[9]

[10]

[15]

[16]

[18]

A. Black, N. Hutchinson, E. Jul, and H. Levy.
Object structure in the Emerald system. In ACM
Conference on Object-Oriented Programming Sys-

tems, Languages and Applications, Portland, Ore-
gon, October 1986.

A. Black, N. Hutchinson, E. Jul, H. Levy, and
L. Carter. Distribution and abstract types in
Emerald. IEEFE Transactions on Software Engi-
neering, SE-13(1):65-77, January 1987.

A. P. Black. Supporting distributed applications:
Experience with Eden. In 10th ACM Symposium
on Operating System Principles, volume 19, pages

2-12, Orcas Island WA (USA), December 1985.

Andrew P. Black and Yeshayahu Artsy.
plementing location independent invocation. In
Proc. 9th Int. Conf. on Distributed Computing
Systems, pages b50-b59, Newport Beach, CA
USA, June 1989. IEEE.

Im-

Jeffrey S. Chase, Franz G. Amador, Edward D.
Lazowska, Henry M. Levy, and Richard J. Little-
field. The Amber system: Parallel programming
on a network of multiprocessors. In Proceedings
of the 12th ACM Symposium on Operating Sys-
tems Principles, pages 147-158, Litchfield Park,
Arizona USA, December 1989. ACM.

Partha Dasgupta, Richard J. Leblanc, Jr., and
William F. Appelbe. The Clouds distributed op-
erating systems: Functional description, imple-
mentation details and related work. In Proc.
8th Int. Conf. on Distributed Computing Systems,
pages 2-9, S. José CA (USA), June 1988. (IEEE).

J. Deshayes, V. Abrossimov, and R. Lea. The
CIDRE distributed object system based on Cho-
rus. In Proceedings of the TOOLS’89 conference,
1989.

Eric Jul, Henry Levy, Norman Hutchinson, and
Andrew Black. Fine-grained mobility in the
Emerald system. ACM Transactions on Com-

puter Systems, 6(1):109-133, February 1988.

S. Krakowiak, M. Meysembourg, H. Nguyen Van,
M. Riveill, and C. Roisin. Design and implemen-
tation of an object-oriented, strongly typed lan-
guage for distributed applications. To appear in
Journal of Object-Oriented Programming, 1990.

E. Lazowska, H. Levy, G. Almes, M. Fisher,
R. Fowler, and S. Vestal. The architecture of the
Eden system. In Proceedings of the 8th ACM Sym-
postum on Operating System Principles, pages

148-149, December 1981.

[19]

[20]

[21]

[23]

[24]

[26]

[27]

B. Liskov. Overview of the Argus language and
system. Technical report, MIT, February 1984.
Programming Methodology Group Memo 40.

Barbara Liskov, Dorothy Curtis, Paul Johnson,
and Robert Scheifler. Implementation of Ar-
gus. In Proceedings of the 11h ACM Symposium
on Operating Systems Principles, pages 111-122,
Austin TX (USA), November 1987. ACM.

Barbara Liskov and Robert Scheifler. Guardians
and actions: Linguistic support for robust, dis-
tributed programs. ACM Transactions on Pro-
gramming Languages and Systems, 5(3):381-404,
July 1988.

P. O’Brien, B. Bullis, and C Schaffert. Persis-
tent and shared objects in Trellis/Owl. In Inter-
national Workshop on Object-Oriented Database
Systems, 1986.

M. Rozier, V. Abrossimov, F. Armand, I. Boule,
M. Gien, M. Guillemont, F. Herrmann, Kaiser
C., S. Langlois, P. Léonard, and W. Neuhauser.
Chorus distributed operating systems. Computing
Systems, 1(4):305-367, 1988.

Marc Shapiro. Structure and encapsulation in dis-
tributed systems: the Proxy Principle. In Proc.
6th Intl. Conf. on Distributed Computing Sys-
tems, pages 198-204, Cambridge, Mass. (USA),
May 1986. IEEE.

Marc Shapiro. Prototyping a distributed object-
oriented OS on Unix. In Eugene Spafford, edi-
tor, Workshop on Ezperiences with Building Dis-
tributed and Multiprocessor Systems, Ft. Laud-
erdale FL (USA), October 1989. USENIX. Also
available as Rapport de Recherche INRIA no.
1082.

Marc Shapiro, Yvon Gourhant, Sabine Habert,
Michel Ruffin, and Céline
Valot. SOS: An object-oriented operating system
— assessment and perspectives. Computing Sys-

tems, 2(7), December 1989.

Laurence Mosseri,

Bjarne Stroustrup. The C++ Programming Lan-
guage. Number ISBN 0-201-12078-X. Addison
Wesley, 1985.

executing an object operation. We don’t provide it
in COOL. In Amber, thread mobility is made easier
by the implementation of a distributed global address
space. Although it would be nice to provide such a
feature in COOL, we don’t want to impose it because
it would not fit our requirement of generality. In Eme-
rald, thread mobility is made easier by the help of
the compiler which provides templates of object lay-
outs and of context dependencies such as registers.
This functionality is realized at a higher level than
the COOL manager. Our belief is that it is not safe to
deal with thread mobility at the kernel level, since the
COOL manager does not hold enough information to
move threads without leaving residual dependencies in
the source context.

8 Conclusion

We have designed and implemented COOL, a system
layer for distributed object management. A prototype
is currently available on a local network of Sun 3/60
workstations. It is used by SEPT to support a dis-
tributed document application. The goal of the COOL
project was to be able support a large spectrum of
object-oriented run-times. The COOL layer provides
address space management and basic functionality for
object management, such as creation, deletion, invo-
cation, migration and persistence. In a first approach,
we have chosen a segmented architecture as the basis of
the object representation. Relying on distributed vir-
tual memory management brings a lot of nice features.
One can associate different mapping policies with ob-
jects by choosing the segment mapper for their data
at creation time. Object migration simply consists of
changing the mapping of the object components and
is not restricted to fixed-sized objects. Noneless a seg-
mented approach does not scale very well with small
object management.

We investigate a redesign of COOL on the basis of
those preliminary observations. Language objects can
hardly be the unit of segment management. On the
other hand, the segmented model allows us to rely on
Chorus’ underlying mechanisms for basic storage ma-
nagement and sharing. Also, we are not convinced
that it is possible to efficiently manage fine-grained
entities at the kernel level. Our current idea is that
the regions which constitute an address space can be
viewed as container entities that host collections of
related objects. Containers are composed of one or
several segments, one or several ports. They may be
a unit of migration and persistence. Our investigation
focuses on the way to provide container assembly and
migration.

9 Acknowledgements

The SEPT team of the CIDRE project was involved in
the design of the C++ run-time environment. Rodger
Lea provided useful feedback as our first, patient and
exacting user. Marc Shapiro and Marc Guillemont
have given generously of their time and experience,
participating in early discussions of the COOL model.
We would also like to thank Hank Levy for his helpful
comments on numerous versions of this paper.

References

[1] V. Abrossimov, M. Rozier, and M. Shapiro.
Generic virtual memory management for operat-
ing system kernels. In Proceedings of the 12th
ACM Symposium on Operating Systems Princi-
ples, pages 123-136, Litchfield Park AZ (USA),
December 1989. ACM.

[2] O. Agesen, S. Frolund, and M. Hoffman Olsen.
Persistent and shared objects in Beta. Daimi ir -

77, University of Aarhus, April 1989.

[3] Guy Almes, Andrew Black, Edward Lazowska,
and Jerry Noe. The Eden system: a technical
review. IEEFE Transactions on Software Engineer-

ing, SE-11(1), January 1985.

[4] F. Armand, M. Gien, F. Hermann, and M. Rozier.
Revolution ’89 or distributing Unix brings it back
to its original virtue. In Proceedings of Dis-

tributed and Multiprocessor Systems, Ft Laud-
erdale (USA), 1989.

[6] M. Atkinson, J. Lucking, R. Morrison, and
G. Pratten. PISA club rules. Persistent pro-
gramming research report 47, Universisty of St.

Andrews, Scotland, August 1987.

[6] M. P. Atkinson, P. J. Bailey, K. J. Chisholm,
P. W. Cockshott, and R. Morrison. An approach
to persistent programming. The Computer Jour-

nal, 26(4), 1983.

[7] R. Balter, J. Bernadat, D. Decouchant,
S. Krakowiak, M. Riveill, and X. Rousset de Pina.
Modeéle d’exécution du systéeme Guide. Rapport
Guide R-3, Laboratoire de Génie Informatique,
Saint-Martin-d’Héres (France), December 1987.

[8] R. Balter, S. Krakowiak, M. Meysembourg,
C. Roisin, X. Rousset de Pina, R. Scioville,
and G. Vandome. Principes de conception du
systeme d’exploitation réparti GUIDE. Rapport
Guide R1, Laboratoire de Génie Informatique,
Saint-Martin-d’Héres (France), April 1987.

C++ feature that places the address of the invoked
object as the first argument of a method call. But this
feature is not safe, since a system call can be issued
by a C procedure, or in the CIDRE application, by a
Lisp function. Instead, an object stack i1s associated
with each thread, which contains the addresses of all
objects actually crossed by the thread.

The thread’s current object is pushed on the top of
the object stack before each call to a virtual object me-
thod. This is done by a logical intra-context trap, in
a transparent way. The trap occurs via an indirection
table, global to the context. Each table entry contains
the address of a procedure which implements:

1. a prologue (push of object’s address on the stack,
increment of the object’s activity count, monitor
management),

2. the call of the object’s method,

3. an epilogue (pop of object’s address, decrement of
the activity count, etc.).

All the information needed by the trap procedures
are members of the cool base class. The indirection
is realized at object creation time, the address of the
object’s real method table is saved in a field of the cool
class.

7 Evaluation

In the current state of the work, we can only give a
preliminary evaluation of our work with a C++ en-
vironment. For example, we have not yet done any
performance measurement; it would not be very sig-
nificant, because our run-time is implemented on top
of a simulator. Unfortunately, at the time the project
started, Chorus Unix was not yet available on Sun
workstations. As it was not convenient to develop on
the native Chorus system, a COOL prototype has been
implemented on top of a Chorus simulator. This pro-
totype is currently being ported to the native Chorus.

A positive observation is that the library was easy
to implement on top of the COOL manager. We were
able to provide high-level functionality without any
special language effort, for example:

e The member mechanism was implemented with
the group migration mechanism of the COOL ma-
nager.

e Variable-sized object mobility was provided,
based on the object’s “private data segment” fea-
ture coupled with a relocatable pointer mecha-
nism. It allows migration of a composed object,

such as a linked list, to a remote context or sto-
rage, without the cost of encoding its state in an
external representation.

Unfortunately, the segmented approach does not
map very well with the granularity of language ob-
jects, at least for the data part of the object. We
have tried to design the COOL/C++ object to fit the
segment granularity when possible, by inserting the
thread state in the data segment of active objects. In
general, this is not sufficient, however it is not a major
problem for the CIDRE application, which encapsu-
lates C++ and Lisp objects in COOL objects. CIDRE
deals with rather large objects, but it implies an un-
natural way of programming. Also, while an object is
composed of a code and a data part, the actual one-
to-one matching between regions and segments and
the choice of two regions per object is somewhat ar-
bitrary. For the code part, for example, it does not
match the sharing semantics of the class hierarchies of
object-oriented languages. We feel that further work
in that area is needed in order to make our model more
general.

Finally, we also feel the need for additional function-
ality such as object location. As objects are uniquely
identified and location transparency is provided by
ports, we didn’t feel the need, at the sub-system level,
to locate objects. Noneless, in order to exploit distri-
bution, some applications may need explicit knowledge
of object location. We must therefore provide some lo-
cation functionality and finding mechanisms.

In order to test the generality of our system, it would
be interesting to see how COOL abstractions map with
the object-oriented systems mentioned above in 1.1,
both in terms of granularity and functionality.

At a first glance, our model maps well with non-
uniform object-oriented systems such as Argus, Clouds
or Eden, which provide large-grained objects. Pro-
blems arise as the granularity becomes finer. While
COOL can be used for medium-grained object ma-
nagement as provided in SOS and Guide, it is clearly
inadequate for run-time environments such as Emerald
and Amber.

Our communication model, based on message pas-
sing semantics, is not general enough. It does not
match the local invocation model based on the pro-
cedure call semantics, because objects have to request
the receipt of messages. This feature can be easily
fixed. In order to allow remote procedure call seman-
tics, we have to couple ports with objects in a loose
way. We still have to assign a capability to each object
but, for example, we can associate the default port of
the object’s context (see figure 1) with that capability.

As they provide object mobility, systems like Am-
ber and Emerald also implement thread mobility while

Finally, the library manages the relationship be-
tween objects and threads, which is not taken into
account at the sub-system level.

6.1 The COOL/C++ object

A COOL object is a C++ object whose root base class
is the cool class. It can run its own thread if it defines
the main method, and it thus has the active attribute.

i, From the run-time point of view, the public me-
thods of an object are its virtual methods. This fea-
ture has been dictated by the thread management pol-
icy exposed in 6.3. We also wanted to avoid the cost of
dynamic linking of object methods, both at creation
time and at migration time. In order to do so, we com-
pile objects as executables, linked at fixed addresses.
The only unresolved references are the calls to other
COOL objects. As all those calls are indirected via
the C++ virtual mechanisms, they can be resolved at
execution time. The C++ class description contains
two additional fields to the fields mentioned above in
3.2, the addresses of the class constructor and of the
main method, and two attributes, active and monitor.
All the virtual methods of a monitor object will be
executed in critical sections (see 6.3).

As we wanted to avoid duplicating an object defini-
tion, depending on whether or not it had to be known
by the system, COOL objects are not automatically
known by the system”. In order to be known by the
system, an object has to be created using the COOL
primitive for object creation (see below). This primi-
tive allows selection of a segment mapper for the data
segment of the object. It is thus possible to asso-
ciate different mapping policies to objects. The COOL
manager creates the object segments before calling the
constructor, whose address is furnished by the class
description.

c_objCreate (classDesc, attribute, segmentMapper)
— object

6.2 The member mechanism

The member mechanism allows programmers to sim-
ply form composed objects for automatic grouped mi-
gration and deletion. As shown in table 1, to attach a
member to an object one has only to declare and as-
sign a member pointer. The member pointer can then
be used as a C pointer. Detachment occurs by reset
or reassignment of the pointer.

An object may only be the member of a single com-
posed object. On the other hand, one object can have
several members. It is thus possible to build member

"Nonetheless, it may be inadequate to create a simple C++
object of a class which owns the global or active attribute.

member (type) memberPointer;
type* objectPointer;
memberPointer = objectPointer;
memberPointer->method();

Table 1: Member pointers interface

trees. A member cannot be migrated independently of
its root object. But one can migrate copies of a mem-
ber either in a shallow way (only the member itself)
or in a deep way (with all its own members).

6.3 Thread management

In COOL/C++, the only way to create threads is to
create active objects®. The attachment of a thread to
an object occurs at object creation time. Once the
object regions have been created by the manager, the
constructor is called, then a new thread is started with
the object’s main entry point. The thread data is part
of the user data region.

Active objects are likely to be resident objects, as
it 1s difficult to provide thread mobility without effi-
cient language support [16]. They are used to start
a context and to provide pseudo-parallelism inside a
context. However, as objects are mobile, we wanted
to provide a restricted thread mobility. When an ob-
ject has to migrate, its thread (if any) is destroyed in
the source context, and restarted at the main entry
point in the target context. If other threads are cur-
rently executing an object’s method, the migration is
refused and an error code is returned.

object X
thread “user” data object stack/'Q
@ object "Tax] object Y
stac Qv |
stack top__p| @7 .\Ebﬁd Z

Figure 3: Relationship between threads and objects

The system object management primitives are not
methods of the COOL objects. Instead, for each
thread we maintain the notion of the current object,
to which system calls have to be applied. To retrieve
the address of the current object, we could rely on the

8There are no predefined thread objects, but one can simply
define “pure” thread objects.

Although coupled with remote invocation, object
migration is based on the mechanisms of the dis-
tributed virtual memory management. Object migra-
tion simply consists of unmapping the object’s seg-
ments from its source context, transmitting its des-
criptor, and then mapping its segments in the target
context. As COOL runs on a homogeneous network,
we don’t need to carry class information with an ob-
ject. Tts code segment is simply mapped (if not al-
ready present) in the destination context. However,
an object’s descriptor holds its class capability. This
capability can be used by run-times for type-checking
purpose. Also, it may be useful in the future, if we
decide to adapt COOL for an heterogeneous environ-
ment: the class manager could handle different code
segments for the different machine architectures of the
network.

The algorithm of migration with asynchronous com-
munication is the following:

1. At transmission time, for each object to be mi-
grated,

a) its segments are unmapped from its source
g
context,

(b) its descriptor is removed from the objects list
of the source context and concatenated at
the end of the user message.

2. The message is then sent.

3. At reception time, for each object identified by
the descriptor list of the message,

(a) Tts segments are mapped in the target con-
text.

(b) If the object is global, its port is migrated
from the source context.

(c) Tts descriptor is then inserted in the target
context list.

In case of synchronous message transmission, step
la occurs at the beginning of the receipt session, so
that in case of a transmission error, the object is still
mapped in the source context. In case of migration of
a copy, step la is skipped, and the object descriptor
is duplicated. Step 3a is also different; in this case,
a copy of the source is mapped in the target context,
and, if the object is global, a new capability/port pair
is allocated.

Inter-site port migration is more complicated than
the intra-site migration. Currently, Chorus does not
implement the remote migration of ports with queued
messages. We thus have to forward the messages
queued on the source site, without guaranteeing that

they will be received before messages sent more re-
cently on the remote site. This feature calls into ques-
tion our initial design of object implementation, since
associating a private port with each global object only
relieves us of the burden of forwarding pending mes-
sages for intra-site migrations.

5 Persistence

In COOL, object persistence is achieved by context
persistence. A context that contains one or more per-
sistent objects inherits the persistent attribute.

A persistent context cannot be destroyed until it
loses its persistent property, i.e., all its persistent ob-
Jjects are migrated or explicitly deleted. At shutdown
time, the state of persistent contexts is checkpointed
on storage. Objects and threads are saved, messages
are lost. Persistent contexts are then automatically
restarted at boot-time. The current state of work does
not address the problem of site or context crashes. Ad-
ditional functionality, such as explicit checkpointing, is
needed.

While COOL provides object persistence, it does
not solve all problems associated with long-term ob-
Ject storage. In particular, it does not handle conver-
sion of internal object pointers, since it is not possible
to achieve this without the assistance of a language
and/or a run-time system [2, 5, 6, 22], or without ex-
plicit programmer intervention.

6 The COOL/C++ library

The COOL/C++ library, used by the CIDRE dis-
tributed document application, is our first validation
of the COOL manager. We tried to bring additional
functionality to the COOL manager, while matching
closely the abstractions it provides without any special
language effort.

The library provides a member mechanism which
enables the application of operations such as migration
and deletion® to groups of related objects. This mecha-
nism, inspired by the Emerald “attach” mechanism,
exploits the grouped migration mechanism allowed by
the manager.

The library also provides relocatable typed pointers
for the internal data of an object. As all the data of
a given object, including dynamically allocated data,
are located in a single contiguous area of address space,
it is fairly easy to provide relocatable pointers. Their
data part contains the relative offset of the referenced
object. Dereferencing computes the absolute address
by a simple addition.

6 And also storage, in the future.

visible entity into a COOL object. A set of attributes,
associated with an object, determines whether it is
globally known and whether it is persistent. A global
object may request receipt of messages sent by remote
objects. A persistent object can only be explicitly de-
stroyed; it survives system shutdowns.

Figure 1 shows the different object components. A
system descriptor, located in the sub-system address
space, handles the user part of the object representa-
tion and the object attributes.

X’ data segment _code segment
address g

default port
port xxx

00

user context

X’s descrigftor
attributes
data segment
descriptor
code segment
descriptor
capabihity
port xxx
group [ist

Capability

sub-system context

Figure 1: Object Representation

The user part of the object consists of two segments,
each one mapped in an individual region of the con-
taining context:

e The code segment contains the code of the object
methods. This segment is shared by all the ins-
tances of the same class in the system.

e The data segment contains the object state. It
constitutes the private “heap” of the object, and
can grow or shrink following the object’s dynamic
(de)allocations. Its segment mapper can be se-
lected at object creation time.

3.2 The class object

The class of an object is itself an immutable object,
which carries the information needed by the COOL
manager for object creation. There is a unique instan-
ce for each class*, managed by the class server.

A class object publishes a functional interface which
provides a class description; this description can be
used for type-checking® by languages that require it.

4Tt can be replicated for availability.
5The manager doesn’t perform any type-checking itself.

A class description is a structure that contains at least
the following information:

e class attributes,

e initial data and code segment descriptors.

Object regions are created and initialized on the ba-
sis of the information furnished by their class descrip-
tion. The only class attribute significant for the COOL
manager is the global attribute: if present, a capability
and a port are created for each instance of the class.

4 Inter-object communication

4.1 Object invocation

Object interaction is mapped on the underlying Cho-
rus communication facilities. ;From the COOL mana-
ger point of view, the only way objects can commu-
nicate is message passing, either in a synchronous or
asynchronous way. An object created with the global
attribute is assigned a capability and a port tied to the
capability. A global object can thus be the target of
remote invocations. It must request message reception
explicitly. COOL also allows the construction of object
groups for asynchronous multicast communication.

4.2 Object migration

Object migration is piggy-backed on message trans-
mission. Several objects can migrate along with a
message, either on request or on reply message trans-
missions. One simply provides a list of objects to be
moved or copied in the target object context. Such an
interface does not enforce any migration policy. Run-
time systems can build upon it either explicit migra-
tion primitives, or argument passing with call-by-move
or call-by-visit semantics, as in Emerald [16]. Figure 2
illustrates synchronous remote object invocation with
migration.

m n 0 ml
e
1
m2 1]
Oobject E message

Figure 2: Synchronous inter-object communication,
with migration

received but not yet consumed by the threads. A port
can only be attached to a single actor at a time, but it
can be successively attached to different actors. One
can thus migrate the port from one actor to another,
along with the queued messages.

A group of ports connects them to a multicast facili-
ty: messages can be sent either from one thread to an
entire group of ports, or in “functional” mode; a port
is then selected from the group of (equivalent) ports,
therefore providing functional access to a service. A
group 1is built by dynamic insertion and removal of
ports. Ports and groups are globally designated with
location independent, Unique Identifiers (UT’s), whose
scope is a Chorus network.

The Nucleus memory management [1] provides se-
parate address spaces associated with actors. The
address space of an actor is constituted of a set of
non-overlapping regions, which form its valid portions.
These regions are mapped (generally) to secondary
storage objects, called segments.

A segment is implemented by an independent actor,
its mapper. Segments are designated by capabilities
containing the mapper’s port Ul and a key. The key
is opaque data of the mapper, allowing it to mana-
ge and protect segment access. A mapper exports a
standard read/write interface, invoked using the IPC
mechanisms. Some mappers are known to the Nucleus
as defaults; these export an additional interface for the
allocation of temporary segments.

When the Nucleus decides (e.g., on a page fault or
a segment operation) to make available a fragment of
a segment in the form of physical memory, it extracts
the segment mapper port name from the segment ca-
pability and sends a read request to the mapper. The
mapper responds with a message containing the data.

The Nucleus encapsulates the physical memory
holding portions of the segment data in a per segment
local cache object. A local cache object is designated
by its capability and its server is the Nucleus. Using
the local cache capability, a mapper is able to distin-
guish between the local caches, on different sites, of
the same segment, and to implement distributed con-
sistency maintenance protocols.

2.2 COOL overview

In COOL, the execution domain, or contezt, is an ad-
dress space local to a site. Several contexts can co-
exist on the same site. Each context is composed of
objects and threads. Objects and threads are seen as
orthogonal entities by the system, which associates no
relationship between them.

COOL does not add any functionality to the Cho-
rus thread model, which provides for thread creation,
scheduling, synchronization and deletion. Each object

consists of one code and one data segment mapped into
a particular context. While threads always remain lo-
cal to their creation context, objects are mobile and
can move between different contexts during their life-
time.

The notion of context maps that of the Nucleus ac-
tor: a COOL context is an actor, created with an ini-
tial, user-specified object.

COOL is organized as a number of servers. There
is one COOL manager per COOL site. The COOL
manager is implemented as a sub-system within the
Nucleus address space, and provides basic context and
object management on the site. It handles hardware
traps used by objects to access the COOL services, and
it uses Chorus IPC to communicate with other COOL
servers. All the low-level management is done at the
Nucleus level. We can implement group operations,
such as migration of several objects, more efficiently
in the Nucleus than in external servers. Context ma-
nagement involves creation, deletion, and persistence.
Object management consists mainly of creation, copy,
deletion, remote communication and migration.

The other servers currently available are a class
server (see subsection 3.2), a segment mapper, and a
name server. The segment mapper collaborates with
the class server in order to provide segments contai-
ning an object’s code and initial data state. The name
server assoclates a symbolic name with an object ca-
pability. The COOL names are integrated in the Unix
naming hierarchy, so that COOL objects can also be
accessed from the Unix environment. Inversely, Unix
files are also visible from the COOL environment, and
it is possible for COOL objects to use the Unix I/O
mechanisms. We thus spare the effort to implement
such functionality. A storage server is also planned for
the future. Although we can rely on the Unix file sys-
tem functionality, object storage requires higher level
mechanisms than the storage of uninterpreted byte
streams.

Although it is possible to use the raw COOL faci-
lities, it is not very convenient. The COOL mana-
ger is intended to support run-time systems. A C++
[27] run-time environment has been implemented as a
library linked with users applications.

3 The basic object model

3.1 Object representation

COOL objects are passive and medium-grained. By
this, we mean that a COOL object is much more
lightweight than a process or an address space (in fact
many COOL objects can coexist in any typical address
space), but still too heavyweight to make every user-

that requirement, it is necessary to define a generic
architecture that supports a large spectrum of existing
object-oriented models. Existing distributed object-
oriented systems can be roughly divided in two trends:

1. Systems that do not provide a uniform object
model, such as Argus [19, 20, 21], Clouds V2 [14],
Eden [3, 11, 18], Hermes [12] and SOS [24, 25, 26].

2. Systems that do provide a uniform object model,
such as Amber [13], Emerald [9, 10, 16] and Guide
[7, 8, 17].

Systems with a non-uniform object model are typi-
cally designed for specialized distributed applications
with, for example, strong requirements in terms of
data consistency (Argus, Clouds and Eden). They dis-
tinguish between language objects, which are small,
local and passive, and system objects, which are large,
global, and potentially active. The syntax of those
two categories is slightly different. Only the system
objects benefit from built-in reliability constructs and
their granularity is, most of the time, of the order of
the address space. Another reason to choose a non-
uniform object model is the desire to be language in-
dependent (SOS, Hermes). In SOS, as in Hermes, the
system objects are mobile and medium-grained. Ob-
ject invocation relies on a proxy mechanism.

Systems with uniform object-oriented models are
coupled with an object-oriented language. Such
systems generally provide fine-grained object mana-
gement along with thread and object mobility. While
the advantage of such an approach is obvious (unifor-
mity and fine-granularity at the programming level),
there are several drawbacks. As the language and the
system are strongly coupled, all the layers of object
management are typically redefined and implemented
for each programming language that you want install
on the underlying operating system. Also, in Emerald
and Amber, for efficiency, there is only one address
space per site. This approach is not suitable for a
large number of co-existing large applications.

In COOL, we have made the choice of a layered ar-
chitecture. A basic layer implements the generic ob-
ject management functionality. Higher layers will re-
fine the facilities it offers and implement the semantics
of their specific model. In order to do this, the basic
functionality must not enforce any policy for object
management. Also, the proposed mechanisms must
be general enough to fit a large spectrum of require-
ments. In a first approach, we allow the co-existence
of multiple address spaces within each site of the sys-
tem, with objects modeled as segments of those ad-
dress spaces (see section 2). We feel that this model is
general enough to fit with most of the object models
exposed above.

1.2 Outline of the document

The remainder of this paper describes the COOL ab-
stractions. The next section presents the Chorus Nu-
cleus abstractions and the architectural choices of the
COOL system. The basic object model is described
in section 3. Section 4 then presents the inter-object
communication mechanisms, i.e., invocation and mi-
gration. The following section discusses our approach
for object persistence. Section 6 presents an initial
run-time of our system, the COOL/C++ library. Sec-
tion 7 presents our first evaluation of the system on
the basis of that run-time environment. We finally
conclude in section 8.

2 The COOL architecture

COOL has been built as a member of the Chorus ope-
rating systems family. Each system in this family is
built as a set of independent system servers based on
a minimal real-time Nucleus, which provides the ba-
sic services such as activity scheduling, network trans-
parent IPC, memory management and real-time event
handling. Chorus also allows integration of various
sub-systems with its Nucleus. Such sub-systems can
be viewed as servers running in the Nucleus address
space and are accessible via systems calls.

2.1 Nucleus basic abstractions

The physical support for a system is composed of a set
of machines or sites, interconnected by a communica-
tion network. There is one Nucleus per site. The actor
is the unit of distribution of the system. It defines a
protected address space supporting the execution of
one or more flows of control, or threads, which are
scheduled by the Nucleus as independent entities. A
given site can support many simultaneous actors.

The thread is the unit of execution in the system
and is characterized by its context, corresponding to
the state of the processor (registers, program counter,
stack pointer, privilege level, etc.). A thread is always
tied to one and only one actor, which constitutes its
execution environment.

While the threads of an actor can communicate and
synchronize using the shared memory of their com-
mon address space, they can also communicate with
any other thread of any site via Inter-Process Com-
munication (IPC) facilities. The Chorus TPC allows
threads to exchange messages either asynchronously
or by demand/response, also called Remote Procedure
Call (RPC).

Messages are not addressed directly to a thread, but
to an intermediate port attached to the thread’s actor.
A queue, associated to the port, holds the messages

COOL: Kernel Support for Object-Oriented Environments

*

Sabine Habert! Laurence Mosseri
INRIA, BP 105, 78153 Rocquencourt Cedex, France

Vadim Abrossimov

Chorus-systemes, 6 rue Gustave Eiffel, 78181 St.-Quentin-en-Yvelines, France

Abstract

The Chorus Object-Oriented Layer (COOL) is an ex-
tension of the facilities provided by the Chorus dis-
tributed operating system with additional functiona-
lity for the support of object-oriented environments.
This functionality is realized by a layer built on top of
the Chorus V3 Nucleus, which extends the Chorus in-
terface with generic functions for object management:
creation, deletion, storage, remote invocation and mi-
gration. One major goal of this approach was to ex-
plore the feasibility of general object management at
the kernel level, with support of multiple object mo-
dels at a higher level. We present the implementation
of COOL and a first evaluation of this approach with
a C++ environment using the COOL mechanisms.

1 Introduction

COOL is a distributed object-oriented system, built
on top of the Chorus' V3 minimal kernel, or Nucleus

*Joint ECOOP/OOPSLA Conference, Ottawa (Canada),
October 1990

t Author’s current address: Department of Computer Science
and Engineering, FR-35, University of Washington, Seattle, WA
98195, USA.

1Chorus is a trademark of Chorus-systémes

[23], alongside Chorus Unix? [4].
network of Sun 3/60 workstations.

COOL is a joint project between Chorus systemes
and INRIA, with a partial support from SEPT3, a
french PTT’s research center.

It runs on a local

The first goal of this project was to provide
an object-oriented environment for the support of
the CIDRE distributed document application [15] of
SEPT.

Another major goal was to evaluate the feasibility of
basic object management at the kernel level, which is
able to support run-time systems with different object
models. Our assumption was that a large part of the
basic object management functionality can be shared
by various object models, while specific features can
be realized in a higher layer. Another assumption was
that to place that management at the system level can
improve the control on the system resources and the
overall efficiency. To do so, we intended to map the
abstractions offered by Chorus and to extend them in
a generic and minimal way, while keeping their open
features.

1.1 Related systems

As previously stated, in COOL, we intend to be able
to support various object models. In order to meet

2Unix is a trademark of AT&T Bell Laboratories
3SEPT is the french acronym for “Service d’Etudes Com-
munes des Postes et Télécommunications”

