CS/TR-91-103

COOL-2: an object oriented support platform built above the
CHORUS Micro-kernel

Rodger Lea, Paulo Amaral, Christian Jacquemot

approved by:
abstract: In: Proc. of 1991 IWOOOS, Palo Alto, CA, October 1991

(© Chorus systémes, 1991

© Chorus systémes, 1991 October 1991

Chorus systémes COOL-2 CS/TR-91-103

Contents
1 Introduction 1
2 History 1
3 COOL-2 2
4 The COOL architecture 2
4.1 COOL Dbase o i e e e 2
4.2 The COOL generic run-time 4
4.3 The language specific run-time oL oL L Lo 4
5 Main research areas 5
5.1 Distributed memory model 5
5.2 Single invocation model oL Lo 5
5.3 Clustering Policy 6
6 Conclusion and current status 6

© Chorus systémes, 1991 -i- October 1991

Chorus systémes COOL-2 CS/TR-91-103

Abstract

The CHORUS Object Oriented Layer (COOL) is a layer built above the CHORUS micro-kernel
designed to extend the micro-kernel abstractions with support for object oriented systems.
COOL-2, the second iteration of this layer provides generic support for clusters of objects,
in a distributed virtual memory model. We discuss experiences with COOL-1 that have led to
our current model and in particular, with our decision to build a two layer system where the
lowest layer supports only clusters and the upper layers supports objects. We describe a number
of problems that we are addressing with this new design and present the current status.

1 Introduction

COOL is an ongoing research project designed to explore the issues in building efficient object
support mechanisms for distributed systems.

Our main goals are to:

e Explore the use of the CHORUS distributed micro-kernel and in particular its virtual
memory model.

e Provide low level abstractions suitable for supporting distribution and persistence.

e Provide a common base onto which multiple object oriented models can be layered.

In this paper we discuss how the COOL system has been designed to exploit the unique
features of the CHORUS operating system model to provide an efficient set of abstractions that
are well suited to supporting the object oriented metaphor. A significant feature of the COOL
project is that we have been able to exploit the design methodology of CHORUS to allow us to
co-exist with the CHORUS Unix implementation (CHORUS/MiX) yet still build our abstractions
along side Unix and thus exploit the CHORUS Nucleus functionality directly. This provides
a very fast bootstrap environment (we can use the Unix file store and compilation chain) but
because it is layered directly onto the CHORUS micro-kernel, is efficient.

2 History

The COOL project is now in its second iteration, our first platform, COOL-1, was designed as
a testbed for initial ideas and implemented in late ’88 [1].

In particular, COOL-1 supported a simple object model, an encapsulation of code and data
as the base entity in the system. The COOL kernel provided mechanisms to create, name,
invoke and migrate these entities within a locally area distributed system. To test out this base
set of mechanisms, we built a minimal C++ support layer that mapped C++ objects onto our
underlying COOL kernel objects.

1COOL-1 was built as a joint project between Chorus Systémes, SEPT and INRIA

© Chorus systémes, 1991 -1- October 1991

Chorus systémes COOL-2 CS/TR-91-103

This provided the C++ programmer with the means to create globally known objects, dy-
namically link these into existing applications, invoke such objects across a network, attach
activity to these objects, migrate objects between address spaces and machines and store these
objects in a persistent store.

COOL-1 was used as a basis for a number of projects, in particular, the CIDRE project that
has built a large distributed office document application running above the COOL-1 platform

[2].

However, our initial implementation suffered from a number of drawbacks, in particular,

e The programmer was forced to explicitly deal with COOL-1 mechanisms for storage, dis-
tributed invocation and migration, ie we lacked transparency.

e COOL was designed to support multiple object models, however, experience with the fine
grained model of C++ showed that in fact COOL really only supported a medium grained
object model and that the cost to the kernel, even at such a granularity, were too great.

¢ Supporting (multiple) sophisticated object models with a generic set of mechanisms leads
to a large semantic gap and hence inefficiency.

These problems and some interim experimentation with COOL-1 are reported in [5] [6].

3 COOL-2

In an attempt to address these problems and move the COOL platform from a toy towards a
full object oriented operating system we began a redesign of the COOL abstractions in 1990.
This work was carried out in conjunction with two European research projects, both building
distributed object based systems, the Esprit ISA project and the Esprit Comandos project [3]
[4] and with ongoing work at INRIA [7].

The result of this work has been the specification of the COOL-2 system and its initial
implementation in the summer of ’91.

4 The COOL architecture

COOL-2 is composed of three functionally separate layers, the COOL-base layer, the COOL
generic run-time and the COOL language specific run-time layer.

4.1 COOL base

The COOL-base is the system level layer. It has the interface of a set of system calls and encap-
sulates the CHORUS micro-kernel. It acts itself as a micro-kernel for object-oriented systems,
on the top of which the generic run-time layer can be built. The abstractions implemented in

© Chorus systémes, 1991 -2- October 1991

Chorus systémes COOL-2 CS/TR-91-103

this layer have a close relationship with CHORUS itself and they are intended to benefit from
the performance of a highly mature micro-kernel.

The COOL-base provides address spaces were objects can exist, a way to share these objects
in a distributed manner, a way to communicate between them, an execution model and a single
level persistent store.

Using our previous experience with COOL-1 we have moved the notion of object out of our
base layer and replaced it with two more generic abstractions, clusters and cluster spaces.

A cluster is viewed from higher levels as a place where related objects exist. When mapped
into an address space, it is simply a collection of virtual memory regions. The mapping can be
done on an arbitrary address. The collection of regions that belong to a mapped cluster is a set
of CHORUS regions backed by segments, and forms a semantic unit managed by the base layer.
By using a distributed virtual memory mapper, regions and hence clusters, can be mapped into
multiple address spaces, which leads us to the notion of cluster space.

AS1 AS 2 AS3

AS - Address Space

Cs1

CS - Cluster Space

C - Cluster

cs2 |]

c

A cluster space is a collection of distinct address spaces on a non-empty set of nodes. The
relationship between clusters spaces and address spaces is orthogonal, i.e., a cluster space can
have arbitrary numbers of address spaces as well as clusters. Any cluster belonging to a cluster
space is mapped into all address spaces of that cluster space. In this case, we must enforce
that the cluster is mapped always at the same address. Therefore, a cluster space represents
a distributed virtual address space, and this is a means to share clusters among threads of
execution of a particular cluster space.

Each cluster is uniquely identified in the system as the unit of persistence. Clusters can have
references to other clusters and they are subject of garbage collection.

The COOL-base also provides a low level mechanism for communication between clusters.
This can be used to implement invocation of objects that exist inside the cluster. Transparent
remote invocation is achieved with a simple communication model which uses the CHORUS
communication primitives and protocols.

© Chorus systémes, 1991 -3- October 1991

Chorus systémes COOL-2 CS/TR-91-103

The COOL-base maps in clusters on behalf of the upper layers. It can be used to enforce an
invoking thread to carry on execution in a remote address space. In addition, because clusters
are persistent, the COOL-base provides a mechanism to locate non-active clusters, i.e., clusters
currently swapped-out on secondary storage and load them transparently into a cluster spaces.
A mapper is used to store and retrieve passivated clusters to and from secondary storage.

Therefore, the COOL-base level supports a single-level, persistent cluster store with syn-
chronous and asynchronous invocation between clusters, and distributed cluster sharing.

4.2 The COOL generic run-time
Above the COOL-base level we provide a generic run-time level. The majority of the generic
run-time code executes in users space.

The generic run-time implements a generic object oriented computational model, and has
the following basic components.

¢ the Execution Subsystem (ES) provides support for object execution, including activi-
ties (lightweight threads) and jobs (distributed execution of activities);

e the Virtual Object Memory (VOM) handling all operations related with the manipu-
lation of objects within clusters;

o the Storage Subsystem (SS) provides support for persistent objects;

¢ the Communication Subsystem (CS) is responsible for providing a generic RPC inter-
face which is mapped onto the COOL-base invocation primitives;

e the Protection Subsystem (PS) ensures the specified level of protection during appli-
cation execution.

A significant aspect of the GRT, and one that allows us to reduce the semantic gap between
a generic object model and language specific ones, is the use of an upcall table associated with
each object which is called by the GRT when it needs to access language specific information.

Since we wish to concentrate in this paper on the base level mechanisms, the reader is referred
to [4] for a better description of the generic run-time layer.

4.3 The language specific run-time

The language specific run-time maps a particular language object model to the generic run-time
model. This may be achieved through the use of pre-processors to generate the correct stub
code and the use of the upcall table.

As discussed above, the GRT will, in the process of operations such as map/unmap, invoke
each call into the language specific run time responsible for that object by using the upcall table
associated with the object and generated by the language specific run-time.

(© Chorus systémes, 1991 -4- October 1991

Chorus systémes COOL-2 CS/TR-91-103

In particular, dealing with the conversion of in memory pointers to persistent pointers, when
bringing objects to and from persistent store, and managing the dispatch model of a particular
language, all use the upcall table to allow the GRT to ask the language specific run-time with
help for semantic operations.

Again the reader is referred to [4] for a better description of these mechanisms.

5 Main research areas

While the project covers a number of areas of interest in distributed, persistent systems, the
architecture poses a number of problems at the lowest level.

5.1 Distributed memory model

Each cluster space represents a logical distributed address space, with each cluster mapped into
a number of physical address spaces. The model makes a coupling between virtual memory
addresses and object addresses only during the time that clusters are mapped. It makes no
statement about the coupling between these addresses when a cluster is moved to persistent
store. Thus we can support a model where a cluster always occupies a set of addresses and
that range does not change when it moves between persistent store, or we may adopt a model
whereby, the binding is only maintained whilst a cluster is mapped into a cluster space. Of
course wh need higher level (GRT) support for relocation of objects within clusters if we adopt
this approach.

Both of these models impose a criteria for distributed memory allocation, since allocating a
new cluster requires that all machines in the cluster space allocate the same space. Currently
we adopt a simple model where portions of an address space are initially allocated to different
machines. Creation of clusters initially uses this space and uses a standard distributed virtual
memory to ensure that the allocation is propagated to all machines represented in the cluster
space. When a machine exhausts this initial space, it must arbitrate with others to allocate
space from a common pool.

5.2 Single invocation model

The base level abstractions include a invocation mechanism that works between clusters. Invoca-
tion falls into one of three cases. Local invocation, ie that which stays within an address space.
Invocation local to a machine but between address spaces, and standard remote invocations
(RPC). In a persistent, distributed system, there are a number of possibilities when invocation
takes place concerning the location of the object.

In particular, the interaction between the invocation model and the cluster model provides
us with the ability to optimise invocation:

e For a cluster that is held in persistent store, the cluster is mapped into the calling cluster
space.

(© Chorus systémes, 1991 -5- October 1991

Chorus systémes COOL-2 CS/TR-91-103

e For clusters mapped into an existing cluster space, instead of using an RPC call, we are
able to de-map the cluster and re-map into the calling cluster space, or into a cluster space
on the same machine allowing us to use the light weight form of the standard RPC call.

COOL-base is capable of using this range of mechanism to carry out the invocation. The
choice of mechanism will be dependent on higher level policy, but a simple approximation, using
invocation efficiency as a criteria allows us to build a lightweight, default policy into the base
level.

5.3 Clustering Policy

Based on our experience in COOL-1 we have moved the notion of objects out of the base level,
replacing them with a larger grained entity. (Which could be viewed as a system level object).
These larger grained entities represent clusters of application level objects. The policy choosen
to cluster such objects is of paramount importance for efficiency, but is also extremely delicate.

For efficiency reasons, all objects that invoke each other should be clustered together, how-
ever, this causes problems in a distributed persistent model because the groupins we create at
any particular time may not remain valid during longer periods of execution.

Our current approach is to adopt a simplified approach whereby we scan source code noting
object interaction and cluster objects which have multiple inter-references. This is augmented
by a user interface that allows explicit creation of new clusters and creation of objects in named
clusters.

We hope in the future to explore the problems of dynamic clustering based on the execution
pattern of objects.

6 Conclusion and current status

The COOL project is building an object oriented kernel above the CHORUS micro-kernel. Its
aims are to provide a generic set of abstractions that will better support the current and future
object oriented languages and applications.

While COOL defines an entire object oriented architecture which is common to work in
Comandos and SOUL, COOL differs in its advanced use of the CHORUS micro-kernel and with
its exploitation of the CHORUS virtual memory model.

Our premise is that the abstractions we provide at the lowest level will support both the
model of construction for operating systems, and that of application level via the intermediery
run-time levels.

We currently have a limited COOL platform running above the CHORUS micro-kernel, run-
ning native on 386 based machine. This platform implements the basic cluster level, but lacks
light weight RPC and a sophisticated distributed virtual memory mapper. The COOL GRT has
minimal functionality, lacking the protection system, and full support for persistence. We are
currently testing this implementation and have just begun work on a simple language specific
run-time for C++.

(© Chorus systémes, 1991 -6- October 1991

Chorus systémes COOL-2 CS/TR-91-103

References

[1] Sabine Habert, Laurence Mosseri, and Vadim Abrossimov. COOL: Kernel support for object-
oriented environments. In ECOOP/ OOPSLA’90 Conference, volume 25 of SIGPLAN No-
tices, pages 269-277, Ottawa (Canada), October 1990. ACM.

[2] Deshayes, J.M., Abrossimov, V. and Lea, R. The CIDRE distributed object system based
on Chorus. Proceedings of the TOOLS’89 Conference, Paris, France. July 1989.

[3] The Integrated Systems Architecture project. ISA - Esprit project 2267. The ISA consortium,
APM ltd, Castle Park, Cambridge, UK.

[4] Vinny Cahill, Rodger Lea and Pedro Sousa. Comandos: generic support for persistent
object oriented languages. To appear, Proceedings of the Esprit Conference 1991. Brussels,
November 1991. also Chorus systémes technical report CS-TR-91-56.

[6] Lea, R. and Weightman, J., COOL: An object support environment co-existing with Unix.
Proceedings of Convention Unix '91, AFUU, Paris France. March 1991.

[6] Lea, R. and Weightman, J. Supporting Object Oriented Languages in a Distributed Envi-
ronment: The COOL approach. Proceedings of TOOLS USA’91, July 29-August 1, 1991.
Santa Barbara, CA. USA.

[7] Shapiro, M., Collet., P., Lea, R., Amaral, P. and Jacquemot C. Soul: an object-oriented OS
framework for persistent object support Submitted to 1991 conference on system sciences,
Hawaii, 1991, also available as CS-TR-91

[8] Campbell, R. H. and Madany, P. W. Considerations of Persistence and Security in Choices,
an Object-Oriented Operating System. Procs. of International Workshop on Computer Archi-
tectures to Support Security and Persistence of Information. May 1990, Bremen (Germany).

(© Chorus systémes, 1991 -7- October 1991

