by the
microkernel.

Glossary 205

microkernel The microkernel is the core of the ChorusOS operating system. It
provides a minimum set of interfaces that are used by the remainder of
the operating system. You must always include the microkernel in
your system image.

mini profile A profile containing the absolute minimum features for a
bootMonitor image.

See also basic profile, and extended profile.

MIPC The MIPC provides a fast communication facility based on exchange of
messages through shared mailboxes.

See also inter-process communication (IPC).

monitor A monitor is a set of instructions in which only one thread may
execute at a time.

MSDOSFS MS-DOS File System.

mutex Sleep locks provided in the form of mutual exclusion locks. These are
data structures allocated in the client actors’ address spaces.

netboot Application management utility used to boot a ChorusOS system
image using TFTP when the target does not provide an embedded
booting facility.

Network Information
Service (NIS)

A network naming and administration system for small networks.
Using NIS, each host client or server computer in the system has
knowledge about the entire system. A user at any host can get access to
files or applications on any host in the network with a single user
identification and password. NIS is similar to the Internet’s domain
name system (DNS) but somewhat simpler and designed for a smaller
network.

NTP Network Time Protocol

operating system The ChorusOS operating system provides a set of interfaces that
enables you to run applications on various hardware configurations.
The ChorusOS operating system contains the microkernel, board
support package and higher level services, including I/O and file
system support.

owning actor See home actor.

patting The process of resetting a watchdog timer. This process is usually
managed by a dedicated user-level process. If not, an interrupt handler
provided by the system is invoked.

See also watchdog timer.

PCI Peripheral Component Interconnect (personal computer bus)

206 ChorusOS 5.0 Features and Architecture Overview • December 2001

PD The PD (Private Data manager) implements the per thread data
interface between the microkernel subsystems, such as the the C_OS
subsystem.

persistent memory The hot restart mechanism relies on persistent memory to store data
that can persist across an actor or site restart. It is used internally by
the system to store on the RAM the actor image (text and data) from
which a hot restartable actor can be reconstructed.

See also Persistent Memory Manager (PMM).

Persistent Memory
Manager (PMM)

The PMM (Persistent Memory Manager) implements the persistent
memory interface. It is a ChorusOS actor that manages the allocation
and freeing of persistent memory blocks. The PMM is automatically
included in the system image when the HOT_RESTART feature is
activated.

See also persistent memory.

platform See target board.

Point-to-Point Protocol
(PPP)

A protocol for communication between two computers using a serial
interface, typically a personal computer connected by phone line to a
server. Essentially, it packages your computer’s TCP/IP packets and
forwards them to the server where they can actually be put on the
Internet.

Portable Operating
System Interface
(POSIX)

A standard set of APIs for portable multithreaded programming.

ports An address to which messages can be sent and that has a queue
holding the messages received by the port but not yet consumed by
the threads. Ports are attached to actors. Ports can be assembled into
groups adding a multicast facility.

See also message handlers.

POSIX process ChorusOS 5.0 provides a complete set of POSIX APIs and allows you
to create POSIX-compatible applications. These applications are called
POSIX processes. A process is the unit of encapsulation of the POSIX
subsystem. Processes can be either user or supervisor.

See also ChorusOS actor, and ChorusOS 4.x legacy application.

PPP See Point-to-Point Protocol (PPP).

process See POSIX process.

process dump pdump is a C_INIT built-in command which dumps a core image of
one or more processes as an ELF format file.

See also C_INIT.

Glossary 207

profile The ChorusOS operating system provides profiles that are used to set
up an initial configuration. The profiles are called basic, extended, and
mini. These profiles include or remove certain features in the system.
You can use one of these configuration profiles as the initial
configuration for your system, and add or remove specific feature
options using the configurator utility.

See also basic profile, extended profile, mini profile, and configurator.

protected memory Memory allocation service supporting multiple address spaces and
region sharing between different address spaces. Targeted at critical
and non-critical real-time applications where memory protection is
mandatory. This is used for systems with MMU, address translation,
and where applications benefit from the flexibility and protection of
separate address spaces.

protection identifier The IPC allocates a protection identifier to each actor and to each port.
The structure of the protection identifier is fixed, but IPC does not
associate any semantics to their values.

relocatable actor On actor start-up, the runtime linker loads the actor and performs the
necessary relocations. In ChorusOS 5.0, all dynamic actors are
relocatable.

relocatable binary A binary file that can be loaded or relocated at any address.

Remote Procedure Call
(RPC)

This protocol allows the construction of client-server applications
using a demand/response protocol with management of transactions.
The client is blocked until a response is returned from the server, or a
user-defined optional timeout occurs. RPC guarantees at-most-once
semantics for the delivery of the request.

See also inter-process communication (IPC), and asynchronous
communication mode.

restartable actors Any actor that can be restarted rapidly without accessing stable
storage, when it terminates abnormally. A restartable actor is restarted
from an actor image that comprises the actor’s text and initialized data
regions, stored in persistent memory. See also restart group, hot restart,
hot restart controller, and persistent memory.

restart groups A group of cooperating restartable actors that can be restarted in the
event of the failure or abnormal termination of one or more actors
within the group. When one actor in the group fails, all actors in the
group are stopped and then restarted either directly by the system or
indirectly by spawning. These groups are usually mutually exclusive.
A restart group is created dynamically in ChorusOS when a direct
actor is declared to be a member of the group. Therefore, each group
contains at least one direct actor. An indirect actor is always a member
of the same group as the actor that spawned it. This applies only when
the HOT_RESTART feature is applied.

208 ChorusOS 5.0 Features and Architecture Overview • December 2001

RPC See Remote Procedure Call (RPC).

scheduler A scheduler provides scheduling policies, which are rules, procedures,
or criteria used in making process scheduling decisions. The
scheduling policies available in the ChorusOS operating system
include FIFO (first-in-first-out) and RR (round robin).

semaphore An integer counter and an associated thread-wait queue. When
initialized, the semaphore counter receives a user-defined positive or
null value.

SEW See Sun Embedded Workshop software (SEW).

software interrupts Interrupts supported by the DKI and DDI. These are not initiated by a
hardware device, but rather by the software. Handlers for these must
be added to and removed from the system. Software interrupt
handlers run in the interrupt context and therefore can be used to do
many of the tasks that belong to the interrupt handler.

source delivery The source delivery of the Sun Embedded Workshop includes the
ChorusOS operating system in source files. Note that the development
tools are delivered in binary.

See also binary delivery.

static and dynamic
identifiers

These are communication entities that are part of the uniform global
naming scheme of inter-process communication (IPC). Static identifiers
are provided to the system by the application. Dynamic identifiers are
returned by the system to the application.

See also inter-process communication (IPC).

Sun Embedded
Workshop software
(SEW)

The development environment for the ChorusOS operating system.
This software includes the tools necessary to configure and build a
ChorusOS operating system and the applications to run on it.

See also host.

supervisor actor This is a type of actor that shares a common but partitioned address
space with other supervisor actors. These actors can execute privileged
hardware instructions depending on the underlying hardware.

See also ChorusOS actor, and user actor

supervisor process A POSIX process that shares a common supervisor address space with
other processes, which themselves are necessarily supervisor
processes.

See also user process.

synchronous
communication mode

The sender of a synchronous message is blocked until its request
message has been received, answered, replied to, and the reply has
been received. The whole loop is guaranteed to perform and errors or

Glossary 209

failures are detected and reported. The synchronous communication
mode is sometimes called RPC (Remote Procedure Call).

See also Remote Procedure Call (RPC), and asynchronous
communication mode

sysadm.ini file A script file embedded in the file system boot image. This file is
executed as the last step of the system initialization and is used by
C_INIT after the system is initialized. You can customize it to run
selected applications directly on system start-up.

system dump Enables the system to collect data in case of a system failure. Data
collection is defined as the content of the black box buffers. On a
system crash, this data is copied to a persistent memory area, or dump
area, based on the hot restart feature of the ChorusOS operating
system.

See also black box.

system image A system image is an instance of the ChorusOS operating system. It is
made up of binary or executable files that define the operating system
and initial application processes. After you have built and booted your
system image, you are ready to start using the ChorusOS operating
system.

target See target board.

target board The physical hardware board on which a ChorusOS system will run.
The board must be in one of the supported target families to be able to
run a ChorusOS system.

See also target family.

target family A set of target boards with processors that are electronically different
but are identical in their interactions with the operating system. The
target families supported by the ChorusOS operating system are as
follows:

� UltraSPARC IIi/IIe

� Intel x86/Pentium

� Motorola PowerPC 750/765/74x0 processors and PowerQUICC II
(mpc8260) microcontrollers

� Motorola PowerQUICC I (mpc8xx) microcontrollers

When porting a ChorusOS system, you will be porting it to a new
board in a supported target family.

See also target board.

TCK Java Technology Conformance Kit

210 ChorusOS 5.0 Features and Architecture Overview • December 2001

timer (general interval
timer)

High-level timer service for both user and supervisor actors. This
feature uses the concept of a timer object in the actor environment.
Timers are created and deleted dynamically. All high-level timer
operations such as setting, modifying, querying, or canceling pending
timeouts, refer to timer objects.

tunable parameter Tunables are parameters that you configure in your ChorusOS system
image by setting an integer value. For example, timeout delays or
maximum file sizes. Some tunable parameters are linked to a feature
and are therefore only configurable if the feature is on. These are called
static tunable parameters. In addition, there are system environment
variables or dynamic tunable parameters that allow you to set the
environment, a set of VARIABLE=value character strings defining the
values for environment variables (for example, the IP address) read by
the applications.

See also feature.

user actor This is a type of actor that has separate and protected address spaces.

See also ChorusOS actor, and supervisor actor

user process A POSIX process that runs in its own private protected address space.

See also supervisor process.

virtual memory Memory allocation service supporting multiple, protected address
spaces. On systems with secondary storage, applications can use much
more virtual memory than the memory physically available. This
module is specifically designed to implement distributed UNIX
subsystems on top of the microkernel.

virtual timer A virtual timer is responsible for all functions pertaining to
measurement and timing of thread execution. It exports a number of
functions used typically by higher-level operating systems such as
UNIX.

watchdog timer Mechanism provided with the ChorusOS operating system to detect
hardware and operating system failures. Note that this feature relies
on the hardware watchdog device available on modern boards.

See also patting.

Glossary 211

212 ChorusOS 5.0 Features and Architecture Overview • December 2001

Index

Numbers and Symbols
4.x legacy applications, ChorusOS, 31

A
actors, 31

boot, 24
definition, 32
inter-actor communication, 36
management services, optional, 47
multi-threaded, 38
naming, 34
restart groups, 86
restartable, 85
supervisor, 34
types of, 33
user, 34

address spaces, 110
user and supervisor, 34

administration commands, system, 131
APIs, 30

4.x legacy applications, 31
actors, 31
POSIX processes, 30
POSIX processes management, 50
SCHED feature, 53

application management utilities, 25
applications, 43

ChorusOS 4.x legacy, 31
developing, 42
writing, 42

architecture, 67
debugging, 163
layout diagram, 22

asynchronous Remote Procedure Call
Communication (IPC), 60

attributes (system instrumentation), 147
availablity, high, 39

dynamic reconfiguration, 40
memory protection, 40
real-time operation, 41
watchdog timer, 40

B
basic configuration profile, 29
benchmark, 25

timing (PERF), 122
Berkley packet filtering (BPF), 139
binary system, portable, 26
black box, 19
boot actors, 24
boot server, setting up, 42
booting target system, 42
BSP hot swap, 80

API, 82
sequences, 81

building system image, 42

213

C
C and C++

development toolchain, 23
symbolic debugger, 23

C_INIT, 130
C Virtual Machine (CVM), 161
ChorusOS, introduction, 17

actors, 32
definition, 32
inter-actor communication, 36
naming, 34
supervisor, 34
user, 34

APIs, 30
architecture, component-based, 18, 27
communications, 56
development lifecycle, 41
high availability, 39
installing, 41
microkernel, 31
system, developing, 43
system image, 30

ChorusOS-Solaris convergence, 25
CLASS_RR (round robin scheduling), 52
CLASS_RT (real-time scheduling), 52
clock, real-time (RTC), 121
command interpreter, 130

local console, 131
remote shell, 130
sysadm.ini file, 131

commands
network, 144
system administration, 131

communication, 56
asynchronous and synchronous Remote

Procedure Call, 60
inter-actor, 36
inter-process, 58

distributed IPC, 64
groups of ports, 60
IPC_REMOTE, 64
message handlers, 61
messages, 59
optional services, 64
ports, 59
protection identifiers (PI), 62
reconfiguration, 62

communication, inter-process (continued)
static and dynamic identifiers, 58
transparent, 62

Local Access Point (LAP), 57
compilers, GNU gcc and g++, 23
component-based architecture, ChorusOS, 18,

27
components, hot restart, 89
configuration profiles, 29

basic, 29
extended, 29

configuration tools, 23
configurator (command–line

interface), 24
Ews (graphical interface), 24

configuring system image, 42
console

default, 25
local, 131

context switching, 41
controller

hot restart (HR_CTRL), 85, 89
hot swap (HSC), 80

core dump (CORE_DUMP), 127
core executive, 32

API, 45
counters (system instrumentation), 147
CPU instrumenation, microkernel (C_OS), 157
cross compilers, GNU gcc and g++, 23
customized scheduling, 53

D
data, private (PRIVATE-DATA), 128
data manager, private (pd), 31
DATE (time of day), 119
date management, 120
day, time of (DATE), 119
DDI (Device Driver Interface), 76
DEBUG_SYSTEM, 164
debugger, C and C++ symbolic (GNU

GDB), 23
debugging

architecture, 163
tools, 163

default console, 25

214 ChorusOS 5.0 Features and Architecture Overview • December 2001

DEV_CDROM, 99
DEV_MEM, 99
DEV_NVRAM, 99
development

environment, multi-platform, 23
environment (Sun Embedded Workshop

software), 17
lifecycle, ChorusOS, 41
toolchain, C and C++, 23

device driver framework, 66
API, 68
architecture, 68
driver/kernel interface (DKI), 69

device driver interfaces (DDI), 76
device instrumentation, 150

device tree, 150
device tree, 150
DHCP, 140
distributed IPC, optional IPC service, 64
DKI (Driver/Kernel Interface

API, 69
DKI (Driver/Kernel Interface), 69
drivers, 66

device interfaces (DDI), 76
framework, 66

API, 68
architecture, 68
driver/kernel interface (DKI), 69

implemented, 78
dump

core (CORE_DUMP), 127
system (SYSTEM_DUMP), 126

dynamic
identifiers (IPC), 58
libraries (DYNAMIC_LIB), 48
reconfiguration, 40

E
environment, multi-platform development, 23
environment variables, 24

ENV, 127
event flags (EVENT), 55
events

system, 19, 152
event buffer, 153

events, system (continued)
event publisher, 153
event subscriber, 153

Ews
See also configuration tools, 162

execution instrumenation, microkernel, 156
executive, core, 32

API, 45
extended configuration profile, 29

F
families, supported target, 18
features, memory management (optional), 114

ON_DEMAND_PAGING, 114
VIRTUAL_ADDRESS_SPACE, 114

features, new in 5.0, 19
black box, 40, 124
IPv6, 137
Network Time Protocol (NTP), 139
POSIX real-time APIs, 91
shared libraries, 48
system events, 152
watchdog timer, 40, 121

FIFOFS (First-in, First-Out file system), 103
file, sysadm.ini, 131
file instrumentation (system

instrumentation), 158
file systems, 101

First-in, First-Out file system (FIFOFS), 103
FS_MAPPER, 107
ISOFS, 107
MS–DOS file system (MSDOSFS), 107
Network File System (NFS), 104

NFS_CLIENT, 104
NFS_SERVER, 106

PDEVFS, 108
PROCFS, 107
UNIX file system (UFS), 101

filtering, Berkley packet (BPF), 139
first-in first-out

file system (FIFOFS), 103
scheduling, 51

flags, event (EVENT), 55
FLASH, 100
flat memory (MEM_FLAT), 111

Index 215

framework, device driver, 66
API, 68
architecture, 68
driver/kernel interface (DKI), 69

FS_MAPPER, 99, 107
FTP utility, 143

G
gauges (system instrumentation), 147
gcc and g++ cross compilers, 23
GDB debugger, GNU, 23
general interval timer (TIMER), 117
GNU

cross compilers, 23
GDB debugger, 23

GZ_FILE, 48

H
high availability, ChorusOS, 39

dynamic reconfiguration, 40
memory protection, 40
real-time operation, 41
watchdog timer, 40

high-resolution timer, 41, 123
hot restart, 82, 84

API, 84
components, 89
controller (HR_CTRL), 85, 89
restart groups, 86
restartable actors, 85
site restart, 88

hot swap, 80
API, 82
controller (HSC), 80
PciSwap, 80
sequences, 81

I
I/O options, 99

DEV_CDROM, 99
DEV_MEM, 99

I/O options (continued)
DEV_NVRAM, 99
FLASH, 100
FS_MAPPER, 99
RAM_DISK, 99
RAWFLASH, 100
SCSI_DISK, 100
VTTY, 100

identifiers
protection (PI), 62
static and dynamic (IPC), 58

image, system
building, 42
configuring, 42

implementation, device driver, 66
implemented drivers, 78
installing, ChorusOS, 41
instrumentation

device, 150
device tree, 150

system, 19, 147
attributes, 147
counters, 147
device instrumentation, 150
device tree, 150
event buffer, 153
event publisher, 153
event subscriber, 153
file instrumentation, 158
gauges, 147
microkernel CPU instrumentation

(C_OS), 157
microkernel execution

instrumentation, 156
microkernel memory

instrumentation, 155
microkernel per–thread

instrumentation, 160
microkernel statistics (MKSTAT), 155
microkernel supervisor page

instrumentation, 156
OS_GAUGES, 154
per–actor instrumentation, 159
per-file instrumentation, 159
per–process instrumentation, 159
POSIX process instrumentation, 157
related entries, 152

216 ChorusOS 5.0 Features and Architecture Overview • December 2001

instrumentation, system (continued)
sysctl facility, 149
system events, 152
thresholds, 147

inter-actor communication, 36
inter-process communication

asynchronous and synchronous Remote
Procedure Call, 60

distributed IPC, 64
groups of ports, 60
IPC_REMOTE, 64
message handlers, 61
messages, 59
optional services, 64
ports, 59
protection identifiers (PI), 62
reconfiguration, 62
static and dynamic identifiers, 58
transparent, 62

inter-process communication (IPC), 58
interface

device driver, 76
device driver (DDI), 76
driver/kernel, 69

API, 69
interfaces, device driver (DDI), 76
interpreter, command, 130

local console, 131
remote shell, 130
sysadm.ini file

See also sysadm.ini file
interrupts, software, 77
interval timer, general (TIMER), 117
IOM_IPC, 140
IOM_OSI, 140
IPC (inter-process communication), 58
IPC mailboxes (MIPC), 41
IPC_REMOTE, optional IPC service, 64
IPv4, 136
IPv6, new feature in 5.0, 19, 137
ISOFS, 107

J
J2ME, 161
Java 2 Platform Micro Edition (J2ME), 161

java functionality, 160
C virtual machine, 161

Java Platform Debugger Architecture
(JPDA), 161

Java Runtime Environment, 161
JPDA, 161
JRE, 161

K
kern, 31
kernel, See microkernel

L
LAP (Local Access Point), 57

LAPBIND, 57
LAPSAFE, 57
options, 57

LAPBIND, Local Access Point option, 57
LAPSAFE, Local Access Point option, 57
layout, architecture (diagram), 22
LDAP library, 141
legacy applications, ChorusOS 4.x, 31
libraries, 24

dynamic (DYNAMIC_LIB), 48
network, 141

FTP utility, 143
LDAP, 141
naming services, 146
RPC, 141
telnet, 144

shared, 19, 48
lifecycle, development (ChorusOS), 41
Local Access Point (LAP), 57

LAPBIND, 57
LAPSAFE, 57
options, 57

LOG
logging, 25
tools support, 164

logging, 25
system, 19

Index 217

M
mailboxes (MIPC), 41, 64
management, date, 120
management, memory (API), 115
management, password, 129
management, time, 116

benchmark timing (PERF), 122
core dump (CORE_DUMP), 127
general interval timer (TIMER), 117
high resolution timer, 123
real—time clock (RTC), 121
system dump (SYSTEM_DUMP), 126
time of day(DATE), 119
virtual timer (VTIMER), 118
watchdog timer (WDT), 121

management API, POSIX processes, 50
management processes, memory, 109

address spaces, 110
API, 115
models, 111

flat memory (MEM_FLAT), 111
protected memory

(MEM_PROTECTED), 112
virtual memory (MEM_VIRTUAL), 113

non-volatile memory (NVRAM), 115
optional features, 114

ON_DEMAND_PAGING, 114
VIRTUAL_ADDRESS_SPACE, 114

protections, 110
regions, 110

management services, optional, 47
management utilities, application, 25
manager

persistent memory(pmm), 31
private data (pd), 31

MEM_FLAT (flat memory), 111
MEM_PROTECTED (protected memory), 112
MEM_VIRTUAL (virtual memory), 113
memory

non-volatile (NVRAM), 115
persistent, 82
protection, 40
shared (POSIX-SHM), 96

memory instrumenation, microkernel, 155
memory management processes, 109

address spaces, 110
API, 115

memory management processes (continued)
models, 111

flat memory (MEM_FLAT), 111
protected memory

(MEM_PROTECTED), 112
virtual memory (MEM_VIRTUAL), 113

non-volatile memory (NVRAM), 115
optional features, 114

ON_DEMAND_PAGING, 114
VIRTUAL_ADDRESS_SPACE, 114

protections, 110
regions, 110

memory manager, persistent (pmm), 31
messages

handlers (IPC), 61
IPC, 59
qeues

POSIX (POSIX_MQ), 95
queues, and, 65
spaces, 65

microkernel, 31
CPU instrumentation, C_OS (system

instrumentation), 157
execution instrumentation (system

instrumentation), 156
memory instrumentation (system

instrumentation), 155
per–thread instrumentation (system

instrumentation), 160
statistics, MKSTAT (system

instrumentation), 155
supervisor page instrumentation (system

instrumentation), 156
MIPC, mailboxes, 41, 64
models, memory management, 111

flat memory (MEM_FLAT), 111
protected memory (MEM_PROTECTED), 112
virtual memory (MEM_VIRTUAL), 113

MON (monitoring), 25
MONITOR (thread synchronization), 49
monitoring, 25
MS–DOS file system (MSDOSFS), 107
MSDOSFS (MS-DOS file system), 107
multi–class scheduling, 52
multi-platform development environment, 23
multi-threaded actors, 38
mutexes (MUTEX), 53

218 ChorusOS 5.0 Features and Architecture Overview • December 2001

N
naming services, 146
netboot, 25
network

commands, 144
file system (NFS), 104

NFS_CLIENT, 104
NFS_SERVER, 106

libraries, 141
FTP utility, 143
LDAP, 141
naming services, 146
RPC, 141
telnet, 144

protocols, 135
Berkley packet filtering (BPF), 139
DHCP, 140
IOM_IPC, 140
IOM_OSI, 140
IPv4, 136
IPv6, 137
Network Time Protocol (NTP), 139
NFS, 140
See also NFS
point-to-point protocol (PPP), 138
POSIX_SOCKETS, 140

Network Time Protocol (NTP), 19, 139
new features in 5.0, 19

black box, 40, 124
IPv6, 137
Network Time Protocol (NTP), 139
POSIX real-time APIs, 91
shared libraries, 48
system events, 152
watchdog timer, 40, 121

NFS, 104, 140
NFS_CLIENT, 104
NFS_SERVER, 106

non-volatile memory (NVRAM), 115
NTP (Network Time Protocol), 19, 139

O
ON_DEMAND_PAGING, 114
options, I/O, 99

DEV_CDROM, 99

options, I/O (continued)
DEV_MEM, 99
DEV_NVRAM, 99
FLASH, 100
FS_MAPPER, 99
RAM_DISK, 99
RAWFLASH, 100
SCSI_DISK, 100
VTTY, 100

OS_GAUGES (system instrumentation), 154

P
packet filtering, Berkley (BPF), 139
page instrumenation, microkernel

supervisor, 156
password management, 129
PDEVFS, 108
per–actor instrumentation (system

instrumentation), 159
per–file instrumentation (system

instrumentation), 159
per–process instrumentation (system

instrumentation), 159
per–thread instrumentation, microkernel

(system instrumentation), 160
PERF, tools support, 164

benchmarking, 25
DEBUG_SYSTEM, 164
MON, 164
SYSTEM_DUMP, 164

See also system dump (SYSTEM_DUMP)
performance profile, creating, 43
persistent memory, 82
Persistent Memory Manager

PMM, 89
Persistent MemoryManager

pmm (microkernel), 31
pmm (Persistent Memory Manager), 31
PMM (Persistent Memory Manager), 89
point-to-point protocol (PPP), 138
portable binary system, 26
ports (IPC), 59

groups of, 60
POSIX, 90

POSIX_MQ (message queues), 95

Index 219

POSIX (continued)
POSIX_REALTIME_SIGNALS, 91
POSIX-SEM (semaphores), 95
POSIX-SHM (shared memory), 96
POSIX-SIGNALS, 90
POSIX_SOCKETS, 97
POSIX-THREADS, 92
POSIX-TIMERS, 94
processes, 30

instrumentation (system
instrumentation), 157

management API, 50
real-time API, 19
services, 38
user and supervisor processes, 39

POSIX_SOCKETS, 140
PPP (point-to-point protocol), 138
PPP BPF (Berkley packet filtering), 139
private data (PRIVATE-DATA), 128
private data manager (pd), 31
processes, 109

management
API, POSIX, 50
POSIX, 157

memory management, 109
address spaces, 110
API, 115
models, 111
ON_DEMAND_PAGING, 114
optional features, 114
protections, 110
regions, 110
VIRTUAL_ADDRESS SPACE, 114

non-volatile memory (NVRAM), 115
PROCFS, 107
profile, performance (creating), 43
profiles, configuration, 29

basic, 29
extended, 29

profiling, 25
protected memory (MEM_PROTECTED), 112
protection, 110

identifiers (IPC), 62
memory, 40

protocols, network, 135
Berkley packet filtering (BPF), 139
DHCP, 140

protocols, network (continued)
IOM_IPC, 140
IOM_OSI, 140
IPv4, 136
IPv6, 137
Network Time Protocol (NTP), 139
NFS, 140

See also NFS
point-to-point protocol (PPP), 138
POSIX_SOCKETS, 140

Q
queues, messages and, 65
queues, POSIX message (POSIX_MQ), 95

R
RAM_DISK, 99
RAWFLASH, 100
real-time

clock (RTC), 121
mutexes (RTMUTEX), 54
operation, 41
POSIX API, 19
scheduling, 41, 52
signals, POSIX

(POSIX_REALTIME_SIGNALS), 91
reconfiguration

dynamic, 40
IPC, 62

regions, 110
Remote Procedure Call Communication

(IPC), 60
remote shell (rsh), 25
resolution timer, high, 123
resource status, 25
restart, hot, 82, 84

API, 84
components, 89
controller (HR_CTRL), 85, 89
restart groups, 86
restartable actors, 85
site restart, 88

round robin scheduling (CLASS_RR), 52

220 ChorusOS 5.0 Features and Architecture Overview • December 2001

RPC library, 141
rsh (remote shell), 25
RSH (remote shell feature), 130

S
SCHED API, 53
SCHED_CLASS (multi-class scheduling), 52
SCHED_FIFO (first-in-first-out scheduling), 51
scheduling, 51

API, 53
customized, 53
first-in-first-out, 51
multi-class, 52
real-time, 41, 52
round robin, 52

SCSI_DISK, 100
SEM (semaphores), 55
semaphores

POSIX (POSIX-SEM), 95
SEM, 55

server, boot (setting up), 42
services

naming, 146
optional actor management, 47
POSIX, 38

setting up boot server, 42
shared

libraries, 19, 48
memory, POSIX (POSIX-SHM), 96

shell
remote (rsh), 25

shell, remote (rsh), 130
signals, POSIX (POSIX-SIGNALS), 90
site restart, 88
sockets

POSIX (POSIX_SOCKETS), 97
software interrupts, 77
Solaris-ChorusOS convergence, 25
spaces

address, 110
message, 65
user and supervisor address, 34

static identifiers (IPC), 58
statistics, microkernel (MKSTAT), 155
status, resource, 25

Sun Embedded Workshop software, the, 17
supervisor

actors, 34
address spaces, 34
page instrumenation, microkernel, 156
POSIX processes, 39

supported target families, 18
swap, hot, 80

API, 82
controller (HSC), 80
PciSwap, 80
sequences, 81

switching, context, 41
symbolic debugger, C and C++, 23
synchronization, 41, 53

thread (MONITOR), 49
synchronous Remote Procedure Call

Communication (IPC), 60
sysadm.ini file, 86
sysadm.inifile

See also sysadm.ini file, 131
sysctl facility (system instrumentation), 149

device instrumentation, 150
device tree, 150
related entries, 152

system, booting target, 42
system (ChorusOS), developing, 43
system, portable binary, 26
system administration commands, 131
system dump (SYSTEM_DUMP), 126
system events, 19, 152
system events (system instrumentation)

event buffer, 153
event publisher, 153
event subscriber, 153

system image, 30
building, 42
configuring, 42

system instrumentation, 19, 147
attributes, 147
counters, 147
file instrumentation, 158
gauges, 147
microkernel CPU instumentation

(C_OS), 157
microkernel execution instumentation, 156
microkernel memory instumentation, 155

Index 221

system instrumentation (continued)
microkernel per–thread
instrumentation, 160
microkernel statistics (MKSAT), 155
microkernel supervisor page

instumentation, 156
OS_GAUGES, 154
per–actor instrumentation, 159
per-file instrumentation, 159
per-process instrumenation, 159
POSIX process instumentation, 157
sysctl facility, 149

device instrumentation, 150
device tree, 150
related entries, 152

system events, 152
event buffer, 153
event publisher, 153
event subscriber, 153

threshholds, 147
system logging, 19
systems, file, 101

First-in, First-Out file system (UFS), 103
FS_MAPPER, 107
ISOFS, 107
MS-DOS file system (MSDOSFS), 107
Network File System (NFS), 104
network file system (NFS)

NFS_CLIENT, 104
Network File System (NFS)

NFS_SERVER, 106
PDEVFS, 108
PROCFS, 107
UNIX file system (UFS), 101

T
target families, supported, 18
target system, booting, 42
telnet, 144
threads, 36

POSIX (POSIX-THREADS), 92
synchronization (MONITOR), 49

thresholds (system instrumentation), 147
time management, 116

benchmark timing (PERF), 122

time management (continued)
core dump (CORE_DUMP), 127
date management, 120
general interval timer (TIMER), 117
high resolution timer, 123
real—time clock (RTC), 121
system dump (SYSTEM_DUMP), 126
time of day(DATE), 119
virtual timer (VTIMER), 118
watchdog timer (WDT), 121

time of day (DATE), 119
timer

general interval (TIMER), 117
high resolution, 123
high-resolution, 41
POSIX (POSIX-TIMERS), 94
virtual (VTIMER), 118
watchdog (WDT), 19, 121

timing, benchmark (PERF), 122
toolchain, C and C++ development, 23
tools

See debugging
See also configuration tools, 162
support, 163

DEBUG_SYSTEM, 164
LOG, 164
MON, 164
PERF, 164
SYTEM_DUMP, 164

transparent IPC, 62
tree, device, 150
tuning, 43

U
UFS (UNIX file system), 101
UNIX file system (UFS), 101
user

actors, 34
address spaces, 34
mode (USER_MODE), 47
POSIX processes, 39

utilities, application management, 25

222 ChorusOS 5.0 Features and Architecture Overview • December 2001

V
variables, environment, 24

ENV, 127
VIRTUAL_ADDRESS_SPACE, 114
virtual machine, C (CVM), 161
virtual memory (MEM_VIRTUAL), 113
virtual timer (VTIMER), 118
VTTY, 100

W
watchdog timer

introduction, 19
WDT, 121

Index 223

224 ChorusOS 5.0 Features and Architecture Overview • December 2001

