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5.83.3 Server Consistency

Duplication and distribution of system servers raise the issue of server consistency.

First, since objects managed by dedicated servers may be accessed concurrently
by remote entities (such an object may typically be a Unix file or device), it is the
responsibility of the server managing the object to guarantee that its consistency is
maintained. Multi-threaded servers use locking mechanisms and semaphore operations
to synchronise the accesses to the underlying objects.

Second, since servers may be duplicated in order to maintain a high degree of avail-
ability and to provide support for fault-tolerance, care must be taken to ensure that
services are executed with the required semantics (at-most-once, exactly-once, etc). The
servers themselves do rely on the underlying IPC addressing semantics to implement
these higher level requirements.

6 Conclusion and Future Trends

In this paper, we showed how two state-of-the-art technologies - a micro-kernel based
operating system architecture and a high performance communication based proces-
sor technology - are combined to build multiprocessor systems supporting a standard
operating system.

Naturally, it is expected that these technologies continue to impact and enrich each
other over the years to come. There is no doubt that distributed systems and their flex-
ibilities are the core of many emerging application requirements; and that the Trans-
puters and the CHORUS operating system are well placed to be at the forefront of
these developments.

One particular area for further development is exploitation of the fault-tolerant
capability of the Transputer networks in a CHORUS environment. Provisions will
be made for access by applications to load balancing, both in terms of computation
and communication, when running under CHORUS . These features, coupled with
the time-out capabilities of the Transputer communication mechanism, the possibility
of multipath message routing and the process migration paradigm open the way for
sophisticated fault-tolerant and reconfigurable systems.

The evolution of the Transputer from its early days, where it offered virtual pro-
cessing, to the upcoming H1 with virtual processing, virtual communication capability,
and enhanced memory protection/management is expected to continue. In the fu-
ture the virtual processing and communication capability of the Transputers will be
complemented with full virtual memory thus allowing the more sophisticated memory
management models offered by CHORUS operating system to be fully exploited.
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There 1s an OM on each site supporting a disk. An OM provides Unix File System
management and acts as a mapper, acting as a segment server to the memory manage-
ment module. The OM code is mainly machine independent, except for the low-level
device driver part that directly interacts with the disk hardware. Again, this hardware-
dependent part of the server uses the service of the Supervisor for connecting interrupt
handlers to disk interrupts.

A DM is used on a site whenever tty’s ,pseudo-tty’s or bitmaps are connected to
that site. As for the OM, the porting effort is limited to the actual low-level device
driver part of the server.

The SM is the server which manages internet network protocols such as TCP, UDP
and IP accessed through the BSD socket interface. The SM does not contain any
machine-dependent code, except for a very small part concerned with byte ordering
management functions. The actual low-level network driver code is handled by the
NDM, described in subsection 5.1.6.

5.3 Distribution of CHORUS Servers
5.3.1 Modular Architecture

The subdivision of the MiX operating system into a set of cooperating servers not only
provides functional modularity (each server implements a particular set of services),
but also distribution modularity.

Distribution modularity refers to the possibility of distributing MiX servers across
the sites of the H1 network. As MiX servers use the CHORUS Nucleus IPC mechanisms
for communicating together, they implicitly benefit from all the advantages allowed by
the flexibility and transparency of these mechanisms.

The different addressing semantics (functional, broadcast) combined with port group-
ing and migration, offer the basic tools for transparently managing the distribution of
the MiX servers.

Server distribution among the sites of the network may dynamically be modified
to adapt to the possibly changing network topology, transient traffic or system load
variations.

5.3.2 Remote Accesses

As mentioned earlier, there is an OM on each site supporting a disk. Unix processes
running on diskless site have access to disk abstractions (file systems, home directory,
etc) by transparently communicating with a distant OM. Note that the PM managing
the process does not need to know the actual location of the OM on the H1 network,
since it relies on the services of the Nucleus transparent IPC mechanism.

Other servers, like the Socket Manager (SM), do not need to be duplicated on all
sites. A SM 1is typically installed at the H1 site responsible for handling the ETHER-
NET connection, and at strategic locations on the H1 network. Unix process socket
communications are serviced locally if the process site has a SM, or by a remote SM
accessed transparently by the IPC mechanism.

PMs, which must be present on all “Unix sites”, also provide support for remote
operations. A Unix process may request for the execution of a child process on a remote
site (this is known has the remote fork mechanism). It can also migrated from one site to
another. In both cases, the Nucleus IPC mechanisms and the global naming paradigm
are used by the PMs to manage the distribution (handling of signals, file contexts, etc).
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Figure 6: CHORUS segments and regions - H1 regions

communication capabilities. The NDM (Network Device Manager) is the part of the
system that manages the communication hardware.

For local communications (i.e. between actors residing on the same site), the Nucleus
uses the services of the memory management module for transferring data between the
sending and receiving contexts. The transfer is performed using the very fast block
move operation offered by the H1 hardware.

Remote communications are implemented on top of the H1 Virtual Channel mech-
anism. Dedicated guardians (see subsection 5.1.4) act as intermediate agents between
the NDM and the actual physical links. This designs provides fast response for com-
munication primitives and offers a consistent interface to the portable communication
module of the Nucleus, which can consider communication links as normal interrupting
devices.

Routing and location services at the lowest level as well as packet fragmentation
are automatically handled by the H1 Virtual Channel Processor. Higher level com-
munication primitives (broadcast and CHORUS object location) are handled by the
Nucleus.

5.2 Porting CHORUS/MiX Servers

MiX servers run on top of the CHORUS Nucleus. Several types of servers may be
distinguished within a typical Unix subsystem: Process Manager (PM), Object Manager
(OM), Device Manager (DM) and Socket Manager (SM).

The PM maps Unix processes onto CHORUS abstractions (actor, thread and re-
gions). The PM depends on the hardware characteristics for the management of process
contexts and the handling of the low-level Unix trap mechanism. It does so using the
services of the Supervisor, which offers routines to connect trap and exception handlers,
and to manipulate processes contexts. The PM maps the different memory segments
representing a Unix process (text, data and stack segments) on top of distinct CHORUS
regions. There is a PM per “Unix site”.



occur on the various sources.

When an interrupt source is triggered, the corresponding guardian is awakened
and preempts the currently running thread?. The guardian saves the current thread’s
context, updates the interrupt nesting level and starts a process (the actual interrupt
handler) for servicing the interrupt. The guardians, the context switcher and the generic
part of the interrupt handlers implement the part of the Supervisor not covered by the
stub and trap handler processes.

The Supervisor is responsible for recording the handlers that the Nucleus or CHO-
RUS actors have connected to hardware interrupts. Interrupt handlers are run at
low-priority in order to allow for interrupt nesting and priority.

When the interrupt handler has terminated his job, the preempted thread must be
restarted. The H1 hardware characteristics impose that this be done via a high-priority
process. Using the saved thread context frame, this high-priority process, called the
context starter, restores the processor state to the state existing before the interrupt.

Interrupt masking and priority are implemented with a combination of H1 specific
instructions (intdis and intenb) and of H1 semaphores.

5.1.5 Memory Management

The actor is the unit of distribution in the CHORUS system. An actor defines a
protected address space supporting the execution of one or more threads. The CHO-
RUS memory management service provides separate address spaces (hereafter named
contexts) associated with each actor, and efficient and versatile mechanisms for data
transfer between contexts, and between secondary storage and contexts. A context is
represented by a set of non-overlapping regions, and each region is associated with a
segment by the CHORUS memory management module (segments typically represent
some form of backing storage, such as the contents of a file).

The protected mode offered by the H1 hardware, with its four per-process indepen-
dent logical address regions®, is the base on which the region and context abstractions
are implemented. In this model, each thread, if running in protected mode, is assigned
four H1 logical address regions. A H1 region may hold the data of one or more CHO-
RUS regions. If more than one CHORUS region are encapsulated within a H1 region,
they must have the same protection and execution privileges.

The memory management module of the Nucleus must offer a fixed interface to the
higher-level parts of the system (region creation and duplication, segment mapping,
etc). Because of the H1 memory architecture characteristics, some memory management
techniques, like demand paging and copy-on-write or -reference, cannot be implemented.
Regions are therefore loaded or copied entirely at creation time. Relocation algorithms
are used to maintain a low level of fragmentation, and are implemented on top of the
very efficient block move operations allowed by the H1. Figure 6 shows the relationship
between CHORUS regions and segments with H1 regions.

5.1.6 CHORUS IPC

CHORUS uses communication as the basic function of the operating system. IPC
mechanisms must therefore be as efficient as possible and use at best the hardware

2Recall that threads run as low-priority H1 processes and can therefore be preempted at any time
by high-priority ones.

3We make the distinction between H1 region (hardware unit of memory protection) and CHORUS
region (contiguous range of logical addresses within a context).



5.1.2 Scheduling

Synchronous (de)scheduling, or context switch, refers to the deliberate action performed
by the currently running thread in order to de-schedule itself and to schedule another
thread.

The Nucleus uses the notion of thread priority to implement its real-time scheduling
policy. The unique criterion for the processor allocation is priority: at any time, the
running thread is the ready thread whose priority is the greatest.

This priority-based scheduling technique is also used to implement the time-slicing
mechanism. CHORUS priorities are divided into two sets': threads whose priority
stands in the upper set obey the strict real-time scheduling strategy, while threads in
the lower set are subject to a simple time-slicing strategy.

The CHORUS priority is not to be confused with the two-level priority scheme
managed by the H1 hardware scheduler, hereafter referred to as the low- or high- priority.
H1 processes implementing CHORUS threads are running at low-priority, in order to
allow for interrupt preemption. The wider 255-level priority is managed internally by
the Nucleus on top of the hardware low-priority.

The context switch mechanism itself has been designed to take advantage of the
efficiency of the H1 hardware capabilities. It is implemented using a combination of
the H1 hardware scheduler and semaphore atomic operations. This scheme has the
advantage that there is no need to save and restore any context information since
the H1 hardware has built-in capabilities for managing the scheduler and semaphore
hardware queues. Instruction and stack pointers are automatically updated.

5.1.3 Hardware Mechanisms: Traps and Ezceptions

Traps and exceptions may occur while the currently running thread is in user or super-
visor mode. In the former case, the control is passed to the stub process controlling the
thread. In the latter case, the trap handler connected to the thread is responsible for
servicing the event.

A trap is caused by the execution of the H1 syscall instruction. By this mechanism,
the thread requests some specific service from the Nucleus. The type of service is
passed via the H1 integer evaluation stack, and the thread has pushed the arguments
on its stack. The Supervisor maintains trap routines internally and acts as a dispatcher
between the hardware trap mechanism and the actual servicing of the request. As
mentioned earlier, the Supervisor code is actually implemented by the stub and trap
handler processes.

Exceptions are all the events different from traps that may cause the running thread
to enter the Nucleus: floating point exception, memory violation, invalid instruction,
etc. The action performed by the Supervisor in that case depends on the type of
exception. As an example, a memory violation may occur when a user thread’s stack
pointer goes beyond its memory protection range. In that case, the stub extends the
stack region and restarts the thread.

5.1.4 Interrupts

Interrupt sources - timers, event pins and communication links - are monitored by
dedicated high-priority processes. These processes, named guardians, wait for events to

LCHORUS priority values range from 0 to 2565. Typically, values from 0 to 127 are reserved for
real-time threads, and 128 to 255 for time-sliced threads.



Actor unit of resource allocation, and memory address space
Thread  unit of sequential execution

Region  unit of structuring an Actor’s address space

Segment unit of data encapsulation

Table 1: CHORUS Nucleus basic abstractions

The Supervisor contains code and data structures that implement the primary hard-
ware event handling (traps, exceptions and interrupts) and the mapping of threads to
hardware resources. It also implements thread context switching. Hardware dependen-
cies of the region object are defined and managed by the machine dependent memory
management module.

The following sections explain how the CHORUS abstractions are mapped onto the
H1 hardware.

51.1 CHORUS Threads and H1 Processes

CHORUS threads are implemented as H1 processes.

Threads in supervisor mode are mapped onto L-processes and run without memory
protection or address translation. Each of these L-processes is associated with an H1
trap handler which is responsible for monitoring the traps and exceptions caused by the
thread.

Threads in user mode are mapped onto P-processes, and run in a protected address
space. Each user thread is controlled by a private stub-process, which represents the
supervisor mode of the thread. The stub is responsible for setting up the memory
protection regime, for starting the P-process implementing the thread and for handling
the trap and exception events caused by the thread.

The code run by a stub or a trap handler as a result of a trap or exception is part of
the Nucleus. Other parts of the Nucleus are contained in the guardian and the context
starter modules, described in subsection 5.1.4.

Figure 5 shows the mapping between CHORUS threads (user and supervisor) and
H1 processes.

SUPERVISOR THREAD USER THREAD
. .
[ D e e 1
trap L-Process P-Process stub trap
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Figure 5: CHORUS threads - H1 processes



group facilities provides a sound basis for doing dynamic reconfiguration and developing
fault-tolerant applications.

4.2.4 Multi-threaded Uniz Processes

Multiprogramming within a Unix process is possible with a Unix thread (u-thread). A
u_thread can be considered as a lightweight process within a standard Unix process. It
shares all the process resources and in particular its memory space and opened files.
When a process terminates by exit, all the u_threads of that process terminate with it.
U_threads may issue Unix system calls.

4.2.5 Reconfiguration

The reconfiguration capabilities of CHORUS/MiX may be summarised as follows :

- In the case of node failure, it must be possible to reconfigure the interrupted
application on a backup node in order to recover its full functionalities.

- In the case of upgrading a running application with a new version of one of its
component, the replacement of that component may leave the overall application
unchanged. The new version may lead to the migration from one node to another
of that new component; consistency of the whole application must be saved.

- In the case of dynamic load balancing, or network extension, the replacement or
the migration of some element toward a new location must not introduce any
disruption in the executing software.

CHORUS provides a basis for supporting efficient dynamic application reconfiguration.
The key point is the flexibility of the inter-process communication provided by distri-
bution transparency, ports and groups of ports.

5 Porting CHORUS/MiX onto the H1

Porting the CHORUS/MiX operating system onto a new hardware architecture is a
two-phase process.

First, the Nucleus must be adapted to the new hardware in order to offer the same set
of essential generic services to the higher-level components of the system. These generic
services are defined by a clear functional Nucleus interface and by a description of the
basic abstractions exported by the Nucleus. For keeping the Nucleus highly portable,
the hardware dependencies have been isolated in small and well-defined components:
the Supervisor and the machine dependent memory management module.

Second, the hardware dependencies of the System Servers implementing the Unix
Subsystem must be modified in the same way. As for the Nucleus, System Servers have
been designed in such a way to allow porting with minimum effort.

5.1 Porting the Nucleus

The basic abstractions implemented and managed by the CHORUS Nucleus are shown
in Table 1. The porting effort of these abstraction is principally focused on the thread
and region objects.



The file system is extended with the Network File System (NFS®). NFS is a facility
for sharing transparently files in a heterogeneous environment of machines, operating
systems, and networks. CHORUS/MiX processes from any node in the H1 network,
may access files localised on another machine’s disk through ETHERNET.

CHORUS/MiX supports the standard X Window System®facility. An X client on
a site of the H1 network may execute a graphic system call to an X server connected
to a LAN. This feature allows a user to use an X-terminal to work on an H1 machine
under CHORUS/MiX .

The CHORUS/MiX operating system defines a true Unix interface and hence allows
a extensive code portability.

4.2 Managing the Distribution

CHORUS provides extensions to the Unix interface in order to take benefit from the
distributed nature of the system and the underlying CHORUS Nucleus services such as
IPC or Threads. Such accesses are not provided by invoking directly the Nucleus, but
through Unix system calls, in order to eliminate inconsistencies.

4.2.1 Process Management

The basic extension of process management deals with enabling remote creation (fork)
or execution (ezec) of processes. A “creation site” information has been added to
the system context of Unix processes. It may be set through a new system call :
csite(Siteld). This information is used when a process is fork’ing or ezec’ing : on a fork,
the child process will be created on the site specified by Siteld. On an ezec, the process
will start the execution of the new program on the site specified by Siteld.

4.2.2 File System Extension

The naming facilities provided by the Unix file system have been extended, to permit
the designation of services accessed via Ports.

Symbolic Port Names, defined as a new Unix file type, can be created in the Unix
hierarchical file system. They associate a file name to a port identifier. When such a
name is found during the analysis of a pathname, the corresponding request is forwarded
to the port.

User written servers as well as system servers can be designated by such symbolic
port names, thus allowing “users” to dynamically bring some extensions to the system.
This facility is used to interconnect file systems of different sites and provide a global
name interface.

4.2.83 Inter Process Communication

Unix processes can create ports, insert ports into groups, and send and receive messages.
They can migrate ports from one process to another. CHORUS IPC mechanisms allow
them to communicate transparently over the network. Applications can therefore be
tested on a single machine, and then distributed throughout the network, without
any modification necessary to adapt it to a new configuration. Using port migration or

®NFS is a trademark of Sun Microsystems, Inc.
The X Window System is a trademark of the Massachusetts Institute of Technology.



The user can execute its application on the network of H1ls transparently from the
multiprocessor nature of the machine. Distribution may span several networks of H1s
managed by CHORUS/MiX with the same level of transparency. In other words, the

configuration of the application is managed as flexibly as hardware configurations.

4.1 A Standard Uniz

CHORUS/MiX controlling a network of Hls defines a multi-processor machine man-
aged through a standard Unix environment. It supports a transparent distributed file
system, tools for software development applications, support for standard interprocess
communication and local area networking.

4.1.1 Uniz Interfaces

CHORUS/MiX provides the user with a Unix environment composed of:
- one or several file systems accessible transparently from each site;
- a command interpreter of his choice;

- alarge set of Unix commands: the whole set of the Unix System V commands is
available;

The user logged on a site of the H1 network finds all the tools he is used to find in
his environment, he is able to run each command from any node in the network. The
programming interface is compatible with the Unix System V. To develop a program,
the user will use standard and well-known primitives and features:

- open, read or write operations to access files;

- fork, join operations to manage Unix processes;
- pipes to communicates between these processes;
- signal management (kill, signal, ...).

The user may execute a call to these primitives from any node wherever in the
network that node is located. The compatibility and transparency of objet and service
location allow CHORUS/MiX to support a large set of tools developed for the Unix
operating system (sed, awk, lez, yacc, ...).

4.1.2 Uniz Enhancements

Some features have been added to extend the Unix System V. These enhancements,
mainly i1ssued from the BSD systems, offer services for network management and com-
munication.

CHORUS/MiX fully supports the socket-based inter-process-communication facil-
ities adapted from BSD. Messages and packets may be exchanged under the socket
protocol between CHORUS/MiX sites or between a CHORUS site and a heterogeneous
site on a local area network.

®ETHERNET is a trademark of Xerox Corporation.
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several significant extensions which offer, at the Unix subsystem level, access to CHO-
RUS facilities.

Powerful real-time facilities available at the Unix subsystem level make it possible to
dynamically connect handlers to hardware interrupts. Unix processes enjoy the benefit
of priority-based preemptive scheduling provided by the CHORUS Nucleus, possibly at
a higher priority than the CHORUS/MiX subsystem servers themselves.

Unix processes running on CHORUS can communicate with other Unix processes,
bare CHORUS processes or entities from other subsystems using the CHORUS IPC
mechanisms. Processes, for example, are able to create and manipulate CHORUS
ports, send and receive messages, and issue remote procedure calls.

3.6 User Defined Servers

The CHORUS architecture provides a powerful, convenient platform for operating sys-
tem development. The homogeneity of server interfaces provided by the CHORUS IPC
allows system builders to develop new servers and integrate them at will into a system,
either as user or as system servers. For example, new file management strategies such
as real-time file systems, or fault-tolerant servers can be developed and tested as a
user level utility without disturbing a running system, using the powerful debugging
tools available for user-level application development. Later, the server can be migrated
easily within the system for performance consideration.

4 CHORUS/MiX on the H1

The CHORUS/MiX system is based upon the Unix operating system as derived from the
Unix System V. It also includes features of BSD 4.3 system, and other CHORUS/MiX
enhancements. A Transputer machine under CHORUS/MiX from a user point of view
is defined by a network of H1 processors, one or more disks, an ETHERNET®interface,
and some link interface for specific I/0.
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the Nucleus. Their position “on top” of the Nucleus provides a structured, well-defined
way for system builders to cope with complexities of operating system development.
In the operating system context, a subsystem offers the means by which to supply a
complete standard operating system interface to standard application programs. New
servers can then be added to the set of servers delivering this interface as a means of
gracefully extending system and operating system capability. Servers are the building
blocks, the toolset, that system builders use to incorporate new distributed functions.

3.4 The CHORUS/MiX Subsystem
CHORUS/MiX (see Figure 4) integrates a Unix System V subsystem with the CHORUS

Nucleus to provide a standards-based, real-time, transparently distributed Unix envi-
ronment. CHORUS/MiX Unix services conform to X/Open specifications and have
been extended to real-time and to the distributed environment (distribution of pro-
grams as well as files), all in a way that is completely transparent to Unix application
programs. A CHORUS/MiX that conforms Unix System SVR4, with real-time and
distributed features, is under development.

CHORUS/MiX offers the traditional set of Unix functions for managing signals,
but extends them to manage real-time, multi-threaded and distributed processes. This
extension permits the creation - and manipulation from a distance - of processes on any
machine, while respecting rules of Unix regarding environments, open files and so on.

Finally, because CHORUS/MiX is fully compatible with and actually contains Unix
System V source code, it allows Unix processes to take advantage of such CHORUS
facilities as multi-threading, location transparent IPC, virtual memory management,
device drivers and servers development in user space and more.

3.5 Real-time and Distribution in CHORUS/MiX
The modular design of CHORUS/MiX allows binary compatibility with Unix , while

maintaining a well-structured, portable and efficient implementation. It also includes



The immediate domains of application for CHORUS products are those for which
the limits of traditional operating systems are preventing the development of fully sat-
isfactory solutions. This includes, for instance, the development of standard operating
system on advanced hardware architectures, in particular parallel machines like Net-
works of Transputers.

3.1 Basic Structure - Nucleus and Subsystems

The CHORUS architecture is based on a minimal real-time distributed Nucleus that in-
tegrates distributed processing and communication at the lowest level. The Nucleus pro-
vides generic tools - thread scheduling, real-time event handling, network-transparent
inter-process communications (IPC) and memory management - for independent servers
called subsystems, which coexist on top of the Nucleus.

Subsystems separate the functions of the operating system into sets of services
provided by autonomous servers, and provide operating system interfaces to application
programs.

The CHORUS organisation of Nucleus and subsystems represents the most logical
view of an open operating system for cooperative computing environments. Separating
functions increases the modularity, portability, scalability and “distributability” of the
overall system, which has a small, trustworthy micro-kernel as its foundation.

3.2 The Nucleus

The CHORUS Nucleus (see Figure 3) provides both local and global management of
services. At the lowest level, it manages the physical resources at each “node” with
four clearly defined components:

a classical real-time multi-tasking executive which controls allocation of local pro-
cessors, manages priority-based preemptive scheduling of CHORUS threads, and
provides primitives for fine grain synchronisation of, and low-level communication
between, threads;

- a distributed memory manager which can support the full range of memory archi-
tectures - linear, segmented or virtual,

- alow level hardware supervisor which dynamically dispatches external events such
as interrupts, traps and exceptions to dynamically defined routines or ports;

- an Inter Process Communication (IPC) manager provides the high-performance
global communication services (exchange of messages through ports) which are
the key to CHORUS architecture’s real-time, distributed capabilities.

3.8 The CHORUS Subsystems Concept

Subsystems in CHORUS architecture are sets of system servers that use the generic
services of the Nucleus to provide higher-level services. More simply, a subsystem is an
operating system built on top of the CHORUS Nucleus.

Subsystems manage physical and logical resources such as files, devices and high-
level communication services and they communicate via the IPC facility provided by



2.3.2 A Rationalised Scheduler

The interface to the scheduler has been cleaned-up and rationalised to allow easy manip-
ulation by real-time kernels or operating systems. The first rationalisation involves the
manipulation of an interrupted process, of particular importance to real-time kernels
implementing fast interruptible handlers.

When the scheduler swaps from a low-priority to a high-priority process, the state
of the interrupted process is saved in a shadow copy of the processor’s registers. This
copy can be saved to/restored from memory using special instructions. With this mecha-
nism, the H1 allows clean manipulation of its internal state, enabling improved software
scheduling on interrupts.

Another aspect of this improved interface is the availability of atomic instructions to
modify the hardware scheduler queues, enabling operating systems and real-time kernels
to use the lightningly fast context switching time of the Transputer, while maintaining
many more levels of process priority than the two offered by the H1 hardware.

Finally, semaphores, first introduced by Dijkstra in 1965 as a useful mechanism
for controlling access to shared resources by concurrent processes, have been included
in the H1 features. Two new instructions, signal and wait, have been introduced
to atomically handle semaphore structures allocated in memory. This feature greatly
simplifies the design of software kernels, as many processes usually need to gain access
to shared kernel information.

3 CHORUS

The CHORUS family of operating systems is centered around the small real-time dis-
tributed CHORUS Nucleus which provides a minimal set of essential generic services.
The other members of the family are built on top of the Nucleus and inherit its real-time
distributed computing capabilities. The CHORUS/MiX operating system incorporates
the CHORUS Nucleus as a base on which it builds a Unix interface that is transparently
extended to distributed processing and to use in real-time environments.

The key characteristics of the CHORUS family of operating systems are:

- Real-time: CHORUS systems are built on the real-time CHORUS Nucleus and
have all the functional characteristics and performance of classic real-time execu-
tives.

- Controlled transparent distribution of processing and of data: the management of
distribution can be entirely taken care of by CHORUS systems, yet controlled by
network administrators. In particular, CHORUS permits dynamically reconfigur-
ing the system and applications.

- Modularity: CHORUS systems are composed of a set of communicating modules
that can be assembled and reconfigured dynamically depending on the hardware
capability and application needs.

- Openness: CHORUS/MiX provides all the functionalities of a standard Unix
system (Unix SVR3.2 today, SVR4 in the future).

- Compatibility with Unix is provided by CHORUS/MiX : application programs,
utilities, and files used under Unix are supported without modification (binary

compatibility) by CHORUS/MiX .



- At the destination side, a c104 delivers the packet to the appropriate H1 link,
where the VCP will reconstruct the message from all the successive packets asso-
ciated with the appropriate channel.

Providing two separate chips for computing and routing offers many advantages:

- For small networks with only neighbour communications, H1ls can be used without
IMS C104, sparing the silicon cost of on-chip routing for other H1 functionalities.

- Routers can have many links (32 for the IMS C104), minimising the number of
routers in a network, and hence minimising the routing delay.

- Since messages do not flow through the H1s the total link bandwidth required is
just the one required by local processes.

- Network structure and scalability is independent of the number of processing
nodes.

2.2.8 H1 Communication Capability and CHORUS

The high flexibility and performance of the Hl communication system enable CHO-
RUS ’ Inter-Process-Communication system to be implemented with an unprecedented
efficiency, to an extent where local memory bandwidth becomes more of an issue than
communication bandwidth.

2.8 FEnhanced Process and Scheduler Models

Improved performance and communications are not the only aces dealt to the H1 in
its cradle. The process model itself has been refined and the interface to the scheduler
rationalised.

2.3.1 Process Behaviour Control: the Dual Processes

A new type of process, and a new mode of execution, have been added to the features
of H1. The new process type, or L-process, offers local handling of error conditions,
debugging traps, and a special instruction for implementing operating systems “system
calls”. The new mode of execution, or P-mode, allows an L-process to run in a protected
virtual address space.

Both P-mode and L-processes behave in a very similar way. In each case, the
execution stream switches to another process (the L-process stub for the P-mode, a
trap-handler for the L-process) whenever an exceptional situation is reached. This
other process, or controlling process, deals with the exceptional situation on behalf of
its dual. Thereafter, the initial process can be continued or discarded depending on the
seriousness of the exceptional situation.

The two main differences between P-mode execution and trap-handling lie in the
reduced instruction set available to P-mode (i.e. no scheduling or communication in-
structions) and the execution of P-mode processes in a segmented and protected virtual
address space.



to run its links at 100Mbits/s, giving a global bidirectional bandwidth of 80 Mbytes
per second.

2.2.2 The IMS C104: a Generic Routing Chip

The H1’s VCP enables any number of channels to link the Transputer with the external
world, but this is not enough to allow direct communication between any two processors
in a network. This is the job of a specialised chip, the IMS C104.

The IMS C104 is a general purpose worm-hole packet-switched routing chip, whose
block diagram is shown on Figure 2.

System Command Clink 0
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32x32
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Figure 2: IMS C104 block-diagram

It cooperates with the H1 in the following way:

- Any message sent by an H1 over a virtual channel is split into a number of small
packets by the VCP. This will enable the VCP to fairly multiplex physical links
by multiplexing the packets. Each packet contains a minimal header describing
the destination of the message.

- The links of the H1 being connected to a IMS C104, the packets are routed to their
destination encoded in the header. Worm-hole routing means that the routing of
a packet takes place as soon as the header has been received by the IMS C104,
potentially before the whole message has entered the chip. This mechanism makes

routing extremely fast; less than a micro-second is spent between reception of the
first bit of a packet and its retransmission out of the IMS C104.
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Figure 1: H1 block-diagram

channels can be handled by a network and each processor can have access to up to
65536 of them.

2.2.1 The H1’s Virtual Channel Processor

The H1’s VCP 1is the piece of hardware which handles all off-chip communications.
Its main role is to multiplex all the outgoing and incoming communications over the
chip’s four physical links. The VCP makes this multiplexing totally transparent to
the CPU. As far as the programmer is concerned, there is a quasi-infinite number of
communication channels going off-chip. Which physical link they will use is only known
when the VCP is configured, before any application starts executing.

The fact that the VCP is a separate entity from the CPU also means that compu-
tation and communication can proceed entirely in parallel, overlapping each other.

To sustain the high communication bandwidth required by the VCP, a new electrical
protocol has been devised for the links; the “Data/Strobe” mechanism enables the H1



2 The H1: A Virtual Machine

INMOS® Transputers are complete microcomputers integrated in a single VLSI chip.
Each Transputer combines an integer ALU, a two-priority hardware scheduler, some
on-chip memory, an advanced external memory interface and communication links. In
addition, some versions incorporate a floating point unit or some application specific
logic. The strength of the Transputer lies in the close integration, both at the micro-
architecture and software level, of communication and (multi-)processing. This makes
the design of parallel or concurrent systems using Transputers especially easy and effi-
cient.

The H1 is the first member of INMOS’ new generation of Transputers. After achiev-
ing “virtual processing” on the first generation (the hardware scheduler gives each pro-
cess access to a “virtual sequential processor”), INMOS enters the age of “virtual com-
munications” with the new generation. But the improvements over the first generation
Transputer go much beyond enhanced communication.

2.1 Performance Improvements

The IMS T8xx®family of Transputers offered ~ 10 Mips and &~ 3 Mflops peak perfor-
mance. The H1 boosts these values to more than 150 Mips and more than 20 Mflops
(> 60 Mips and > 10 Mflops sustained) while staying 100% compatible with the IMS
T805 instruction set.

To achieve this amazing result, INMOS went through a careful redesign of the micro-
architecture. The H1 has a totally new pipelined superscalar architecture, allowing it
to execute many instructions grouped together every clock cycle. This pipeline is itself
driven by a high speed clock: while retaining the Transputer 5Mhz external clock, the
first H1 will be internally a 50 Mhz device.

To feed its powerful pipelined execution units, the H1 includes a two-level cache
offering access to multiple memory locations each cycle. The first level cache, organised
as a multi-ported register set, gives concurrent access to the memory locations in the
current process’ work-space. The second level is a generic 16Kb fully associative cache.
This main cache replaces the on-chip memory found on earlier Transputers.

All these features should make even single H1 nodes one of the fastest CHO-
RUS/MiX machines on the market. Figure 1 shows the cache and pipeline described
earlier.

2.2  Commaunicating through Virtual Channels

Communication and parallelism have always been key features of INMOS processors.
Mechanisms are offered, at the instruction set level, for building parallel programs of
communicating processes. The first generation of Transputers offered intra-Transputer
communication through memory to memory DMA and inter-processor communication
through DMA over serial communication links. The input and output instructions
gave direct access to the underlying hardware running at 20Mbits per second.

Though enabling very efficient parallel machines and programs to be built, this
initial design induced undesirable limitations on some application programs.

To 1ift all these limitations, INMOS introduces virtual channels on the H1 family
of Transputers. A virtual channel enables communication between any processes in a
network of processors, irrespective of their physical location. Any number of virtual
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Abstract

This paper describes how the CHORUS distributed operating system is adapted
to the H1 Transputer. It shows how CHORUS will take advantage of the unique
H1 features for communication and distribution and how, in turn, CHORUS/MiX
will provide on the H1 a standard Unix environment where distribution and par-
allelism are carefully integrated in order to extend Unix capabilities. The user’s
view of the system as well as the main lines of its implementation are highlighted.

1 Introduction

The Transputer family of processors has integrated the communication as a basic func-
tion of the processor. CHORUS ® | on the other hand, is the first commercially available
product which introduces communication as a basic function of a standard operating
system. How could they miss one another?

Having the standard UNIX®offered by CHORUS available on the H1 Transputer
opens the field for new applications and new markets, reconciling the benefit of standard
interface and the potential of efficient parallelism.

ARCHIPEL, Chorus systémes and INMOS, a member of SGS-THOMSON Micro-
electronics Group, conduct a joint development program to port the CHORUS operating
system to the H1 Transputer.

This paper describes CHORUS on the H1 Transputer, how it will be perceived by
its users and how it is built.

®CHORUS is a registered trademark of Chorus systémes.

Unix is a registered trademark of UNIX System Laboratories, Inc. in the U.S.A. and other countries.
®ARCHIPEL is a registered trademark of ARCHIPEL S.A.

INMOS and IMS are registered trademark of INMOS Limited.



