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Abstract

In the CHORUS/MiX® distributed operating system architecture the microkernel pro-
vides system servers with generic services which are independent of a particular operating
system; these services include processor scheduling, memory management and inter-process
communications. In turn, co-operating system servers provide at the application program-
mer’s interface a particular operating system personality. The CHORUS/MiX implementation
of UNIX® is based on AT&T source code, but is significantly re-structured into a set of sys-
tem servers. This re-structuring has resulted in a modular and adaptable system which is
well suited to distribution across a loosely coupled parallel architecture.

The CHORUS/MiX system is further being developed to provide what has been termed
single site semantics (SSS). This will make it possible to create the illusion of UNIX running
on a single processor whilst taking advantage of the availability of a number of loosely
coupled processors. The IMS T9000~ Transputer will be one of the first processors on
which CHORUS/MiX SSS will be implemented.

1 Introduction

During the late 80’s it became possible to build parallel machines which used shared memory.
The rationale for this approach was that individual processors, particularly those with caches, did
not fully utilise available memory bandwidth, and fast arbitration could be implemented which
would permit several processors connected to the same bus to use the available bandwidth.
Various versions of UNIX were developed which exploited, with some success, these kinds of
architectures. The parallelism which this provided was mainly exploited by pipe connected
processes, background activities such as networking demons, the presence of multiple users,
and multiple login sessions through the use of window systems. Although several processors
could usually be launched in a single address space, so called multi-threading, few applications
were written to exploit this facility. The technical challenge in the software was to devise a
reasonably systematic means of interlocking the single processor UNIX kernel code. Of course,
deadlock avoidance was an issue, as was identifying and hopefully eliminating locking hot spots.
However, the fundamental bottleneck was always going to be the physical sharing of a memory
bus. Experience showed that performance usually worsened beyond around twenty processors.

During the same period there were significant advances in building machines of many hun-
dreds of processors which interworked not by memory sharing but by high performance com-
munications, and in devising parallel algorithms which were a good match for the concurrency
“granularity” which these machines provided. Individual processors lacked any memory protec-
tion, machines were typically dedicated to specific applications, and the software environments
were usually rather weak and hosted on a more conventional machine such as a workstation.

Recently the trend has been towards highly parallel machines which interwork using commu-
nications but which also have memory protection in each processor. This has brought together
the UNIX world and the world of dedicated parallel applications. No longer will it be necessary
to “host” these highly parallel machines; no longer will it be necessary to have incompatible

®CHORUS and CHORUS /MiX are registered trademarks of Chorus systémes.
UNIX is a registered trademark of UNIX System Laboratories, Inc. in the U.S.A. and other countries.
®IMS T400, IMS T800 and IMS T9000 are registered trademarks of INMOS Limited.
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processors in the mainframe and in the workstation. Of course, this uniformity across the per-
formance spectrum comes at a price. The most important questions which must be answered
are: How do we make a communications type parallel machine look like a single UNIX machine?
How do we permit parallel applications to run on a parallel machine in a way which does not
disturb either UNIX or other parallel applications running on a different group of processors in
the same machine? Can we dynamically expand and contract the part of a parallel machine
which is given over to providing UNIX. These questions are briefly addressed in section 2.

Operating system architecture would ideally be driven by the needs of applications. How-
ever, as new machine architectures have emerged, the architecture of operating systems has had
to evolve to fit them. At the same time OS architecture has had to change to cope with ever
greater complexity. The newest OS’s attempt to be as general as possible by assuming the ma-
chine model to be a possibly large collection of loosely coupled nodes, where each node is either
a mono-processor or a shared memory multi-processor. CHORUS / MiX is one such operating
system. In the CHORUS/MiX distributed operating system architecture each node of a commu-
nications machine, be it a mono-processor or a multi-processor, runs a small micro-kernel. The
services provided by this micro-kernel are designed to be independent of any particular operating
system; these services include scheduling, memory management, inter-process communications
and inter-node communications. In turn, co-operating system servers provide at the application
programmer’s interface a particular operating system personality. The CHORUS/MiX implemen-
tation is based on AT&T source code, but is significantly re-structured into a set of system
servers. This re-structuring has resulted in a modular and adaptable system which is well suited
to distribution across a loosely coupled parallel architecture. Increased modularity has also
helped to mitigate the effects of significantly increased complexity. In section 3 we give a more
in-depth description of the CHORUS/MiX architecture.

A good example of a highly parallel communications machine is the Inmos transputer. The
key features of the T400 and T800 families of transputer were fine grain parallelism through
lightweight process state and hardware scheduling, and high bandwidth communications through
specially designed inter-processor links. The T9000 family of transputer extends these features
with the introduction of virtual channels, memory protection and richer trap, exception and
interrupt support. The T9000 will be one of the first implementations of a highly parallel
CHORUS/MiX. In section 4 we give a brief description of the T9000. We end the paper with a
description of some of the issues involved in porting CHORUS/MiX to the T9000.

2 UNIX on a Communication Machine

2.1 The Rationale For Single Site Semantics

Imagine a parallel machine in which each processor runs its own UNIX kernel. You might think
of most processors as being diskless workstations with a few, the ones with devices connected,
being the input/output sub-system. Instead of the processors communicating using a LAN such
as Ethernet, they do so using some special facility, for example the transputer link. What you
have is a network which suffers from all the problems you hear about from users of workstations
and server configurations. For example, if you want to use several processors you have to log into
each of them separately, and you have to know their names; you have access to several machines
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through different windows but the file system name space is different on each of them; you can’t
launch a parallel application onto several processors except by making use of sockets which you
find too heavyweight; you can’t even arrange for a shell pipeline to execute on several processors
except by use of special shells which are not widely available. The answer to these problems
is to provide the illusion of a single UNIX machine even though that machine is built from a
possibly quite large group of processors. This is known in the jargon as single system tmage or
single site semantics. It has the virtue of hiding in the kernel all the issues of distribution which
include load balancing, maintaining a single process identification space and file name space,
device naming, time management, resource accounting, and swap space management.

2.2 Parallel Domains On Parallel Machines

Machines of several hundred processors may provide a balanced configuration for specialised
parallel applications. However, it is unlikely that they would be balanced for typical use as a
UNIX machine as they would almost certainly lack sufficient input/output capacity. For this
reason a single system image UNIX is unlikely to scale much beyond several tens of processors.
Indeed there are aspects of UNIX semantics which make further scalability difficult to achieve
without a major reconstruction of all the existing kernel code. What is required is to provide
UNIX on a small part of a parallel machine together with a method of setting up parallel appli-
cation domains. Extensions to UNIX will manage the launch, communications and termination
of parallel applications. Within a domain a parallel application has available to it the raw per-
formance of its group of processors, unimpeded by the need to maintain UNIX semantics; at the
same time it is provided with a means to communicate with the UNIX domain for services such
as input/output.

2.3 The Boundary Of A Single System Image

It would be undesirable to fix at bootstrap time the number of processors in a machine given over
to running UNIX. This is because the optimum balance of processors to input/output capacity
will vary from site to site. Equally, it would be unacceptable to statically fix the number and
size of the protection domains. To do so would imply a prior knowledge of the type of parallel
applications which will be encountered. This suggests that a single system image UNIX should
also offer dynamic reconfiguration. In other words, individual processors can be caused to join or
leave the UNIX domain in an orderly way. But if this is possible then why should the boundary
of a single system image be a machine? The possibility is there to include each workstation,
file server, compute server or supercomputer in the system. The challenge here is to provide a
stable view of things when individual machines fail.

3 CHORUS

The CHORUS family of operating systems is centered around the small real-time distributed
CHORUS Nucleus which provides a set of generic services. The other members of the family are
built on top of the Nucleus and inherit its real-time distributed computing capabilities. The
CHORUS/MiX operating system incorporates the CHORUS Nucleus as a base on which it builds
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a UNIX interface that is transparently extended to distributed processing and to use in real-time
environments.

The key characteristics of the CHORUS family of operating systems are:

- Real-time: CHORUS systems are built on the real-time CHORUS Nucleus and have all the
functional characteristics and performance of classic real-time executives.

- Controlled transparent distribution of processing and of data: the management of dis-
tribution can be entirely taken care of by CHORUS systems, yet controlled by network
administrators. In particular, CHORUS permits dynamically reconfiguring the system and
applications.

- Modularity: CHORUS systems are composed of a set of communicating modules that can
be assembled and reconfigured dynamically depending on the hardware capability and
application needs.

- Openness: CHORUS/MiX provides all the functionalities of a standard UNIX system (UNIX
SVR3.2 today, SVR4.0 in the future).

- Compatibility with UNIX is provided by CHORUS/MiX: application programs, utilities,
and files used under UNIX are supported without modification (binary compatibility) by
CHORUS/MiX.

The immediate domains of application for CHORUS products are those for which the limits
of traditional operating systems are preventing the development of fully satisfactory solutions.
This includes, for instance, the development of standard operating system on advanced hardware
architectures, in particular parallel machines like Networks of Transputers.

3.1 Basic Structure - Nucleus and Subsystems

The CHORUS architecture is based on a small real-time distributed Nucleus that integrates
distributed processing and communication at the lowest level. The Nucleus provides generic tools
- thread scheduling, real-time event handling, network-transparent inter-process communications
(IPC) and memory management - for independent servers called subsystems, which coexist on
top of the Nucleus.

Subsystems separate the functions of the operating system into sets of services provided by
autonomous servers, and provide operating system interfaces to application programs.

The CHORUS organisation of Nucleus and subsystems represents the most logical view of an
open operating system for cooperative computing environments. Separating functions increases
the modularity, portability, scalability and “distributability” of the overall system, which has a
small, trustworthy micro-kernel as its foundation.

3.2 The Nucleus

The CHORUS Nucleus (see Figure 1) provides both local and global management of services.
At the lowest level, it manages the physical resources at each “node” with four clearly defined
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components:

a classical real-ttme multi-tasking executive which controls allocation of local processors,
manages priority-based preemptive scheduling of CHORUS threads, and provides primitives
for fine grain synchronisation of, and low-level communication between, threads;

- a distributed memory manager which can support the full range of memory architectures
- linear, segmented or virtual;

- a low level hardware supervisor which dynamically dispatches external events such as
interrupts, traps and exceptions to dynamically defined routines or ports;

- an Inter Process Commaunication (IPC) manager provides the high-performance global
communication services (exchange of messages through ports) which are the key to CHORUS
architecture’s distributed capabilities.

Communications
(portable)

Real-time Executive Memory management
(portable) (portable)

Super visor

(machine dependent) (machine dependent)

Figure 1: The CHORUS Nucleus

3.3 The CHORUS Subsystem Concept

Subsystems in CHORUS architecture are sets of system servers that use the generic services of
the Nucleus to provide higher-level services. More simply, a subsystem is an operating system
built on top of the CHORUS Nucleus.

Subsystems manage physical and logical resources such as files, devices and high-level com-
munication services and they communicate via the IPC facility provided by the Nucleus. Their
position “on top” of the Nucleus provides a structured, well-defined way for system builders to
cope with complexities of operating system development.

In the operating system context, a subsystem offers the means by which to supply a complete
standard operating system interface to standard application programs. New servers can then be
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added to the set of servers delivering this interface as a means of gracefully extending system and
operating system capability. Servers are the building blocks, the toolset, that system builders
use to incorporate new distributed functions.

3.4 The CHORUS/MiX Subsystem

CHORUS/MiX (see Figure 2) integrates a UNIX System V subsystem with the CHORUS Nucleus
to provide a standard-based, real-time, transparently distributed UNIX environment.

CHORUS/MiX servers run on top of the CHORUS Nucleus. Several types of servers may be
distinguished within a typical UNIX subsystem: Process Manager (PM), Object Manager (OM),
Device Manager (DM) and Socket Manager (SM). The PM maps UNIX processes onto CHORUS
abstractions (actor, thread and regions). There is an OM on each site supporting a disk. An OM
provides UNIX File System management and acts as a mapper, acting as a segment server to the
memory management module. A DM is used on a site whenever tty’s, pseudo-tty’s or bitmaps

are connected to that site. The SM is the server which manages internet network protocols such
as TCP, UDP and IP accessed through the BSD socket interface.

CHORUS/MiX UNIX services conform to X/Open specifications and have been extended to
real-time and to the distributed environment (distribution of programs as well as files), all
in a way that is completely transparent to UNIX application programs. A CHORUS/MiX that
conforms UNIX System SVR4.0, with real-time and distributed features, is under development.

CHORUS/MiX offers the traditional set of UNIX functions for creating, destroying processes
and managing signals, but extends them to manage real-time, multi-threaded and distributed
processes. This last extension permits the creation - and manipulation from a distance - of
processes on any machine, while respecting rules of UNIX regarding environments, open files and
O on.

3.5 Distribution of CHORUS/MiX Servers
3.5.1 Modular Architecture

The subdivision of the CHORUS/MiX operating system into a set of cooperating servers not only
provides functional modularity (each server implements a particular set of services), but also
distribution modularity [Armand et al. 89].

Distribution modularity refers to the possibility of distributing CHORUS/MiX servers across
the sites of the network. As CHORUS/MiX servers use the CHORUS Nucleus IPC mechanisms
for communicating with each other, they implicitly benefit from all the advantages allowed by
the flexibility and transparency of these mechanisms.

The different addressing semantics (functional, broadcast, associative) combined with port
grouping and port migration, offer the basic tools for transparently managing the distribution of
the CHORUS/MiX servers. Server distribution among the sites of the network may dynamically
be modified to adapt to the possibly changing network topology, transient traffic or system load
variations.
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CHORUS Nucleus
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Figure 2: The CHORUS/MiX subsystem

3.5.2 Remote Accesses

As mentioned before, there is an OM on each site supporting a disk. UNIX processes running on
diskless site have access to disk abstractions (file systems, home directory, etc) by transparently
communicating with a distant OM. Note that the PM managing the process does not need to
know the actual location of the OM on the network, since it relies on the services of the Nucleus
transparent IPC mechanism.

Other servers, like the Socket Manager (SM), do not need to be duplicated on all sites. A
SM is typically installed at the site responsible for handling the ETHERNET connection. UNIX
process socket communications are serviced locally if the process site has a SM, or by a remote
SM accessed transparently by the IPC mechanism.

PMs, which must be present on all “UNIX sites”, also provide support for remote operations.
A UNIX process may request for the execution of a child process on a remote site (this is known
has the remote fork mechanism). It can also migrate from one site to another. In both cases,
the Nucleus IPC mechanisms and the global naming paradigm are used by the PMs to manage
the distribution (handling of signals, file contexts, etc).

3.5.3 Server Consistency

Duplication and distribution of system servers raise the issue of server consistency.

First, since objects managed by dedicated servers may be accessed concurrently by remote
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entities (such an object may typically be a UNIX file or device), it is the responsibility of the
server managing the object to guarantee that its consistency is maintained. Multi-threaded
servers use locking mechanisms and semaphore operations to synchronise the accesses to the
underlying objects.

Second, since servers may be duplicated in order to maintain a high degree of availability and
to provide support for fault-tolerance, care must be taken to ensure that services are executed
with the required semantics (at-most-once, exactly-once, etc). The servers themselves do rely
on the underlying IPC addressing semantics to implement these higher level requirements.

3.6 User Defined Servers

The CHORUS architecture provides a convenient platform for operating system development.
The homogeneity of server interfaces provided by the CHORUS IPC allows system builders to
develop new servers and integrate them at will into a system, either as user or as system servers.
For example, new file management strategies such as real-time file systems, or fault-tolerant
servers can be developed and tested as a user level utility without disturbing a running system,
using the powerful debugging tools available for user-level application development. Later, the
server can be migrated easily within the system for performance consideration.

4 The T9000 Transputer

INMOS Transputers are complete microcomputers integrated in a single VLSI chip. Each Trans-
puter combines an integer ALU, a two-priority hardware scheduler, some on-chip memory, an
advanced external memory interface and communication links. In addition, some versions incor-
porate a floating point unit or some application specific logic. The strength of the Transputer lies
in the close integration, both at the micro-architecture and software level, of communication and
(multi-)processing. This makes the design of parallel or concurrent systems using Transputers
especially easy and efficient.

First generation Transputers, the IMS T400 and T800, did not offer much support for build-
ing complete operating systems: no memory protection hardware and no specific trap mecha-
nism. The T9000 is the first member of INMOS’ new generation of Transputers. In addition to
improved performance, the T9000 has several features that assist in building a distributed UNIX
environment [INMOS 91].

4.1 Communicating through Virtual Channels

Communication and parallelism have always been key features of INMOS processors. Mecha-
nisms are offered, at the instruction set level, for building parallel programs of communicating
processes. The first generation of Transputers offered intra-Transputer communication through
memory to memory DMA and inter-processor communication through DMA over serial commu-
nication links. The input and output instructions gave direct access to the underlying hardware
running at 20Mbits per second.
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Though enabling efficient parallel machines and programs to be built, this initial design
induced undesirable limitations on some application programs.

To lift all these limitations, INMOS introduces virtual channels on the T9000 family of
Transputers. A virtual channel enables communication between any processes in a network
of processors, irrespective of their physical location. Any number of virtual channels can be
handled by a network and each processor can have access to up to 65536 of them.

4.1.1 The T9000’s Virtual Channel Processor

The T9000’s Virtual Channel Processor (VCP) is the piece of hardware which handles all off-chip
communications. Its main role is to multiplex all the outgoing and incoming communications
over the chip’s four physical links. The VCP makes this multiplexing totally transparent to the
CPU. As far as the programmer is concerned, there is a quasi-infinite number of communication
channels going off-chip. Which physical link they will use is only known when the VCP is
configured, before any application starts executing.

The fact that the VCP is a separate entity from the CPU also means that computation and
communication can proceed entirely in parallel, overlapping each other.

To sustain the high communication bandwidth required by the VCP, a new electrical protocol
has been devised for the links; the “Data/Strobe” mechanism enables the T9000 to run its links
at 100Mbits/s, giving a global bidirectional bandwidth of 80 Mbytes per second.

4.1.2 The IMS C104: a Generic Routing Chip

The T9000’s VCP enables any number of channels to link the Transputer with the external
world, but this is not enough to allow direct communication between any two processors in a
network. This is the job of a specialised chip, the IMS C104 [May and Thomson 90].

The IMS C104 is a general purpose worm-hole packet-switched routing chip. It cooperates
with the T9000 in the following way:

- Any message sent by an T9000 over a virtual channel is split into a number of small packets
by the VCP. This will enable the VCP to fairly multiplex physical links by multiplexing the
packets. Each packet contains a minimal header describing the destination of the message.

- The links of the T9000 being connected to a IMS C104, the packets are routed to their
destination encoded in the header. Worm-hole routing means that the routing of a packet
takes place as soon as the header has been received by the IMS C104, potentially before
the whole message has entered the chip. This mechanism makes routing extremely fast;
less than a micro-second is spent between reception of the first bit of a packet and its
retransmission out of the IMS C104.

- At the destination side, a C104 delivers the packet to the appropriate T9000 link, where
the VCP will reconstruct the message from all the successive packets associated with the
appropriate channel.
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Providing two separate chips for computing and routing offers many advantages:

For small networks with only neighbour communications, T9000s can be used without IMS
C104, sparing the silicon cost of on-chip routing for other T9000 functionalities.

Routers can have many links (32 for the IMS C104), minimising the number of routers in

a network, and hence minimising the routing delay.

Since messages do not flow through the T9000s the total link bandwidth required is just
the one required by local processes.

Network structure and scalability is independent of the number of processing nodes.

4.2 Enhanced Process and Scheduler Models
4.2.1 Process Behaviour Control: the Dual Processes

A new type of process, and a new mode of execution, have been added to the features of T9000.
The new process type, or L-process, offers local handling of error conditions, debugging traps,
and a special instruction for implementing operating systems “system calls”. The new mode of
execution, or P-mode, allows an L-process to run in a protected virtual address space.

Both P-mode and L-processes behave in a very similar way. In each case, the execution
stream switches to another process (the L-process stub for the P-mode, a trap-handler for the L-
process) whenever an exceptional situation is reached. This other process, or controlling process,
deals with the exceptional situation on behalf of its dual. Thereafter, the initial process can be
continued or discarded depending on the seriousness of the exceptional situation.

The two main differences between P-mode execution and trap-handling lie in the reduced
instruction set available to P-mode (i.e. no scheduling or communication instructions) and the
execution of P-mode processes in a segmented and protected virtual address space.

4.2.2 A Rationalised Scheduler

The interface to the scheduler has been cleaned-up and rationalised to allow easy manipulation by
real-time kernels or operating systems. The first rationalisation involves the manipulation of an
interrupted process, of particular importance to real-time kernels implementing fast interruptible
handlers.

When the scheduler swaps from a low-priority to a high-priority process, the state of the
interrupted process is saved in a shadow copy of the processor’s registers. This copy can be saved
to/restored from memory using special instructions. With this mechanism, the T9000 allows
clean manipulation of its internal state, enabling improved software scheduling on interrupts.

Another aspect of this improved interface is the availability of atomic instructions to modify
the hardware scheduler queues, enabling operating systems and real-time kernels to use the
lightningly fast context switching time of the Transputer, while maintaining many more levels
of process priority than the two offered by the T9000 hardware.
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Finally, semaphores, first introduced by Dijkstra in 1965 as a useful mechanism for controlling
access to shared resources by concurrent processes, have been included in the T9000 features.
Two new instructions, signal and wait, have been introduced to atomically handle semaphore
structures allocated in memory. This feature greatly simplifies the design of software kernels, as
many processes usually need to gain access to shared kernel information.

5 Porting CHORUS onto the T9000

Porting the CHORUS/MiX operating system onto a new hardware architecture is a two-phase
process.

First, the Nucleus must be adapted to the new hardware in order to offer the same set of
essential generic services to the higher-level components of the system. These generic services
are defined by a clear functional Nucleus interface and by a description of the basic abstractions
exported by the Nucleus. For keeping the Nucleus highly portable, the hardware dependen-
cies have been isolated in small and well-defined components: the supervisor and the machine
dependent memory management module.

Second, the hardware dependencies of the system servers implementing the UNIX Subsystem
must be modified in the same way. As for the Nucleus, system servers have been designed in
such a way to allow porting with minimum effort.

In this section, we describe the technical aspects of adapting the CHORUS Nucleus to the
T9000 architecture. The basic abstractions implemented and managed by the CHORUS Nucleus
are shown in Table 1.

Actor unit of resource allocation, and memory address space
Thread  unit of sequential execution

Region  unit of structuring an Actor’s address space

Segment unit of data encapsulation

Table 1: CHORUS Nucleus basic abstractions

The actor is the unit of resource allocation in the CHORUS system. An actor defines a
protected address space (or contezt) supporting the execution of threads which share the address
space of the actor. An actor is tied to a site, and its threads are executed on that site.

The thread is the unit of execution in CHORUS. A thread is a sequential flow of control and
is characterized by a context corresponding to the state of the processor: registers, workspace
pointer, instruction pointer, trap-handler identity. A thread is always tied to one and only one
actor. The actor constitutes the execution environment of the thread. Within an actor, many
threads can be created and can run in parallel. These threads share the resources of that actor.

CHORUS memory management considers the data of a context to be a set of non-overlapping
regions, which form the valid portion of the context. These regions are mapped to secondary
storage objects, called segments. Segments are managed outside of the Nucleus, by external
servers called segment mappers. Concurrent access to a segment is allowed: a given segment may
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be mapped into any number of regions, allocated to any number of contexts. The consistency
of a segment shared among actors of the same site is guaranteed by the Nucleus, but when a
segment is shared among different sites, the segment mapper is in charge of maintaining the
segment consistency.

The supervisor contains code and data structures that implement the primary hardware event
handling (traps, exceptions and interrupts) and the mapping of threads to hardware resources.
It also implements the thread context switch mechanism. Hardware dependencies of the context
and region objects are defined and managed by the machine dependent memory management
module.

The following sections explain how the CHORUS abstractions are mapped onto the T9000
hardware.

5.1 CHORUS threads and T9000 Processes

CHORUS threads are implemented as independent T9000 processes. Threads in supervisor mode
are mapped onto L-processes (one-to-one mapping) and run without memory protection or
address translation. Each of these L-processes is associated with a T9000 ¢rap-handler which is
responsible for monitoring the traps and exceptions caused by the thread. Trap expense can be
avoided for Nucleus system calls executed by supervisor threads, since they execute in the same
memory context as the Nucleus itself, and can therefore call the corresponding service routine
directly. However, for allowing the possibility of trap nesting and to provide an homogeneity
level between user and supervisor threads, the Nucleus handles L-process traps.

Threads in user mode are mapped onto P-processes (one-to-one mapping), and run in a
protected address space. Each user thread is controlled by a private stub-process, which rep-
resents the supervisor mode of the thread. The stub is responsible for setting up the memory
protection regime, for starting the P-process implementing the thread and for handling the trap
and exception events caused by the thread. When an interrupt has preempted a user thread, it
is the stub that will restart the interrupted thread when the interrupt handler is finished.

Figure 3 shows the mapping between CHORUS threads (user and supervisor) and T9000
processes.

5.2 Scheduling
Synchronous (de)scheduling, or context switch, refers to the deliberate action performed by the
currently running thread in order to de-schedule itself and to schedule another thread.

The Nucleus uses the notion of thread priority to implement its real-time scheduling policy.
The unique criterium for the processor allocation is priority: at any time, the running thread is
the ready thread whose priority is the greatest.

This priority-based scheduling technique is also used to implement the time-slicing mecha-
nism. CHORUS priorities are divided into two sets!: threads whose priority stands in the upper

1CHORUS priority values range from 0 to 255. Typically, values from 0 to 127 are reserved for real-time
threads, and 128 to 255 for time-sliced threads.
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Figure 3: CHORUS threads - T9000 processes

set obey the strict real-time scheduling strategy, while threads in the lower set are subject to a
simple time-slicing strategy.

The CHORUS priority is not to be confused with the two-level priority scheme managed by
the T9000 hardware scheduler, hereafter referred to as the low- or high- priority. T9000 pro-
cesses implementing CHORUS threads are running at low-priority, in order to allow for interrupt
preemption. The wider 255-level priority is managed internally by the Nucleus on top of the
hardware low-priority.

The context switch mechanism itself has been designed to take advantage of the efficiency
of the T9000 hardware capabilities. The problem of implementing the CHORUS micro-kernel
real-time executive on top of the T9000 FIFO hardware scheduler is not trivial. Indeed, the
CHORUS Nucleus must keep permanent control of the execution sequence, while using at best
the benefit of the automatic T9000 hardware scheduler.

The context switch mechanism is implemented using a combination of the T9000 hardware
scheduler and semaphore atomic operations. For the purpose of scheduling, each thread is
associated with a private T9000 semaphore. This scheme has the advantage that there is no need
to save and restore any context information since the T9000 hardware has built-in capabilities
for managing the scheduler and semaphore hardware queues. Instruction and stack pointers are
automatically updated.

5.3 Hardware Mechanisms: Traps and Exceptions

Traps and exceptions may occur while the currently running thread is in user or supervisor
mode. In the former case, the control is passed to the stub process controlling the thread. In
the latter case, the trap handler connected to the thread is responsible for servicing the event.
The CHORUS Nucleus interface offers a set of routines that allow system servers to dynamically
connect trap and exception handler routines. As an example, the Process Manager connects the
generic UNIX trap routine at boot time.

A trap is caused by the execution of the T9000 syscall instruction. By this mechanism,
the thread requests some specific service from the Nucleus. The type of service is passed via
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the T9000 integer evaluation stack, and the thread has pushed the arguments on its stack. The
supervisor maintains trap routines internally and acts as a dispatcher between the hardware
trap mechanism and the actual servicing of the request.

Exceptions are all the events different from traps that may cause the running thread to enter
the Nucleus: floating point exception, memory violation, invalid instruction, etc. The action
performed by the supervisor in that case depends on the type of exception. As an example,
a memory violation may occur when a user thread’s stack pointer goes beyond its memory
protection range. In that case, the stub extends the stack region and restarts the thread.

5.4 Interrupts

Interrupt sources - timers, event pins and communication links - are monitored by dedicated
high-priority processes. These processes, named vectors, wait for events to occur on the various
sources.

When an interrupt source is triggered, the corresponding vector is awakened and preempts
the currently running thread?. The vector saves the current thread’s context, updates the
interrupt nesting level and starts a process (the actual interrupt handler) for servicing the
interrupt. The vectors and the generic part of the interrupt handlers implement the part of the
supervisor not covered by the stub and trap handler processes.

The supervisor is responsible for recording the handlers and vectors that the Nucleus or
CHORUS actors have connected to hardware interrupts. It is crucial to have interrupt handlers
running at low-priority in order to allow for interrupt nesting and guarantee fast response to
concurrent external events.

When the interrupt handler has terminated its job, the preempted thread must be restarted.
Before the thread is actually restarted, the Nucleus checks if any scheduling has to be done (a
thread could have been made “ready to run” by an interrupt handler). To restart the thread, the
supervisor uses the saved context frame. One of the key enhancement of the T9000 compared to
the Txxx3. is that there is no need to use a high-priority process for restarting the interrupted

thread.

Interrupt masking and priority are implemented with a combination of T9000 specific in-
structions (intdis and intenb) and T9000 semaphores.

5.5 Memory Management

The CHORUS memory management service provides separate address spaces (contexts) associ-
ated with each actor, and efficient and versatile mechanisms for data transfer between contexts,
and between secondary storage and contexts. A context is represented by a set of non-overlapping
regions, and each region is associated with a segment by the CHORUS memory management
module (segments typically represent some form of backing storage, such as the contents of a

file).
2Recall that threads run as low-priority T9000 processes and can therefore be preempted at any time by

high-priority ones.
3Txxx refers to the T800 and T400 families of Transputer
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The protected mode offered by the T9000 hardware, with its four per-process independent
4. is the base on which the region and context abstractions are imple-
mented. In this model, each user actor, if running in protected mode, is assigned four T9000
logical address regions.

logical address regions

The memory management module of the Nucleus must offer a fixed interface to the higher-
level parts of the system (region creation and duplication, segment mapping, etc). Because of
the T9000 memory architecture characteristics and for efficiency reasons, we have decided to
redesign the CHORUS memory management module entirely [Abrossimov et al. 89]. It is based
on the same basic abstractions and mechanisms, but the implementation is different. As an
example, it was not possible to implement advanced techniques like copy-on-write or -reference.
Regions are loaded or copied entirely at creation time.

The unit of memory allocation on the T9000 must be a power of two, and the start address
of any allocated memory slot must be a multiple of its size. For these two reasons, the buddy
system algorithm has been selected [Tanenbaum 88]. The buddy system has been adapted for
speeding up memory allocation in some cases (like for finding small communication buffers).
Relocation algorithms are used to maintain a low level of fragmentation, and are implemented
on top of the very efficient block move operations allowed by the T9000.

Figure 4 shows the relationship between CHORUS regions and segments with T9000 regions.

PHYSICAL CHORUS Context
MEMORY L ogical address space
Region
T9000 region
d@criptg? IT9000 region
C —+H—
4

DISK
v "—-———7

CHORUS -7
segment e

-

~—_

Figure 4: CHORUS segments and regions - T9000 regions

*We make the distinction between T9000 region (hardware unit of memory protection) and CHORUS region
(contiguous range of logical addresses within a context).
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5.6 CHORUS IPC

CHORUS uses communication as the basic function of the operating system. IPC mechanisms
must therefore be as efficient as possible and use at best the hardware communication capa-
bilities. The new CHORUS network architecture represents a significant change from earlier
network architecture versions. Functionally, few changes are externally visible. The philosophy
and implementation of network services is substantially changed, however.

The network protocols have been integrated closely with the CHORUS Nucleus. The CHORUS
IPC protocols may be stacked on-top of special purpose transport protocols, offering greater ef-
ficiency and providing a consistent interface to non-network devices, such as buses or Transputer

links.

The CHORUS network layers are implemented as subroutine layers within a single address
space. When possible, user threads to carry out work through the entire depth of the network
interface, eliminating inefficiencies involved in copying data and switching contexts between
threads or actors.

The major components of the CHORUS network services are shown on Figure 5.

CHORUSIPC

M essage Fragmentation

CHORUS Address Routing

Network | Protocols

CNP CNP CNP

NDM/Drivers

Figure 5: CHORUS IPC Components

- The CHORUS IPC component is responsible for implementing protocols that provide re-
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mote IPC and RPC operations for CHORUS ports.

- The Fragmentation Unit is responsible for splitting messages into fragments that are con-
veniently manipulated on output and reassembling them from fragments on input.

- The Remote Site Manager implements CHORUS remote site routing algorithms.

- The CHORUS Network Protocol component(s) implement an efficient ISO level-3 transport
layer.

- Non-CHORUS network protocols may be imported into the CHORUS network framework
as Fzxternal Network Protocol components.

- The Network Device Manager (NDM) exports a low-level interface to network devices used
by CHORUS Network Protocol and external Network Protocol components.

Remote communications are implemented on top of the T9000 Virtual Channel mechanism.
Dedicated vectors act as intermediate agents between the NDM and the actual physical links.
This design provides fast response for communication primitives and offers a consistent interface
to the portable communication module of the Nucleus, which can consider communication links
as normal interrupting devices.

Routing and location services at the lowest level as well as packet fragmentation are auto-
matically handled by the T9000 Virtual Channel Processor. More complex routing schemes are
also managed by the C104 network at the hardware level. The adaptation of the CHORUS IPC
on the T9000 takes advantage of the high-reliability and automatic routing capabilities of the
hardware.

5.7 Current Port Status

At the time this paper is written, the CHORUS Nucleus is running on the T9000 simulator: the
T9000 simulator is a software package, loaded onto a T805 Transputer, which emulates a T9000
chip. It provides functional simulation, but no timing information. The developments related
to CHORUS/MiX (UNIX tools, COFF compiler, efc) are also in progress.

We have also adapted the Nucleus for the Txxx family of Transputers, and are currently
porting CHORUS IPC on top of Transputer links.

Our research on single system semantics is currently conducted on different types of hardware.
CHORUS/MiX V3.2 has been adapted to the iPSC2 Hypercube and is used for experimenting
various process migration and load-balancing algorithms. A centralized coherent distributed
memory mapper has also been implemented, and its distributed version is now being tested.

6 Conclusion

In this paper, we showed how two state-of-the-art technologies - a micro-kernel based operating
system architecture and a high performance communication based processor technology - are
combined to build multiprocessor systems supporting a standard operating system.
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Naturally, it is expected that these technologies continue to impact and enrich each other
over the years to come. There is no doubt that distributed systems and their flexibilities are the
core of many emerging application requirements; and that the Transputers and the CHORUS
operating system are well placed to be at the forefront of these developments.

One particular area for further development is exploitation of the fault-tolerant capability
of the Transputer networks in a CHORUS environment. Provisions will be made for access by
applications to load balancing, both in terms of computation and communication, when running
under CHORUS. These features, coupled with the time-out capabilities of the Transputer com-
munication mechanism, the possibility of multipath message routing and the process migration
paradigm open the way for sophisticated fault-tolerant and reconfigurable systems.

The evolution of the Transputer from its early days, where it offered virtual processing, to
the upcoming T9000 with virtual processing, virtual communication capability, and enhanced
memory protection/management is expected to continue. In the future the virtual processing
and communication capability of the Transputers will be complemented with full virtual memory
thus allowing the more sophisticated memory management models offered by CHORUS operating
system to be fully exploited.
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