
CS/TR-90-42.1

Micro-kernel Architecture

Key to Modern Operating Systems Design

Michel Gien

A recent trend in operating system development consists of structuring the operating sys-
tem as a modular set of system servers sitting on top of a minimal micro-kernel, rather
than using the traditional monolithic structure. This approach promises to help meet

systems and platform builders’ needs for a sophisticated development environment that can
cope with growing complexity, new architectures and changing market conditions. The top prior-
ity among these needs is the ability to integrate additional functionality, new hardware technolo-
gies and architectures, and distributed environments, all within an ‘‘open systems’’ context.

In this type of operating system architecture, the micro-kernel provides system servers with
generic services independent of a particular operating system, such as the scheduling of one or
more processors and memory management. The micro-kernel also provides a simple interpro-
cess communication facility (IPC) that allows system servers to call each other and exchange
data independently, whether they work in a multiprocessor, multicomputer or network
configuration.

This combination of elementary services forms a standard base which can support all other
system-specific functions. System-specific functions can then be configured into appropriate sys-
tem servers, managing the other physical and logical resources of a computer system, such as
files, devices and high-level communication services. Real-time systems tend to be built along
similar lines, with a very simple generic executive supporting specific real-time tasks.

Micro-kernel architecture has been the subject of operating system research for the last ten
years, illustrated by such projects as: Amoeba[1] (Free University and Center for Mathematics
and Computer Science, Amsterdam); CHORUS[2] (INRIA, France, then developed and commer-
cialized by Chorus Systems); MOS[3] (Hebrew University of Jerusalem); Topaz[4] (DEC/SRC);
and the V-system[5] (Stanford University). Perhaps the most visible kernel technology is the
Mach[6] operating system, an experimental system under development at Carnegie Mellon
University.

Ridge’s ROS and Convergent Technology’s CTOS are two early proprietary systems that
borrowed from micro-kernel design. More recently, the Open Software Foundation and Next, Inc.
have adapted concepts from Mach in their offerings. Chorus Systems is the first company to
offer a commercial micro-kernel based operating system product family comprising a real-time
micro kernel (CHORUS/Nucleus) and a fully distributed implementation of UNIX System V
(CHORUS/MiX).

�����������������������������������
This is a revised version of an article published in UNIX REVIEW, Vol. 8, No. 11, November 1990

 Chorus systèmes, 1990 − 1 − 16 December 1990

Chorus systèmes Micro-kernel Architecture CS/TR-90-42.1

Micro-kernel architectures have been, and remain, strongly related to distributed computing.
Both research and commercial work listed above presumed a set of distributed computing
requirements, within or between networked ‘‘boxes’’. Message passing, which has come to be
one of the often distinguishing characteristics of micro-kernel architecture, is a very natural way
to structure systems in which components are distributed over a loosely-coupled set of
individual processors, boards or complete machines. It enforces very clear isolation between
each individual component of the system, by making explicit the communications rules used
between them, while at the same time providing a very flexible way to assemble distributed
components into a higher level global entity. Message passing can take the form of simple
send/receive protocols exchanged for transferring data between remote entities as well as
means for synchronizing parallel independent execution flows. Simple send/reply messages can
be combined into a form of remote procedure call (RPC) to better suit client-server types of
communications. This concept has been used under various forms in automaton-driven systems,
real-time distributed systems, parallel scientific applications, and transaction-oriented systems.

The virtues of a generalized, message passing foundation for assembling operating system
functions are well known as long as these functions do not share common state information and
global data. When applied to shared memory, a closely coupled environment, or a single-
processor architecture, the challenge is more significant. Years of engineering work have led to
mature techniques for structuring operating system functions, and the data structures they
manipulate, to minimize their interactions, and to optimize message-passing algorithms by
taking advantage of the locality of correspondents.

CHORUS−v3 represents the fourth generation of such an architecture. It builds upon the
CHORUS−v0, CHORUS−v1, and CHORUS−v2 experiences and integrates contributions from the V-
system in the area of IPC and RPC mechanisms, Mach for distributed virtual memory
architecture and threads, Amoeba for addressing and binding capabilities. Also, at the server
level, design of several generations of distributed UNIX servers have been required to mature the
technology to a stable state, which can now be widely generalized into a family of operating
system products.

This article examines how micro-kernel based operating system architectures can change
the way modern systems are designed, outlines systems builders’ needs to take advantage of
new hardware and machine architecture technologies in the context of open systems standards,
and discusses the key characteristics that modern operating systems should exhibit to satisfy
those needs.

T he Software Engineering Argument. Micro-kernel based architecture is often
justified as an approach to reducing the size and complexity of the OS. This is not quite
true. Restructuring the operating system along a better architecture does not reduce the

overall quantity of code that is necessary to perform a given function. The demand from
applications for increasingly sophisticated services from the operating system requires ever
more code.

What micro-kernel operating system architecture does provide is a structured, defined way to
cope with the increased complexity of operating system development. It also offers great
advantage as a framework for the design, development and integration of ‘‘open’’ operating
systems. Further, this structured approach must be followed especially when operating system
functions are distributed among loosely coupled nodes.

‘‘The argument for micro-kernel architectures is actually a software engineering argument,
which applies to system builders.’’

 Chorus systèmes, 1990 − 2 − 16 December 1990

Chorus systèmes Micro-kernel Architecture CS/TR-90-42.1

System builders need standard operating system components. Ten years ago system
builders developed their own proprietary operating systems of necessity, often simultaneously
with the underlying hardware. UNIX introduced the concept of a standard, hardware-independent
operating system, whose portability allowed platform builders to reduce their time to market by
eliminating the need to develop their own operating systems for each new platform. Similarly,
builders of real-time systems have begun to use non-proprietary operating systems, such as
pSOS or VRTX, often bundled with boards that can be readily integrated into their systems.

‘‘System builders need to work from standard Operating System components as building
blocks for the construction of their modern computing systems.’’

UNIX Complexity is Increasing. Several trends are pulling UNIX away from its roots. As
more functionality is continually demanded of UNIX it is unavoidable that today’s versions should
be more complex. Unfortunately, a by-product of this increasing complexity is the gradual
undermining of UNIX original benefits: simplicity and portability.

Instead of evolving towards more portability, new UNIX releases require increasing efforts to
implement on new platforms, particularly when they are built around emerging hardware
architectures that UNIX was not initially designed to support.

‘‘UNIX cannot fulfill the expectations of system builders if it continues to increase in
complexity, without a well-defined modular architecture to manage this growth.’’

UNIX Scope of Application is Being Extended. The open systems standard that UNIX
represents is naturally appealing to application domains that have been dominated by highly-
specialized systems. As a result, a contradiction is emerging. Although system builders are
adopting UNIX because it is a standard operating system, they are simultaneously demanding
extensions to customize it to vertical applications.

For example, UNIX is being extended to support the execution of some categories of real-
time applications. Conversely, real-time systems builders want the capabilities of real-time
executives to be extended to support UNIX applications. Similar trends can be found in
transaction-processing environments, which have already led to the addition of on-line
transaction processing facilities to UNIX. This requires extending open systems to areas they
sometimes don’t fit very well.

‘‘System builders need more generality from the operating system, and more flexibility to
tailor it to specific environment without introducing complexity corrupting standard components.’’

Distributed Environments Need to be Supported at All Levels. Adding to the demands
on UNIX is the move toward distributed environments. Today’s computing environments require
that new hardware and software resources, such as specialized servers and applications, be
integrated into a single system, distributed over some kind of communication medium. The
range of communication media commonly encountered includes shared memory, buses, high
speed networks, local and wide-area networks. This trend will become fundamental as
cooperative computing environments emerge to better map natural human organization.

‘‘Facilities to support distribution are now required at the most intimate level of modern
computing systems.’’

In sum, builders of the next generation of system platforms face three concurrent software
engineering challenges:
� to support new multiprocessing and parallel hardware architectures,
� to incorporate their own value, adding operating system features within an open systems

framework,

 Chorus systèmes, 1990 − 3 − 16 December 1990

Chorus systèmes Micro-kernel Architecture CS/TR-90-42.1

� to gracefully extend the topology and functionality of their system into cooperative computing
environments.

I ntroducing an Operating System Development Environment. In order to
develop such platforms, system builders need to be provided with an operating system
development environment as powerful as the development environments which are

available to application developers. They need to be able to develop more and more complex
systems as easily as applications can be developed.

Micro-kernel architectures meet these needs by providing a standard, generic minimum base
that provides enabling system services. System builders can then concentrate on the creation of
specific, innovative, system components supported by the standard base.

System builders need to be able to add value not only by means of the hardware
organization, but also in the operating systems’ combination of services and facilities. A
monolithic, fully-packaged operating system structure, as provided by today’s UNIX
implementations, does not furnish this capability.

The system must also provide enhanced portability over a wide range of scalable
architectures allowing the system builder to track the evolution of hardware technologies to
achieve the best fit with specific performance requirements.

Portability of the same system base to a wide range of architectures also provides system
builders with a homogeneous operating system environment over the entire product range, thus
providing economies of scale as well as reusability of system components. UNIX provided the
first steps in this direction. The need now is to push this further by insuring that the standard
operating system base is able to be:
� scaled down to real-time embedded systems,
� scaled up to multi-processors and parallel architectures,
� scaled laterally to specialized network nodes in fully distributed environments.

A Mature Micro-kernel Based Operating System Architecture. The real
design issue in micro-kernel architectures is the definition of the services that need to
appear at the micro-kernel interface. This interface must represent a good balance

between fully supporting those functions that are key to all systems and enabling customization
in order to adapt the system to the requirements of specific application areas and to take
advantage of particular machine architectures.

Over the last several years this balance has been achieved. The original message-based
micro-kernels that were initially developed to support distributed, specialized systems have since
been enhanced or totally redesigned to comply with ever more general system needs. Key
design criteria are now well understood and a well engineered set of enablers has been worked
out. Mature micro-kernel-based operating systems are indeed feasible. The following features
characterize mature designs.

Strong Structuring Concepts. Modularity of design and operational configurations requires
strong structuring concepts such as the actors/threads in CHORUS, or the tasks/threads in Mach,
as well as clear isolation of interactions provided through message passing-based
communications, as in the V-system, Amoeba, and CHORUS.

Transparent Reusability of System Components. Service encapsulation provided by the
client-server based model of interactions allows system servers supporting this model to be
used in different operating system environments, as is done by Amoeba or CHORUS servers.

 Chorus systèmes, 1990 − 4 − 16 December 1990

Chorus systèmes Micro-kernel Architecture CS/TR-90-42.1

Portability Over a Full Range of Computer Architectures. Portability requires the ability to
support various types of multiprocessor architectures, as is done in Topaz, Mach and CHORUS,
but also the ability to adapt to embedded systems or scientific computers with no virtual memory
capabilities, as with CHORUS.

Support for Scalability. Scalability is necessary for system services as well as at the
hardware level. Threads, as in Topaz, Mach or CHORUS for example, can be used to scale
request handling in servers by adding threads to handle more requests, as well as to optimize
performance (using parallelism on symmetric multiprocessor configurations). Operating system
scalability should match hardware scalability as examplified by X-terminals equipped with
minimal CHORUS/Mix systems. These provide only the UNIX interface systems calls necessary to
an X-server and some local X-clients without requiring a full UNIX kernel.

Support for Server Development. Development and debugging of system servers should
be done at the user level, as in V, Amoeba, Mach or CHORUS. In mature designs, servers can
also dynamically be moved into system space for better performance of operational
configurations, as in CHORUS.

Support for Structured Integration of Hardware Specific Capabilities such as Device
Drivers. Mature micro-kernel designs define clean ways for device drivers or interrupt/trap
handlers to get easy access to hardware engines without being integrated into the micro-kernel
itself. As an example, CHORUS’ ‘‘privileged actors’’ and ‘‘supervisor threads’’ provide such
capabilities.

Enablers for Transparent Distribution of Operating System Services. Message passing
micro-kernels, such as the V, Amoeba, CHORUS and Mach micro-kernels, provide location
transparent interprocess communication facilities (and RPC services), logical addressing and
naming, that enable distribution transparency.

Enablers for Fault Tolerance, Reconfiguration and Duplication of System Resources.
Dynamic binding facilities, such as CHORUS ‘‘Port Groups’’, provide powerful tools for building
dynamically reconfigurable operating system services, by providing an extra level of indirection
for addressing a server. As a result, clients actually address a service rather than a particular
server. Such facilities also provide support for building redundancy and transparency in
distributing operating system services.

Enablers for Security Features. Security enforcement can take advantage of modularity
and encapsulation of resource management on specific servers. These servers can handle their
own required authentication procedures. Security may be costly in performance and therefore
should be provided at the appropriate levels according to each system’s requirements.
Examples of security enablers can be found in Amoeba’s and CHORUS’ object naming
capabilities.

Enablers for Performance Optimization. The operating system should let system builders
choose their own trade-offs to optimize system performance, particularly when this involves
juggling conflicting requirements. System builders should also be provided with the ability to
optimize system performance at configuration time rather than during programming where the
emphasis is on easing the debugging environment. This is of particular importance in real time
applications.

Binary Compatibility with Existing Standard Interfaces, such as UNIX. Mach and V-
system’s ‘‘transparent-shared libraries’’ as well as CHORUS’ ‘‘Process Managers’’ provide for
such emulations.

 Chorus systèmes, 1990 − 5 − 16 December 1990

Chorus systèmes Micro-kernel Architecture CS/TR-90-42.1

The combination of these features which can now be found in a mature micro-kernel based
operating system design, provides system and platform builders with the same type of
environment that application builders have enjoyed. They allow them to now build complex
systems faster by taking advantage of the availability of a portable, ‘‘standard’’, and qualified
base. Equally important, well engineered hooks and services enable system and platform
builders to easily add their own specific value and to configure members of a product family to
meet specific performance requirements.

M odern Operating Systems. Modern design, engineering, and manufacturing
techniques are speeding up the pace at which new hardware technologies and
machine architectures become available. Simultaneously, demand for enlarging the

scope of application of computing systems is steadily increasing. Thanks to the emergence of
open system standards and the availability of powerful application development environments,
application builders are increasingly able to create and deliver new products. System builders,
however, seem curiously left out of the picture, perhaps because until recently they have often
been buried inside hardware-oriented system manufacturers or application-oriented system
integrators.

Operating system development lags significantly behind hardware development and is often
the bottleneck in system/platform time-to-market. And the evolution of traditional operating
systems, built along a monolithic architecture, faces an increasingly evident complexity barrier.
Monolithic operating systems do not and cannot provide the tools system builders now need to
cope with the rate at which complexity is growing, new architectures are being developed, and
market conditions are changing.

M ature micro-kernel operating system architectures are now available that allow
modern operating systems to be built along a modular approach, consistent with the
way modern hardware and application environments are being constructed. Moreover,

microkernel architectures meet system builders greatest unmet needs: the "software engineering
need" for operating system architectures in which system components can be developed and
assembled in various ways; and the "distributed systems technology need", for a cooperative
framework between distributed system components closely interacting through high performance
communication media. By insuring complete compatibility with open system standard, micro-
kernel architectures need not affect the application environment and can therefore be gracefully
introduced into new system platforms.

Microkernel architectures indeed provide a sound foundation for meeting modern operating
systems needs, while maintaining the best of UNIX’s heritage in this new generation of
cooperative computing environments.

Author’s Biography

Michel Gien is co-founder, general manager and director of R&D at Chorus Systems. He joined the
Cyclades computer network team at INRIA in 1971 after graduating from Ecole Centrale des Arts et
Manufactures de Paris. He was responsible for Francés participation in the European Informatics Network
Projects, which was designed to link computer research centers in Europe and became a major contributor
in the early ISO/OSI standardization efforts. He then led a project that introduced UNIX in France and
helped to understand how it could be re-architectured along the Chorus distributed systems concepts.
Michel Gien is a leading figure within the European UNIX community. He was recently named chairman of
EurOpen, the European Forum for Open Systems (formerly EUUG) after serving as vice chairman since
1985.

 Chorus systèmes, 1990 − 6 − 16 December 1990

Chorus systèmes Micro-kernel Architecture CS/TR-90-42.1

References

[1] Sape J. Mullender Ed., The Amoeba Distributed Operating System : Selected Papers 1984
-1987, CWI Tract No. 41, Amsterdam, Netherlands, (1987), 309 p.

[2] Marc Rozier, Vadim Abrossimov, François Armand, Ivan Boule, Michel Gien, Marc Guillemont,
Frédéric Herrmann, Claude Kaiser, Sylvain Langlois, Pierre Léonard, and Will Neuhauser,
‘‘CHORUS Distributed Operating Systems,’’ Computing Systems Journal, vol. 1, no. 4, The
Usenix Association, (Dec. 1988), pp. 305-370.

[3] Amon Barak and Ami Litman, ‘‘MOS : A Multicomputer Distributed Operating System,’’
Software Practice & Experience, vol. 15, no. 8, (Aug. 1985), pp. 725-737.

[4] Paul R. McJones and Garret F. Swart, ‘‘Evolving the UNIX System Interface to Support
Multithreaded Programs,’’ Technical Report 21, DEC Systems Research Center, Palo Alto, CA,
(Sept. 1988), 100 p.

[5] David Cheriton, ‘‘The V Distributed System,’’ Communications of the ACM, vol. 31, no. 3, (Mar.
1988), pp. 314-333.

[6] Rick Rashid, ‘‘Threads of a New System,’’ Unix Review, (Aug. 1986).

HARDWARE

EVOLUTION

VALUE−ADDED OPEN SYSTEMS

COMPUTING

COOPERATIVE

Modern Operating Systems

Micro−Kernel based architecture

Enabling technologies for cooperative computing

Development environment for system builders

SOFTWARE

ENGINEERING

BARRIER

Monolithic Operating Systems

Figure 1. − The Software Engineering Argument for Micro-Kernel Based Operating Systems

�����������������������������������
CHORUS is a registered trademark of Chorus Systems
UNIX is a registered trademark of AT&T

 Chorus systèmes, 1990 − 7 − 16 December 1990

Chorus systèmes Micro-kernel Architecture CS/TR-90-42.1

Figure 2. − Key Attributes of a Modern Operating System

	 	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Key Attributes of mature micro-kernel based operating systems

� �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�� �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
Strong structuring concepts, allowing distribution of individual components

� �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
Transparent reusability of system components (client-server model)

Portability over full range of machine architectures, preserving real-time performance
(embedded systems, mono/multi processors, multicomputers, network architectures)

� �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
Support for scalability of system servers at system configuration time

� �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
Support for dynamic configuration of system servers into user or system space

� �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
Support for dynamic configuration of hardware dependent servers (device drivers)

� �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
Enablers for transparent distribution of operating system services

� �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
Enablers for fault tolerance and duplication of system servers and resources

� �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
Enablers for secure behavior

� �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
Enablers for performance optimization depending on configuration and application requirements

� �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
Binary compatibility with Open System standard interfaces

� �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

 Chorus systèmes, 1990 − 8 − 16 December 1990

Chorus systèmes Micro-kernel Architecture CS/TR-90-42.1

� �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���������

...............

...

..............

..............

..

................

................

� �����������������������������

��������

� �����������������������������
����������

����
� �����������������������

� ��� ����������� ���

� ������������������������������������� ��������� ���������������������������������������
��
��
��

� ��� �������������������������������� ���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�� ��� ����������� ���

� ��� ����� ���

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Applications, UtilitiesApplications, Utilities

CHORUS/MiXMonolithic UNIX Kernel

�� "!$#&%('&)(* %(+ ,.-/%(021&+ 3/-24&576.8 ,.9 :<;>=

(sh, cc, ed, ...) (sh, cc, ed, ...)

Micro-kernel Calls

CHORUS Nucleus

?
X

@
X

A
X

UNIX system Calls

Hardware

:"+�1&!$%(B$BC-24&576.8

D
E * %F-/4(5G6.8 : E H %I-24(5G6.8

J %7K E !$%I-24&576.8

:<+�1&!$%&B$B

-2%(0/1(+ 3L-/4(5G6.8

 "!$#&%('&)(* %(+
M * N
J %GK

;O#(P&+
J %7K

M)GQ

: E H %&B
D
E * %(B

R +�P H 9 476.%&+ Q.P(!$%

Hardware

UNIX system Calls

Figure 3. − Micro Kernel Architecture Applied to the UNIX Kernel

Micro-kernel operating systems provide a more structured architecture than conventional, monolithic UNIX

kernels. When the micro-kernel architecture is applied to UNIX, a small, generic micro-kernel, such as the
CHORUS/Nucleus provides support for basic operations such as processor real-time scheduling, (virtual)
memory management and localisation transparent IPC between servers that implement more complex
operating system-dependent functions. UNIX system calls are made to these servers through the Process
Manager which transforms them into (Remote) Procedure Calls.

 Chorus systèmes, 1990 − 9 − 16 December 1990

Chorus systèmes Micro-kernel Architecture CS/TR-90-42.1

...........

..............

.

..

..

..

..

..

..

..

.

.................................

....

..

..

.

S7S
S
S
S
S
S7S
S
S
S
S.

.......

Application

Application

Application

Application

Application

Application

Application

Application

UNIX System CallsUNIX System CallsUNIX System Calls

Network (or Back-plane Bus)

T�T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
TT�T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
TT�T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T

UU
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
UT�T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T UU

U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U

T�T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
UU
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
UT�T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T UU

U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U

T�T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
UU
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
UT�T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T UU

U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U

T�T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
TUU
U
U
U
U
U
U

UU
U
U
U
U
U
U

UU
U
U
U
U
U
U

UU
U
U
U
U
U
U

UU
U
U
U
U
U
U

UU
U
U
U
U
U
U

T�T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T T�T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T T�T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T

CHORUS NUCLEUS CHORUS NUCLEUS CHORUS NUCLEUS

Nucleus Calls Nucleus Calls Nucleus Calls

V V
V
V
V
V
V
V
V
WW
W
W
WV V
V
V
V
V
V
V
V WW

W
W
W

V V
V
V
V
V
V
V
V

DEVICES

PROCESS

X
X
X

X
X
X

FILESDEVICES

PROCESS

PROCESS

YZY
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y[Y Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y\Y.Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y\Y Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
YY]Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y

YGY
Y
Y
Y
Y
Y7Y
Y
Y
Y
Y

Y7Y
Y
Y
Y
Y
Y7Y
Y
Y
Y
Y

...........................

........................

^_^
^
^
^

................................

Figure 4. − Cooperative UNIX Operating System

There are four key points to an effective micro-kernel based operating system implementation:

[1] The definition of the services that need to appear at the micro-kernel interface is a real design issue.
It must represent a good balance between fully supporting those functions that are key to all
systems, and a well engineered set of enablers to facilitate customization of specific application
areas to take advantage of particular machine architectures.

[2] Efficient message passing is another key to the micro-kernel architecture’s ability to deliver high
performance as well as distribute functions over communications media from shared memory to a
wide area network.

[3] Correct structuring of higher level operating system services into system servers according to a
Client-Server based model. Special care is indeed necessary to split the various system data
structures on which they operate in order to optimize overall performance by minimizing
interactions.

[4] Providing binary compatibility with standard Open Systems interfaces is required to insure complete
portability of existing applications while providing a path to further system interface extensions.

 Chorus systèmes, 1990 − 10 − 16 December 1990

