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RPC operation, or when the receiver of the message is local and is already waiting for the
message.

3.7 Deferred copy

In the implementation of the rgnlnit, rgninitFromActor, rgnCopy, sgCopy, sgRead and sgWrite
operations the history objects deferred-copy technique is used.

Our technique was inspired by the Mach’s shadow objects [9]. When Mach initializes a
segment (which is called a memory object) as a copy of another, the source is set read-only, and
two new memory objects, the shadow objects, are created (see Figure 4). The two shadows
keep the modified pages of the source and the copy objects respectively; the original pages
remain in the source object. So, the current state of the source and the copy are dispersed
across two objects.

On the other hand, when Chorus initializes a segment as a copy of another, two new
segments are created: the copy and the history. The copy keeps only its own modified pages,
the history is to keep the original pages modified in the source segment which always keeps its
current pages (modifed or not). So, the current state of the source is never dipersed, but the
state of the copy may be dispersed across three segments. The advantages and performance
of the history objects technique are described in detail in [1].

4 Conclusion

Like the other kernel services, the Chorus virtual memory management service has been
designed as a set of basic tools, suited for versatile implementations of various system policies.
In particular, memory objects are managed outside the kernel, by user-level servers. The tools
provided by the kernel allow these servers to manage object caching and cache consistency
with their own specific policies. All the interactions between these servers and the intra-kernel
memory management services are performed via the Chorus network-transparent IPC: these
servers may be distributed as needed, allowing a great variety of configurations.

The Chorus virtual memory management has been designed to be highly portable on a
wide range of modern hardware architectures. It is mostly written in C++, and a small
hardware-dependent part is clearly isolated from the main machine-independent part. The
Chorus kernel has been ported to various hardware: Sun 3, Bull DPX 1000 (a MC68020
workstation with a Motorola PMMU), Telmat T3000 (a MC68020-based multi-processor with
a custom MMU), various MC68030 boards and AT /386 PC’s. Work is in progress on SPARC,
MC88000 and ARM-3 based machines.
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The chSync operation forces all modified portions of a local cache fragment to be written
back (by a mpPushOut) to the segment. The chFlush operation releases a local cache frag-
ment; modified portions of the fragment are first written back to the cached segment. The
chinvalidate operation destroys a local cache fragment, without any synchronization.

The operation chLocklnMemory permits a fragment to be fixed in real memory (so that it
cannot be thrown away or flushed by the kernel).

The chRelease operation demands that the kernel destroy a local cache. The destruction
will be refused if the local cache is currently mapped into a region.

3.5 Segment caching

The kernel recognizes two basic types of segments: temporary and permanent. The kernel
itself requests the creation of temporaries (see section 3.4.3); these correspond to “swap”
areas for program data. Permanent segments correspond to user objects.

When some segment is no longer in use, the corresponding local cache could be discarded.
Instead, the kernel keeps such an unreferenced local cache (of a permanent segment) as long
as possible, i.e. as long as there is enough free physical memory, and enough space in the
kernel tables. When a program requests the use of a permanent segment, the kernel first
checks to see if there is already a local cache kept for it. This segment caching strategy has
a very significant impact on the performance of program loading (Unix exec) when the same
programs are loaded frequently, such as occurs during a large make.

3.6 IPC implementation

IPC messages serve to transport data, both for users and for the system. Therefore we have
tried to decouple IPC from memory management, in that IPC never has the side effect of
creating, destroying, or changing the size of any region. In this sense, our concepts are more
similar to the V-System’s view [2] than to Mach [14].

Messages are of limited size (64 Kbytes maximum in the current implementation). They
are not suitable for transferring large and/or sparse data. To transfer large or sparse data,
users should call the memory management operations, and not IPC.

When a message is sent, the kernel transfers its body through a temporary segment called
IPC buffer using sgWrite operation. The kernel manages the IPC buffer as a pool of fixed-sized
(64 Kbyte) slots. The number of slots is not limited: the IPC buffer is not mapped in the
kernel space and is never locked entirely in physical memory. When a message is received by
a thread, the kernel transfers the message body from the IPC buffer to the thread’s context,
using the sgRead operation. In order to avoid the data copy the move option of data transfer
is used if possible.

There is one IPC buffer per site. When a message must be sent to another site, the
network manager is in charge of transferring the message body between the IPC buffers. The
sgLocklnMemory operation can be used to fix a slot into real memory as it is being transmitted
over the network.

Future optimisations will concentrate on avoiding the extra message transfer, from the
source actor address space to the IPC buffer, when the message is sent by an synchronous

(© Chorus systémes, 1989 -11- May 1989
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Mapper operations
mpUsed (segment, localCache)
segment will be used through a cache
mpPullln (segment, localCache, offset, size, accessMode) — (data, realSize)
read a fragment of the segment
mpGetWriteAccess (segment, localCache, offset, size)
request write access to a fragment
mpPushOut (segment, localCache, offset, data, size)
write a fragment back
mpCreate (mapper, localCache) — segment
create a segment that will be used through a cache
mpRelease (segment, localCache)
end access to a given segment via the cache

Table 3: Mapper Interface.

Local cache control

chSync (localCache, offset, size)

synchronize a local cache fragment
chinvalidate (localCache, offset, size)

destroy a local cache fragment
chFlush (localCache, offset, size)

synchronize and invalidate a fragment
chLocklnMemory (localCache, offset, size)

fiz a local cache fragment in real memory
chUnlock (localCache, offset, size)

permit a local cache fragment to be flushed
chRelease (localCache) — ok

release the local cache, if possible

Table 4: Local Cache Control Interface.

© Chorus systémes, 1989 -10- May 1989
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3.4 External mappers
3.4.1 Segment capability

Segments are designated by capabilities, containing the mapper’s port name and a key. The
key is opaque for the system, and used by the mapper to manage and protect segment access.

For example, a Unix file server can construct a capability for a Unix file, by concatenating
the file server port name, the file inode number and a cryptographic protection key.

3.4.2 Local caches

When the kernel decides (e.g. on a page fault or a segment operation) to make available a
fragment of a segment in the form of physical memory, it extracts the segment mapper port
name from the segment capability, and sends the mpPullln request to the mapper, using the
Chorus RPC mechanism. The mapper responds with a message containing the data.

The kernel encapsulates the physical memory holding portions of the segment data in a
per segment local cache object (see Figure 3).

The same cache object is used for both the mapped and the explicit segment access, thus
resolving the double-caching problem (see section 3.3).

A local cache object is designated by its capability; the server for local caches is the
kernel (see section 3.4.4). Using the local cache capability, a mapper is able to distinguish
between different local caches, on the different sites, of the same segment, and to implement
distributed consistency maintainance protocols.

3.4.3 Mapper operations

Table 3 describes the operations, that a local cache object (in fact the kernel) may invoke on
the corresponding segment mapper. The mapper is always invoked using the Chorus RPC
mechanism. Any user-level segment mapper server must export all these functionals, (except
for the mpCreate operation, which is exported only by the default mapper).

The mpUsed operation is invoked by the kernel when a new local cache is created. When
the kernel destroys a local cache, it signals this action to the mapper with mpRelease.

When the kernel needs to fill up a fragment of the local cache, the mpPullln operation is
performed. Cached data carries the access rights defined by the accessMode argument; when a
write access occurs to data which is cached read-only, the kernel invokes the mpGetWriteAccess
to request write access. When the kernel needs to save a fragment of cached data, it calls the
mpPushOut operation on the corresponding segment.

When the kernel needs to create a new temporary segment (e.g. on rgnAllocate or rgnlnit
operations) it performs the mpCreate operation on the default mapper.

3.4.4 Local cache control

Table 4 describes the operations that a mapper may perform to a local cache. This interface is
sufficient for a mapper to implement a distributed virtual memory consistency maintainance
protocol [4].

(© Chorus systémes, 1989 -8- May 1989
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Segment operations
sgCopy (segment, offset, srcSegment, srcOffset, size, move)
copy data from one segment to another segment
sgRead (segment, offset, dstActor, dstAddress, size, move)
copy data from a segment to a region
sgWrite (segment, offset, srcActor, srcAddress, size, move)
copy data from a region to a segment
sglocklnMemory (segment, offset, size)
lock a fragment of a segment into physical memory
sgUnlock (segment, offset, size)
permits a fragment of a segment to be swapped out

Table 2: Segment Access Interface.

previously in real memory. For instance, the rgnLocklnMemory and rgnUnlock operations can
be used by device drivers to fix buffers in the physical memory during an I/0.

The rgnCopy operation permits data transfer between two existing regions. When the
move flag is set, the contents of the source fragment are undefined after the data transfert.
This permits the data to be remapped, instead of performing a copy or copy-on-write. This
operation can be used, for instance, by the Unix sub-system to avoid extra copies from the
source process address space to an intermediate buffer during read/write operations on pipes
or sockets.

The rgnFree operation deallocates the region containing the specified virtual address.

3.3 Segment operations

The table 2 describes explicit-access interface for segments.

The sgCopy, sgRead and sgWrite operations copy a fragment of one segment to another
segment. A segment can be described by its capability or by a virtual address in the actor in
which it has been mapped. When the move flag is present, the contents of the source fragment
are undefined after the data transfer, thus allowing the data to be remapped instead of copying
it. These operations could be used by the Unix sub-system to implement read /write operations
on files.

In a Unix-like system with demand-paging, there are two potential conflicts between read/
write and mapped access to segments. First, the file buffers and the page buffers conflict for
the real memory allocation, which can lead to a poor use of real memory. Secondly, the
double-caching problem: if a segment can be both mapped and read/written, and each access
has its own cache, the two caches can become inconsistent. In Chorus a given segment may be
mapped in a region and, at the same time, be accessed by explicit operations. The underlying
representation (see section 3.4.2) avoids the above-mentioned conflicts.

The semantics of the sgLocklnMemory and sgUnlock operations are the same as rgnlLock-
InMemory and rgnUnlock respectively.

(© Chorus systémes, 1989 -7- May 1989
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Context management

rgnAllocate (actor, address, size, protections)
map a region to a scratch temporary segment
rgnMap (actor, address, size, protections, segment, offset)
map a region to a segment
rgninit (actor, address, size, protections, srcSegment, srcOffset, srcSize)
map a region to a temporary segment, initialized from another segment
rgnMapFromActor (actor, address, size, protections, srcActor, srcAddress)
map a region to the segment mapped to another region
rgninitFromActor (actor, address, size, protections, srcActor, srcAddress, srcSize)
map a region to a temporary segment
initialized from the segment mapped to another region
rgnCopy (actor, address, srcActor, srcAddress, size, move)
copy data from one region to another
rgnLocklnMemory (actor, address, size)
lock a fragment of a region into physical memory
rgnUnlock (actor, address, size)
permits a fragment of region to be swapped out
rgnFree (actor, address)
deallocate a region

Table 1: Context Management Interface.

The rgnAllocate operation creates a new temporary segment and maps it into the context.
The initial content of the segment is not defined. The real segment creation is delayed to the
first mpPushOut (see section 3.4.3) operation on the segment. The rgnMap operation maps
an existing segment to a region. The rgnlnit operation creates a new temporary segment,
initializes it from another segment and maps it into the context. The source segment is
described by its capability. For instance, when the Unix sub-system creates a process from a
file during an exec (see Figure 2), three regions are created: the text region, using rgnMap; the
process initialized data, bss and heap, using rgnlnit; and the process stack, using rgnAllocate.
The file system exports two capabilities per executable file: one describing the process text
and the other the process initial data.

The rgnMapFromActor and rgnlnitFromActor operations have the same semantics as rgnMap
and rgnlnit respectively, on except that the segment is not described by its capability but
rather by its address within an actor in which it has been already mapped. For instance,
when the Unix sub-system creates a process during a fork, three regions are created in the
child process for the text, data and stack. The text region is created using rgnMapFromActor to
share the parent’s text segment; the data and stack regions are created using rgnlnitFromActor,
to intialize the child’s data and stack segments from the parent’s.

The rgnLockInMemory operation permits a region fragment ® to be fixed in real memo-
ry, so that it cannot be swapped out by a mpPushOut (see section 3.4.3) operation. The
rgnLocklnMemory causes mpPullln operations to occur, for any portions of the fragment not

®Here and subsequently, we use the term fragment to name a portion of a region (segment) specified by its
starting address (offset) within the region (segment) and its size.

(© Chorus systémes, 1989 -5- May 1989
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users must know in order to be able to modify the object. When an object is managed by
some external server (e.g. segments, see section 3.1), the UI is the global name of a port
of that server, and the key identifies the object within the server and holds the protection
information. The semantics of keys are defined by the servers. As Ul’s, capabilities may be
freely exchanged in messages: the kernel does not control their transmission.

3 Chorus Virtual Memory
The Chorus memory management service provides:

e separate address spaces (if the hardware gives adequate support), associated to actors.
We will use the term context to name an address space in the remainder of this paper.

e efficient and versatile mechanisms for data transfer between contexts, and between sec-
ondary storage and a context. The mechanisms are adapted to various needs, such
as IPC, file read/write or mapping, memory sharing between contexts, and context
duplication.

3.1 Basic abstractions

Chorus memory management considers the data of a context to be a set of non-overlapping
regions, which form the valid portions of the context. These regions are mapped (generally)
to secondary storage objects, called segments.

Segments are managed outside of the kernel, by external servers called segment mappers.
These manage the implementation of the segments, as well as the protection and naming of
segments. They export a simple segment access interface (described in section 3.4.3) to the
kernel. The subsystem running on top of the kernel must provide at least one default mapper
to permit the kernel to create temporary segments (e.g. “swap” segments).

A region may map a whole segment, or part of one, in which case it serves as a window into
the segment; the window may be caused to slide for sequential access. Protection flags (e.g.
read/write/execute, user/system) are associated with each entire region. Access to different
parts of a segment can be protected differently, by mapping each to a separate region.

In addition to the mapped-memory access described above, the same segment can be
accessed by explicit data transfer, as decribed in section 3.3.

Concurrent access to a segment is allowed: a given segment may be mapped into any
number of regions, allocated to any number of contexts; it can also, at the same time, be
accessed by explicit operations, by any number of threads.

The consistency of a segment shared among actors of the same site is guaranteed by the
kernel, but when a segment is shared among different sites, the segment mapper is in charge
of maintaining the segment consistency, using mechanisms described in section 3.4.4.

3.2 Context management

The table 1 describes context management operations.

(© Chorus systémes, 1989 -4- May 1989
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that actor and no other actor. Threads are scheduled by the kernel as independent entities. In
particular, threads of an actor may run in parallel on the many processors of a multiprocessor
site.

The threads making up an actor can communicate and synchronize using the shared mem-
ory provided by the actor address space. In addition, Chorus offers message-based utilities
which allow any thread to communicate and synchronize with any other thread, on any site.
This is known as IPC (Inter-Process Communication). The Chorus IPC permits threads to
exchange messages either asynchronously or by demand/response, also called Remote Proce-

dure Call (RPC).

The principle characteristic of the Chorus IPC is its transparency with respect to the lo-
cation of threads: the communication interface is uniform, regardless of whether it is between
threads in a single actor, between threads in different actors on the same site, or between
threads in different actors on different sites.

A message is an untyped string of bytes, of variable but limited size3, called the message
body. The sender of the message may optionally join a fixed size  string to the message body,
the message annex. When present, the annez is copied from the sender address space to
the receiver address space. By default, the message body is transferred with copy semantics.
However, options are available to allow the transfer of the body without copying (see 3.6).

Messages are not addressed directly to threads, but to intermediate entities called ports.
The port is an address to which messages can be sent, and a queue holding the messages
received but not yet consumed by the threads. For a thread to be able to consume the
messages received by a port, it is necessary that this port be attached to the actor that
supports the thread. A port can only be attached to a single actor at a time, but can be
successively attached to different actors, effectively migrating the port from one actor to
another. This migration can be accompanied, or not, by the messages queued on the port.

The notion of a port provides the basis for dynamic reconfiguration: this extra level of
indirection between communicating threads, enables a given service to be supplied indepen-
dently of a given actor. The servicing actor can be changed at any time, by changing the
attachment of the port from the first thread’s actor to the new thread’s actor.

A group of ports connects those ports to a multicast facility: either from one thread to
an entire group of threads (via a group of ports); or “functional” access to a service: a server
is selected from a group of (equivalent) servers. A group of ports is essentially a name to
which messages can be addressed. A group is built by dynamically inserting ports into, and
removing them from, the group.

Ports are globally designated with Unique Identifiers (UI's). A UI is unique in a
Chorus network. The Chorus kernel implements a location service, allowing threads to use
these names without knowledge of the locality of the designated entities. UI’s may be freely
exchanged in messages; the kernel does not control their transmission.

The global names for other types of objects are based on UI’s, but hold more information,
such as protection information. These names are called capabilities [13]. A capability is
made of a UI and an additionnal structure, the key. When objects are kernel objects (e.g.
actors), the UI is the global name for the object, and the key is only a protection key, that

364 Kbytes
464 bytes
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Figure 1: Actors, threads, ports and messages
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1 Introduction

The Chorus’® technology has been designed for building new generations of open, distributed,
scalable operating systems.

Chorus is a communication-based technology. Its minimal kernel integrates distributed
processing and communication at the lowest level. Chorus operating systems [11] are built
as sets of independent system servers, to which the kernel provides the basic services such
as activity scheduling, network transparent IPC, memory management and real-time event
handling. The Chorus kernel can be scaled to exploit a wide range of hardware configurations,
such as small embedded boards, workstations or high-performance servers. Operating systems
(called subsystems) implemented on top of this kernel currently include a full Unix System V2
[3] and PCTE [6]. Work is currently in progress to implement object-oriented distributed
subsystems [12, 5].

CHORUs-V3 is the current version of the Chorus Distributed Operating System, devel-
oped by Chorus systemes. Earlier versions were studied and implemented within the Chorus
research project at INRIA between 1979 and 1986.

This paper focuses on the description of the virtual memory management service provided
by the Chorus kernel. Due to the multiple purposes of the Chorus kernel, its memory man-
agement service has been designed as a well-isolated component, offering generic interfaces
adapted to various hardware architectures and to various system needs [1]. In particular, the
secondary storage objects are managed outside the kernel, within independent system servers.

The outline of the rest of this paper is the following. In section 2 we briefly present an
overview of the basic Chorus kernel abstractions. In section 3, we describe the virtual memory
management service: its abstractions, interfaces, implementation issues, and some examples
of the use of the virtual memory management interface by our Unix implementation.

2 Chorus basic abstractions

The physical support for a Chorus system is composed of a set of sites (“machines” or
“boards”), interconnected by a communications network (in a general sense: either network
or bus). A site is a tightly coupled grouping of physical resources: one or more processors,
central memory, and attached I/O devices. There is one Chorus kernel per site.

The actor (see Figure 1) is the unit of distribution in the Chorus system. An actor defines
a protected address space supporting the execution of threads which share the address space
of the actor. Any given actor is tied to a site, and its threads are executed on that site. A
given site can support many simultaneous actors.

The thread is the “unit of execution” in a Chorus system. A thread is a sequential flow of
control and is characterized by a contexzt corresponding to the state of the processor (registers,
program counter, stack pointer, privilege level, etc.). A thread is always tied to one and only
one actor. The actor constitutes the execution environment of the thread. Within the actor,
many threads can be created and can run in parallel. These threads share the resources of

IChorus is a registered trademark of Chorus systémes
2Unix is a registered trademark of AT&T.
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Abstract

The Chorus technology has been designed for building “new generations” of open,
distributed, scalable operating systems. It is based on a small kernel onto which operating
systems are built as sets of distributed cooperating servers. This paper presents the
Virtual Memory Management service provided by the Chorus kernel. Its abstractions,
interfaces and some implementation issues are discussed. Some examples of the use of
this interface by our distributed Unix implementation are given.
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