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ABSTRACT
In the ESA Columbus Project, including in particular the
European Space Station, applications are written in Ada and
are distributed; moreover, the long lifetime of the space ele-
ments requires flexibility in order to support smooth software
evolution.

CHORUS is a distributed operating system, developed and
supported by Chorus systèmes, which provides a basis for sup-
porting efficiently distributed and dynamically reconfigurable
Ada software.
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1. COLUMBUS REQUIREMENTS FOR DMS
The main requirements for the Columbus Data Management
System (DMS) may be summarised as follows:
� Provide a real-time multitasking environment for applica-

tions in a distributed architecture. Provide an inter-
application communication in a distributed architecture.

� Independent of hardware and network specificities.
� Support applications written in Ada; these applications

may be distributed and they may have to cooperate with
applications written in other languages.

� Support dynamic application replacement, with minimum
impact on the application.

These two last requirements have led the Columbus project to
introduce the notion of the SoftWare Replaceable Unit
(SWRU), i.e. a piece of software written in Ada (or possibly
other languages) which should be replaceable like hardware
pieces are.

2. CHORUS OVERVIEW
This document describes how CHORUS fulfills the above
requirements, thanks to the following properties of its archi-
tecture:

� ���������������������������������������

Part of this work has been conducted within the study Proof of concept for
Ada SWRU implementation with the partnership of Alsys, Intecs Interna-
tional and Syseca, in the framework of phase C0 of Columbus.

 CHORUS is a registered trademark of Chorus systèmes.

1. Modularity: the complete operating system is built as a
small real-time kernel complemented by servers. Com-
munications are integrated within the heart of the small
real-time kernel.

The real-time kernel is able to support efficiently Ada
applications.

2. Hardware and network independence: the real-time ker-
nel insulates applications from hardware as well as net-
work specificities.

3. Flexibility: the versatility of the inter-application com-
munication is the basis for supporting distribution in an
efficient and simple way, in particular for dynamic
configuration and reconfiguration of applications.

4. Extensibility: the modularity of the architecture and the
integration of inter-application communications within
the kernel allows to extend the architecture with new
services as necessary.

The integration of communications within the system kernel
and the flexibility of the inter-application communication
facility are the key features of this architecture for fulfilling
the DMS requirements.

2.1 Overall Organisation

The CHORUS System is composed of three layers (Figure 1):

1. A small real-time kernel (called Nucleus) integrating
inter-application communications. This Nucleus insu-
lates higher-level software from hardware and network
specificities.

2. A set of System servers complementing the Nucleus
with necessary higher-level services, in the context of
Service assemblies. These services integrate the distri-
buted nature of the architecture.

Where necessary, different assemblies may be built on
top of the same Nucleus.

3. Applications, mainly SWRUs, running on top of the
assemblies.

2.1.1 The Nucleus

The Nucleus (Figure 2) plays a double role:

1. Local services:

It manages, at the lowest level, the local physical
resources of a ‘‘computer’’, called a Site, by means of
three clearly identified components:
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Figure 1. The CHORUS Architecture

� allocation of local processor(s) is controlled by a
Real-time Multi-tasking Executive; this executive
provides fine grain synchronisation and priority-
based preemptive scheduling,

	 local memory is managed by the (Virtual) Memory
Manager controlling memory space allocation and
structuring (virtual) memory address spaces,


 external events − interrupts, traps, exceptions − are
dispatched by the Supervisor.

2. Global services:

The IPC (Inter Process Communication) Manager pro-
vides the communication service, delivering messages
regardless of the location of their destination within a
distributed system.

The integration, within the same Nucleus, of a real-time exe-
cutive and communication brings several advantages:
� the interaction between communications and scheduling

(e.g. the reception of a message enables scheduling) is
efficiently supported;

� the optimisation of communications (e.g. local transfer of
a message by moving descriptors instead of by copying the
value) relies on a proper usage of memory management.

Within the Nucleus, the non portable and portable
parts are clearly separated: the transport of the
CHORUS Nucleus to a new hardware impacts only a
limited part of the Nucleus.

2.1.2 The Assemblies

System servers implement high-level system services, and
cooperate in order to provide a coherent operating system
interface. They communicate via the Inter-Process Communi-
cation facility (IPC) provided by the Nucleus (Figure 3). The
main servers which may be found in Assemblies are:

1. The Process Manager manages processes with all the
semantics of the assembly; it deals with creating
processes, loading their binary image from secondary
memory into main memory, destroying processes, etc...
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Figure 2. The Nucleus

2. The File Manager is in charge of managing secondary
storage (e.g. disks, tapes, floppies, etc...) and paging for
Virtual Memory.

3. The Device Manager is in charge of managing character
devices (e.g. terminals).

4. Other managers may be added for managing other dev-
ices (e.g. sensors and actuators) or other terminals (e.g.
bitmap displays), for DataBase management, for
specific communications (e.g. space/ground), etc...

2.1.3 Applications

SWRUs execute on top of the CHORUS assembly.

2.1.4 System Interfaces

A CHORUS system exhibits several levels of interface (Fig-
ure 3):

 Nucleus Interface: this interface is composed of a set of

procedures providing access to the services of the Nucleus.
If the Nucleus cannot render the service directly, it com-
municates with a distant Nucleus via the IPC.

This interface is used only by assembly servers.
� Assembly Interface: this interface is composed of a set of

procedures providing access to some assembly specific
protected data. If a service cannot be rendered directly
from this information, these procedures ‘‘call’’ (RPC) the
services provided by assembly servers, which may be local
or remote.

� Application Interface: communications between SWRUs
rely on the inter-process communication (IPC) service pro-
vided by the CHORUS assembly, but this IPC will not be
used directly within application software. Instead,
accesses to an application program are described by inter-
face packages which provide the necessary interface for
accessing the services offered by the application with a
dedicated syntax and semantic (§ 2.1).

2.2 Inter-process Communication

The inter-process communication services play a double role:
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Chorus systèmes CHORUS: a support for distributed and reconfigurable Ada software CS/TR-89-40.2

SWRUs

Application Interface Packages

Ada Assembly Interface

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Assembly Interface (language independent)

Assembly

Servers

CHORUS Nucleus Interface

CHORUS Nucleus Nucleus

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 3. Architecture and interfaces

1. They provide the only means of interaction between
processes of an application: these services must include
the facilities for naming, binding and addressing the
various processes; in addition, they must include ways
for controlling inter-application interactions.

2. They provide the basis for simple and dynamic
configuration and reconfiguration of applications: these
services must be flexible and high-level enough in order
to simplify the (re)configuration management at the
application level.

In addition, the simplicity of the interface and the unicity of
this inter-application interaction (called the single interface in
[3]) allows testing any application by controlling and exercis-
ing the communications with the application.

2.2.1 Overview

Processes synchronise and communicate using a single basic
mechanism: the exchange of messages via message queues
called Ports.

The main characteristic of the CHORUS IPC is its transparency
vis-à-vis the location of processes: communication is
expressed through a uniform interface (ports), regardless of
whether the communication is between two different processes
on the same site, or between two different processes on two
different sites. Messages are transferred from a sending port
to a receiving port.

2.2.2 Messages

A message is basically a contiguous byte string, logically
copied from the sender address space to the receiver(s) address
space(s). Using a coupling between virtual memory manage-
ment and IPC, large messages may be transferred efficiently
by deferred copying (copy on write), or even by simply mov-
ing page descriptors (on a given site).

2.2.3 Ports

Messages are not addressed directly to processes, but to inter-
mediate entities called ports. The notion of a port provides
the necessary decoupling between the interface of a service
and its implementation. In particular, it provides the basis for
dynamic reconfiguration (§ 3.1).

When created, a port is attached to one process. A port can
only be attached to a single process at a time, but it can be suc-
cessively attached to different processes: i.e. a port can
migrate from one process to another. This migration can be
applied also to the messages waiting behind the port.

The geographical distribution transparency provided by the
IPC allows to change the configuration of an application
without any change in the source of the application (Figures 4
and 5).

Process

Thread

Port

Message

Site

Figure 4. Processes, threads and ports

2.2.4 Port Groups

The ports provide the basis for efficient point to point com-
munications. However, in distributed systems, this is not
sufficient.

Ports can be collected into Port Groups (Figure 6). The
notion of group extends port-to-port message passing between
processes:
� Asking for a service may not only be done directly from

one process to another process − via a port. It may also be
done by ‘‘multicast’’: from one process to an entire group
of processes − via a group of ports.

� Functional or associative access to a service can be
selected from among a group of (equivalent) services.

2.2.5 Communication Semantics

The CHORUS Inter-Process Communication (IPC) permits
processes to exchange messages in either asynchronous mode
or in demand/response (i.e. Remote Procedure Call or RPC)
mode.
� Asynchronous mode: The emitter of an asynchronous

message is blocked only during the time of local process-
ing of the message by the system. The system does not
guarantee that the message has been actually received by
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Figure 5. Changing the configuration of an application (3
sites instead of 2)
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Figure 6. Port Groups

the destination port or site. When the destination port is
not present, the sender is not notified, and the message is
destroyed.

� RPC mode: The RPC protocol permits the construction of
services with a client-server model: a demand/response
protocol with management of transactions. RPC guaran-
tees that the response received by a client is definitely that
of the server and corresponds effectively to the request
(and not to a former request to which the response would
have been lost); RPC also permits a client to know if his
request has been received by the server, if the server has
crashed before emitting a response, or if the communica-
tion path broke.

When messages are sent to port groups, several addressing
modes are provided:
— broadcast to all ports in the group,
— send to any one port of the group,
— send to one port of the group, located on a given site,
— send to one port of the group, located on the same site as a

given object.

3. ADA SUPPORT
The requirements for Ada support in Columbus DMS have
two main aspects:
� Distribute Ada applications.
� Efficiently support real time Ada applications.

This section briefly discusses different alternates and presents
how CHORUS provides a solution.

3.1 Distribution of Ada applications

The main alternates may be summarised as follows:

a. A distributed application is one Ada program. This Ada
program is "automatically" split into parts which are
distributed among the various nodes; the semantics of
Ada are preserved through this distribution, e.g.
rendez-vous are distributed, etc...

This alternative implies important and difficult develop-
ments both in the compiler and in the run time support.

b. A distributed application is made of several Ada pro-
grams; however, the communications between two pro-
grams are expressed in the same way as within one pro-
gram, i.e. there is no difference in programming
between internal and external communications.

This alternative implies important and difficult develop-
ments both in the "compiling process" 1 and in the
operating system.

c. A distributed application is made of several Ada pro-
grams; the communications between two programs are
expressed in terms of facilities provided by the underly-
ing operating system; at some level, distribution is not
hidden, though it can be limited to specific interface
packages.

This alternative has the advantage of requiring the
minimum adaptations to the Ada development environ-
ment and to the operating system, thus preserving the
capacity to benefit from the evolutions of both technolo-
gies.

This last alternative has been chosen in order to support distri-
buted Ada applications on CHORUS. As mentioned in § 1.1.4,
the IPC facility may be directly accessed from an Ada pro-
gram; however, this is restricted to specific Application Inter-
face Packages (or Service Interface Packages − SIP) which
encapsulate the communications between application. Encap-
sulating inter-application communications within specific
packages brings several advantages:

− the interface package insulates the application from the
knowledge of the protocol with the server: format of mes-
sages, rules of exchange, etc...

− the interface package may contain additional controls as
well as adaptation to a specific language (in particular Ada);

− the interface package may provide the necessary protocol
for dealing with possible reconfiguration or evolution of the
server: retransmission of requests, server supervision, etc...

− the interface package may integrate the necessary control
for dealing with software evolution: message type check-
ing, protocol version control, etc...

� ���������������������������������������

1. Compiling process may include additional pre-processing, compiling and
post-compiling operations.
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− in the case of Ada, the interface package allows to have a
better compilation control than a generic IPC interface may
provide.

3.2 Efficient Ada support

Efficient Ada support may be summarised in four main
requirements:

1. Each SWRU must require a minimum amount of
memory; besides efficient code generation, this must be
achieved through code sharing where possible and, in
particular, run-time sharing.

2. Conversely, the minimum operating system necessary to
support Ada programs must be really small.

3. Real time scheduling must not be restricted to the inside
of one Ada program: all Ada programs sharing the
same node must be submitted to a common real time
scheduling, allowing any priorities combination.

4. The request of a blocking system call by a single task
must not block the whole program.

It is worth noting that for mono-task programs, requirements 3
and 4 are easily provided: they can have (program) priorities
interleaved and their (only) task can request blocking calls
without any undesired side-effects.

The adaptation of CHORUS in order the above requirements
has one possible trade-off:

a. CHORUS can be adapted towards an Ada run-time and
directly support the Ada semantics.

b. The Ada run-time can be adapted in order to benefit
from the facilities provided by CHORUS.

This last trade-off has the advantage of preserving the
capacity to benefit from the evolution of the CHORUS
technology; in addition, it does not tie CHORUS to one
particular compiler manufacturer.

This last alternative has been chosen in order to support Ada
programs on CHORUS. This support is based on the following
mapping:
� One Ada program is executed as one CHORUS process;

one program is therefore not distributed (§ 2.1). Several
Ada programs may run on the same node and may share
the node with non Ada programs.

� One Ada task is mapped onto one CHORUS thread 2. The
real time task scheduling is therefore performed by the
CHORUS Nucleus.

When a task requests a blocking system call, only the
corresponding thread is blocked. Other threads, i.e. other
tasks, continue to be scheduled by the Nucleus.

� The Ada run-time benefits from the CHORUS services in
order to implement Ada semantic (delay, rendez-vous,
etc...) and CHORUS provides all necessary services.

If necessary, further refinements in the mapping may give
better performance; in addition, it can be envisaged to add
to CHORUS one or two simple services which could also
speed up critical mechanisms (e.g. rendez-vous).

This mapping is complemented by the usage of CHORUS’
Virtual Memory facilities which allow memory − and in

� ���������������������������������������

2. A thread is the execution unit in CHORUS; one process may contain several
threads which share all process’ resources.

particular code − sharing.

4. RECONFIGURATIONS
The required reconfigurations capabilities in Columbus may
be summarised as follows (Ref. [3]):
� All on board software is a set of SWRUs
� One SWRU must be replaceable by one (or several) other

SWRU(s); for some critical functions, this replacement
must not introduce any disruption in the executing
software.

� The replacement of a SWRU may leave the overall appli-
cation unchanged, or it may introduce an upgrade in the
interfaces; consistency of the whole application must be
kept, possibly leading to the replacement of other related
SWRUs.

� The replacement of a SWRU may lead to the migration of
the SWRU from one node to another; consistency of the
whole application must be kept.

� In case of node failure, it must be possible to reconfigure
the lost application on a backup node in order to obtain full
functionality of the failed application.

CHORUS provides a basis for supporting efficient dynamic
application reconfiguration: the key point is the flexibility of
the inter-process communication provided by distribution tran-
sparency, ports and groups.

4.1 Reconfiguration of a program

This section first emphasises the flexibility of the inter-process
communication and then presents in more detail some typical
reconfiguration scenarios.

The notion of ‘‘port’’ as an indirection between communicat-
ing threads allows to dynamically modify the implementation
of a service within an process.

Moreover, the Nucleus allows the dynamic reconfiguration of
services between processes by permitting the migration of
ports. This reconfiguration mechanism requires that the two
servers involved in the reconfiguration be active at the same
time (Figure 7).

Finally, it also offers mechanisms permitting to manage the
stability of the system, even in the presence of failures of
servers. The notion of port groups is used to establish the sta-
bility of server addresses.

Recall that:
 A group collects several ports together.
! A server that possesses the name of a group can insert new

ports into the group, replacing the ports that were attached
to servers that have terminated.

A client that references a group (rather than directly referenc-
ing the port attached to a server) can continue to obtain the
needed services once the terminated port has been replaced in
the group (Figure 8).

In other words, the lifetime of a group of ports is unlimited
because groups continue to exist even when ports within the
group have terminated.

Thus clients can have stable service as long as their requests
for services are made by emission of a message towards a
group.

Based on these mechanisms, two typical reconfiguration
mechanisms are described below:

 Chorus systèmes, 1990 − 5 − 14 November 1990
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4.1.1 Dynamic reconfiguration (Figure 7)

A Server 1 has to be replaced by another Server 2, without any
service disruption:
" Server 2 is loaded on the appropriate node (same as Server

1, or different).
# Server 2 initiates itself in order to be ready for

reconfiguration.
$ Server 1 stops its execution in a consistent state (i.e. no

pending request, etc... ).
% Server 1 transmits its internal state (i.e. data which charac-

terise its operation) to Server 2 and it requests the migra-
tion of its port P to Server 2, along with the attached mes-
sages.

& Server 2 updates its internal state with the values transmit-
ted by Server 1.

' Server 2 is now ready to operate and processes requests
received on P.

( Server 1 is destroyed.

After this reconfiguration, Server 2 is fully operational and
clients cannot notice any server disruption.

Client

Serv. 1

Serv. 2

P

.....
.....

.....
.....

.....

Client

Serv. 1

Serv. 2P

........................

Port P migrates from Server 1 to Server 2

To P
To P

Ports can migrate from one process to another.
While Client continues communicating with port P,
the port can be moved from Server 1 to Server 2.
The system will, automatically, re-route the mes-
sages sent to P onto the new location of P. This
allows, for example, the updating of a server with a
new version or the replacement of one server with a
faster one located on another site.

Figure 7. Reconfiguration Using Port Migration

4.1.2 Service upgrade (Figure 8)

A Server 3 has to be replaced by an upgraded version, Server
4, possibly with migration.
) Server 3 stops in a consistent state.
* Server 3 checkpoints its internal state (i.e. data which

characterise its operation).
+ Server 3 is destroyed (and its port P1 disappears).
, The group G is now empty: the service is now unavailable.

The clients may notice it (if they try to access the service).
- Server 4 is loaded on the appropriate node and initiated.
. Server 4 reads the checkpoint data left by Server 3 and

updates its internal state.
/ Server 4 inserts its port P2 in the group G.

0 The service is now again available.

During this reconfiguration, the service has been temporarily
unavailable. It is precisely the role of application interface
packages to deal with this situation and to take the appropriate
decision (error reporting, request retransmission, etc...), leav-
ing the application unaware of this situation.

........................ Serv. 4

Serv. 3

Client.....
.....

.....
.....

.....

Serv. 4

Serv. 3

Client

P2 has replaced P1 in group G

P1

P2
To G

To G

P1 ∈ G

P2 ∈ G
P2

P1

Using groups allows a more general reconfiguration
facility than is available with port migration.

Client addresses its communications to group G
instead of directly to port P1. The extra level of
indirection allows the replacement of Server 1, that
may have ceased to function, by Server 2 even
though the two servers have their own ports. The
system will, automatically, re-route the messages
sent to G onto P2 instead of P1.

Figure 8. Reconfiguration Using Groups

4.2 SWRUs dependencies

The above scenarios have emphasised the benefits of the IPC
flexibility for ease of reconfiguration. But, reconfiguration
may concern more than one SWRU, in particular in case of
interface upgrade. Several alternatives may be envisaged:

1. All relations and dependencies between SWRUs are
recorded in a DataBase. When a set of dependent
SWRUs have to be replaced, the DataBase indicates the
chain of individual operations to be performed.

2. Another approach may consist in identifying unambigu-
ously different versions of protocols. When one SWRU
is upgraded and uses another protocol version, other
SWRUs may detect the upgrade (within the application
interface packages) and request from the SWRU
management the necessary upgrade, i.e. possibly their
own reconfiguration.

These two alternatives may be combined.

5. CONCLUSION
Real time distributed Ada applications are emerging as a must
in most important software developments in the near future.
The technology must still mature and CHORUS can be a corner
stone in this evolution.
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