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Abstract

An important trend in operating system development is the restructuring of the traditional
monolithic operating system kernel into independent servers running on top of a minimal
nucleus or “microkernel”. This approach arises out of the need for modularity and flexibility in
managing the ever-growing complexity caused by the introduction of new functions and new
architectures. In particular, it provides a solid architectural basis for distribution, fault toler-
ance, and security. Microkernel-based operating systems have been a focus of research for a
number of years, and are now beginning to play a role in commercial UNIX systems.

The ultimate feasibility of this attractive approach is not yet widely recognised, however. A pri-
mary concern is efficiency: can a microkernel-based modular operating system provide perfor-
mance comparable to that of a monolithic kernel when running on comparable architectures?
The elegance and flexibility of the client-server model may exact a cost in message-handling
and context-switching overhead. If this penalty is too great, commercial acceptance will be lim-
ited. Another pragmatic concern is compatibility: in an industry relying increasingly on porta-
bility and standardisation, compatible interfaces are needed not only at the level of application
programs, but also for device drivers, streams modules, and other components. In many cases,
binary as well as source compatibility is required. These concerns affect the structure and
organisation of the operating system.

The Chorus team has spent the past six years studying and experimenting with UNIX “kernelisa-
tion” as an aspect of its work in modular distributed and real-time systems. In this paper we
examine aspects of the current CHORUS system in terms of its evolution from the previous ver-
sion. Our focus is on pragmatic issues such as performance and compatibility, as well as con-
siderations of modularity and software engineering.
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1. Microkernel Architectures

A recent trend in operating system development consists of structuring the operating system as
a modular set of system servers which sit on top of a minimal microkernel, rather than using the
traditional monolithic structure. This new approach promises to help meet system and platform
builders’ needs for a sophisticated operating system development environment that can cope
with growing complexity, new architectures, and changing market conditions. In this operating
system architecture, the microkernel provides system servers with generic services, such as pro-
cessor scheduling and memory management, independent of a specific operating system. The
microkernel also provides a simple inter-process communication (IPC) facility that allows sys-
tem servers to call each other and exchange data regardless of where they are executed, in a
multiprocessor, multicomputer, or network configuration.

This combination of primitive services forms a standard base which in turn supports the imple-
mentation of functions that are specific to a particular operating system or environment. These
system-specific functions can then be configured, as appropriate, into system servers managing
the other physical and logical resources of a computer system, such as files, devices and high-
level communication services. We refer to such a set of system servers as a subsystem. Real-
time systems tend to be built along similar lines, with a simple, generic executive supporting
application-specific real-time tasks.

1.1 UNIX and Microkernels

UNIX introduced the concept of a standard, hardware-independent operating system, whose por-
tability allowed platform builders to reduce their time to market by obviating the need to
develop proprietary operating systems for each new platform.

However, as more function and flexibility is continually demanded, it is unavoidable that
today’s versions become increasingly more complex. For example, UNIX is being extended
with facilities for real-time applications and on-line transaction processing. Even more funda-
mental is the move toward distributed systems. It is desirable in today’s computing environ-
ments that new hardware and software resources, such as specialised servers and applications,
be integrated into a single system, distributed over a network. The range of communication
media commonly encountered includes shared memory, buses, high-speed networks, local-area
networks, and wide-area networks. This trend to integrate new hardware and software com-
ponents will become fundamental as collective computing environments emerge.

To support the addition of function to UNIX and its migration to distributed environments, it is
desirable to map UNIX onto a microkernel architecture, where machine dependencies may be
isolated from unrelated abstractions and facilities for distribution may be incorporated at a very
low level.

The attempt to reorganise UNIX to work within a microkernel framework poses problems, how-
ever, if the resultant system is to behave exactly as a traditional UNIX implementation. A pri-
mary concern is efficiency: a microkernel-based modular operating system must provide perfor-
mance comparable to that of a monolithic kernel. The elegance and flexibility of the client-
server model may exact a cost in message-handling and context-switching overhead. If this
penalty is too great, commercial acceptance will be limited. Another pragmatic concern is com-
patibility: in an industry relying increasingly upon portability and standardisation, compatible
interfaces are needed not only at the level of application programs, but also for device drivers,
streams modules, and other components. In many cases binary as well as source compatibility
is required. These concerns affect the structure and organisation of the operating system.
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Chorus systèmes A New Look at Microkernel-Based UNIX Operating Systems CS/TR-91-7

There is work in progress on a number of fronts to emulate UNIX on top of a microkernel archi-
tecture, including the Mach [Gol90], V [Che90], and Amoeba [Tan90] projects. Plan 9 from
Bell Labs [Pik91] is a distributed UNIX-like system based on the “minimalist” approach.
CHORUS versions V2 and V3 represent the work we have done to solve the problems of compa-
tibility and efficiency.

1.2 The CHORUS Microkernel Technology

The Chorus team has spent the past six years studying and experimenting with UNIX “kernelisa-
tion” as an aspect of its work in modular, distributed and real-time systems. The first imple-
mentation of a UNIX-compatible microkernel-based system was developed during 1984 through
1986 as a research project at INRIA. Among the goals of this project were to explore the feasi-
bility of shifting as much function as possible out of the kernel and to demonstrate that UNIX

could be implemented as a set of modules that did not share memory. In late 1986, an effort to
create a new version, based on an entirely rewritten CHORUS nucleus, was launched at Chorus
systèmes. The current version maintains many of the goals of its predecessor and adds some
new ones, including real-time support and − not incidentally − commercial viability. A UNIX

subsystem compatible with System V Release 3.2 is currently available, with System V Release
4.0 and 4.4BSD systems under development. The System V Release 3.2 implementation per-
forms comparably with well-established monolithic-kernel systems on the same hardware, and
better in some respects. As a testament to its commercial viability, the system has been adopted
for use in commercial products ranging from X terminals and telecommunication systems to
mainframe UNIX machines.

In this paper we examine aspects of the current CHORUS system in terms of its evolution from
the previous version. Our focus is on pragmatic issues such as performance and compatibility,
as well as considerations of modularity and software engineering.

In section 2, we review the previous CHORUS version. Section 3 evaluates the previous version
and discusses how the lessons learned from its implementation led to the main design decisions
for the current version. The subsequent sections focus on specific aspects of the current design.

2. CHORUS V2 Overview

The CHORUS project, while at INRIA, began researching distributed operating systems with
CHORUS V0 and V1. These versions proved the viability of a modular, message-based distri-
buted operating system, examined its potential performance, and explored its impact on distri-
buted applications programming.

Based on this experience, CHORUS V2 [Arm86, Roz87] was developed. It represented the first
intrusion of UNIX into the peaceful CHORUS landscape. The goals of this third implementation
of CHORUS were:

1. To add UNIX emulation to the distributed system technology of CHORUS V1;

2. To explore the outer limits of “kernelisation”; demonstrate the feasibility of a UNIX

implementation with a minimal kernel and semi-autonomous servers;

3. To explore the distribution of UNIX services;

4. And to integrate support for a distributed environment into the UNIX interface.

Since its birth, the CHORUS architecture has always consisted of a modular set of servers run-
ning on top of a microkernel (the nucleus) which included all of the necessary support for
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distribution.

The basic execution entities supported by the V2 nucleus were mono-threaded actors running in
user mode and isolated in protected address spaces. Execution of actors consisted of a sequence
of “processing-steps” which mimicked atomic transactions: ports represented operations to be
performed; messages would trigger their invocation and provide arguments. The execution of
remote operations were synchronised at explicit “commit” points. An ever-present concern in
the design of CHORUS was that fault-tolerance and distribution are tightly coupled; hardware
redundancy both increases the probability of faults and gives a better chance to recover from
these faults.

Communication in CHORUS V2 was, as in many current systems, based upon the exchange of
messages through ports. Ports were attached to actors, and had the ability to migrate from one
actor to another. Furthermore, ports could be gathered into port groups, which allowed mes-
sage broadcasting as well as functional addressing. For example, a message could be directed
to all members of a port group or to a single member port which resided on a specified site. The
port group mechanism provided a flexible set of client-server mapping semantics including
dynamic reconfiguration of servers.

Ports, port groups, and actors were given global unique names, constructed in a distributed
fashion by each nucleus for use only by the nucleus and system servers. Private, context-
dependent names were exported to user actors. These port descriptors were inherited in the
same fashion as UNIX file descriptors.

2.1 UNIX

On top of this architecture, a full UNIX System V was built.

In V2, the whole of UNIX was split into three servers: a process manager, dedicated to process
management, a file manager for block device and file system management, and a device
manager for character device management. In addition, the nucleus was complemented with
two servers, one which managed ports and port groups, and another which managed remote
communications (see Figure 1). UNIX network facilities (sockets) were not implemented at this
time.

A UNIX process was implemented as a CHORUS actor. All interactions of the process with its
environment, i.e. all system calls, were performed as exchanges of messages between the pro-
cess and system servers. Signals were also implemented as messages.

This “modularisation” impacted UNIX in the following ways:

1. UNIX data structures were split between the nucleus and several servers. Splitting the
data structures, rather than replicating them, was done to avoid consistency problems.
Messages between these servers contained the information managed by one server and
required by another in order to provide its service. Careful thought was given to how
UNIX data structures were split between servers to minimise communication costs.

2. Most UNIX objects, files in particular, were designated by network-wide capabilities
which could be exchanged freely between subsystem servers and sites. The context of a
process contained a set of capabilities representing the objects accessed by the process.

As many of the UNIX system calls as possible were implemented by a process-level library.
The process context was stored in process-specific library data at a fixed, read-only location
within the process address space. The library invoked the servers, when necessary, using a
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Figure 1. CHORUS-V2 Architecture

remote procedure call (RPC) facility. For example, the process manager was invoked to handle
a fork(2) system call and the file manager for a read(2) system call on a file.

This library offered only source-level compatibility with UNIX, but was acceptable because
binary compatibility was not a project goal. The library resided at a predefined user virtual
address in a write-protected area. Library data holding the process context information was not
completely secure from malicious or unintentional modification by the user. Thus, errant pro-
grams could experience new, unexpected error behaviour. In addition, programs that depended
upon the standard UNIX address space layout could cease to function because of the additional
address space contents.

2.2 Extended UNIX Services

CHORUS V2 extended UNIX services in two ways:

� by allowing their distribution while retaining their original interface (e.g. remote process
creation and remote file access).

� by providing access to new services without breaking existing UNIX semantics (e.g.
CHORUS IPC).
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2.2.1 Distribution of UNIX Services

Access to files and processes extended naturally to the remote case due to the modularity of
CHORUS’s UNIX and its inherent protocols. Files and processes, whether local or remote, were
manipulated using CHORUS IPC through the use of location-transparent capabilities.

In addition, CHORUS V2 extended UNIX file semantics with port nodes. A port node was an
entry in the file system which had a CHORUS port associated with it. When a port node was
encountered during path-name analysis, a message containing the remainder of the path to be
analysed was sent to the associated port. Port nodes were used to automatically interconnect
file trees.

For processes, new protocols between process managers were developed in order to distribute
fork and exec operations. Remote fork and exec were facilitated because:

� the management of a process context was not distributed; each process context was
managed entirely by only one system server (the process manager),

� a process context contained only global references to resources (capabilities).

Therefore, creating a remote process could be done almost entirely by transferring the process
context from one process manager to another.

Since signals were implemented as messages, their distribution was trivial due to the location
transparency of CHORUS IPC.

2.2.2 Introduction of New Services

CHORUS IPC was introduced at user-level. Its UNIX interface was designed in the standard
UNIX style:

1. Ports and port groups were known, from within processes, by local identifiers. Access to
a port was controlled in a fashion analogous to the access to a file.

2. Ports and port groups were protected in a similar fashion to files (with uids and gids).

3. Port and port group access rights were inherited on fork and exec exactly as are file
descriptors.

3. Analysis of CHORUS V2

Experience developing and using CHORUS V2 gave us valuable insight into the basic operating
system services that a microkernel must provide to implement a rich operating system environ-
ment such as UNIX. CHORUS V2 was our third reimplementation of the CHORUS nucleus, but
represented our first attempt at integrating an existing, complex operating system interface with
microkernel technology. This research exercise was not without faults. However, it demon-
strated that we did a number of things correctly. The CHORUS V2 basic IPC abstractions − loca-
tion transparency, untyped messages, asynchronous and RPC protocols, ports, and port groups −
have proven to be well suited to the implementation of distributed operating systems and appli-
cations. These abstractions have been entirely retained for CHORUS V3; only their interface has
been enriched to make their use more efficient.

The basic modular architecture of the UNIX subsystem has also been retained in the implemen-
tation of CHORUS V3 UNIX subsystems. Some new servers, such as a BSD socket manager,
have been added to provide new function that was not included in CHORUS V2.
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Chorus systèmes A New Look at Microkernel-Based UNIX Operating Systems CS/TR-91-7

Version 3 of the CHORUS nucleus has been completely redesigned and reimplemented around a
new set of project goals. These goals were put in place as a direct result of our experience
implementing our first distributed UNIX system.

In the following subsections we briefly state our new goals and then explain how these new
goals affected the design of CHORUS V3.

3.1 CHORUS V3 Goals

The design of CHORUS V3 system [Arm89, Arm90, Her88, Roz88] has been strongly influenced
by a new major goal: to design a microkernel technology suitable for the implementation of
commercial operating systems. CHORUS V2 was a UNIX-compatible distributed operating sys-
tem. The CHORUS V3 microkernel is able to support operating system standards while meeting
the new needs of commercial systems builders.

These new goals determined new guidelines for the design of the CHORUS V3 technology:

� Portability: the CHORUS V3 microkernel must be highly portable to many machine archi-
tectures. In particular, this guideline motivated the design of an architecture-independent
memory management system [Abr89], taking the place of the hardware-specific CHORUS V2
memory management.

	 Generality: the CHORUS V3 microkernel must provide a set of functions that are
sufficiently generic to allow the implementation of many different sets of operating system
semantics; some UNIX-related features had to be removed from the CHORUS V2 nucleus.
The nucleus must maintain its simplicity and efficiency for users or subsystems which do
not require high level services.


 Compatibility: UNIX source compatibility in CHORUS V2 had to be extended to binary
compatibility in V3, both for user applications and device drivers. In particular, the
CHORUS V3 nucleus had to provide tools to allow subsystems to build binary compatible
interfaces.

� Real-time: process control and telecommunication systems comprise important targets for
distributed systems. In these areas, the responsiveness of the system is of prime importance.
The CHORUS V3 nucleus is, first and foremost, a distributed real-time executive. The real-
time features may be used by any subsystem, allowing for example, a UNIX subsystem to be
naturally extended to be suitable for real-time applications needs.

� Performance: for commercial viability, good performance is essential in an operating sys-
tem. While offering the base for building modular, well-structured operating systems, the
nucleus interface must allow these operating systems to reach at least the same performance
as conventional, monolithic, implementations.

These new goals forced us to reconsider CHORUS V2 design choices. In most cases, the archi-
tectural elements were retained in CHORUS V3; only their interface evolved. Whenever possi-
ble, the V3 interface reflects our desire to leave it to the subsystem designer to negotiate the
tradeoffs between simplicity and efficiency, on the one hand, and more sophisticated function,
on the other.

 Chorus systèmes, 1991 − 7 − February, 1991



Chorus systèmes A New Look at Microkernel-Based UNIX Operating Systems CS/TR-91-7

Site

Communication Medium

Ports

Site

Actors

Threads Threads
Ports

..................................................

Message

.........................................

.......................................

.........

Actors

Figure 2. CHORUS V3 Nucleus Abstractions

3.2 CHORUS Processing Model

Problems arose with the CHORUS V2 processing model when UNIX signals were first imple-
mented. To treat asynchronous signals in V2 mono-threaded actors, it was necessary to intro-
duce the concept of priorities within messages to expedite the invocation of a signaling opera-
tion. Even so, the priorities went into effect only at fixed synchronisation points, making it
impossible to perfectly emulate UNIX signal behaviour. Further work has shown that signals
are one of the major stumbling blocks for building fault tolerant UNIX systems.

Lesson: We found the processing-step model of computation to be a poor fit with the asyn-
chronous signal model of exception handling. In order to provide full UNIX emulation, a

more general computational model was necessary for CHORUS V3.

The solution to this problem gave rise to the V3 multi-threaded processing model. A CHORUS

V3 actor is merely a resource container, offering, in particular, an address space in which multi-
ple threads may execute. Threads are scheduled as independent entities, allowing real parallel-
ism on a multiprocessor architecture. In addition, multiple threads allow the simplification of
the control structure of server-based applications. New nucleus services, such as thread execu-
tion control and synchronisation have been introduced.

3.3 CHORUS Inter-Process Communication

As a consequence of the change to the basic processing model, the inter-process communication
model also evolved. In the V2 processing-step model, IPC and execution were tightly bound,
yielding a mechanism that resembled atomic transactions.

This tight binding of communication to execution did not necessarily make sense in a multi-
threaded CHORUS V3 system. Thus, the atomic transactions of V2 have been replaced, in V3,
by the remote procedure call paradigm and has since evolved into an extremely efficient
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lightweight RPC protocol.

One aspect of the IPC mechanism that has not changed in CHORUS V3 is that messages remain
untyped. The CHORUS IPC mechanism is simple and efficient when communicating among
homogeneous sites. When communicating between heterogeneous sites, higher-level protocols
are used, as needed. A guideline in the design of CHORUS V2, retained in V3, was to allow the
construction of simple and efficient applications without forcing them to pay a penalty for
sophisticated mechanisms which were required only by specific classes of programs.

3.4 CHORUS Ports

A number of enhancements concerning CHORUS ports have been made to provide more general-
ity and efficiency in the most common cases.

3.4.1 Port Naming

Recall that in V2 context-dependent port names were exported to the user-level while global
port names were used by the nucleus and system servers. The user-level context-dependent port
names of V2 were intended to provide security and ease of use. It was difficult, however, for
applications to exchange port names, since it required intervention by the nucleus and posed
bootstrapping problems. As a result, context-dependent names were inconvenient for distri-
buted applications, such as name servers. In addition, many applications had no need of the
added security the context-dependent names provided.

Lesson: CHORUS V3 makes global names of ports and port groups (unique identifiers) visi-
ble to the user, discarding the UNIX-like CHORUS V2 contextual naming scheme. Contex-

tual identifiers turned out not to be an effective paradigm.

The first consequence of using unique identifiers is simplicity: port and port group names may
be freely exchanged by nucleus users, avoiding the need for the nucleus to maintain complex
actor context. The second consequence is a lower level of protection: the CHORUS V3 philoso-
phy is to provide subsystems with the means for implementing their own level and style of pro-
tection rather than enforcing protection directly in the microkernel. For example, if the security
of V2 context-dependent names is desired, a subsystem can easily and efficiently export a pro-
tected name-space server. V3 unique identifiers have proven to be key to providing distributed
UNIX services in an efficient manner.

3.4.2 Port Implementation

A goal of the V2 project was to determine what were the minimal set of functions that a micro-
kernel should have in order to support a robust base of computing. To that end, the manage-
ment of ports and port groups was put into a server, external to the nucleus. Providing the abil-
ity to replace a portion of the IPC did not prove to be useful, however, since IPC was a funda-
mental and critical element of all nucleus operations. Maintaining it in a separate server ren-
dered it more expensive to use.

Lesson: We found that actors, ports, and port groups are basic nucleus abstractions.
Splitting their management did not provide significant benefit, but did impact system per-
formance. Actor, port, and port group management has been moved back into the nucleus

for V3.
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3.4.3 UNIX Port Extensions

When extending the UNIX interface to give access to CHORUS IPC, we maintained normal
UNIX-style semantics. Employing the same form as the UNIX file descriptor for port descrip-
tors was intended to provide uniformity of model. The semantics of ports were sufficiently dif-
ferent from the semantics of files to negate this advantage. In operations such as fork, for
example, it did not make sense to share port descriptors in the same fashion as file descriptors.
Attempting to force ports into the UNIX model resulted in confusion.

Lesson: A user-level IPC interface was important, but giving it UNIX semantics was
cumbersome and unnecessary. This lesson is an example of a larger principle; the nucleus
abstractions should be primitive and generally applicable − they should not be coerced into

the framework of a specific operating system.

V3 avoids this issue by, as previously mentioned, exporting global names. Since the V3
nucleus no longer manages the sharing of global port and port group names, it is up to the indi-
vidual subsystem servers to do so. In particular, if counting the number of references to a given
port is important to a subsystem, it is the subsystem itself that must maintain the reference
count. On the other hand, a subsystem that has no need for reference counting is not penalised
by the nucleus.

Using V2 port nodes to interconnect file systems was a simple, but extremely powerful, exten-
sion to UNIX. Since all access to files was via CHORUS messages, port nodes provided network
transparent access to regular files as well as to device nodes. They also, however, introduced a
new file type into the file system. This caused many system utilities, such as ls and find, to
not function properly. Thus, all such utilities had to be modified to take the new file type into
account.

Port nodes have been maintained in CHORUS V3 (however, they are now called “symbolic
ports”). In future CHORUS UNIX systems, the file type “symbolic port” may be eliminated by
inserting the port into the file system hierarchy using the mount system call. These “port
mount points” would carry the same semantics as a normal mounted file system.

3.5 Virtual Memory

The virtual memory subsystem has undergone significant change. The machine dependent vir-
tual memory system of CHORUS V2 has been replaced, in V3, by a highly portable VM system.
The VM abstractions presented by the V3 nucleus include “segments” and “regions.” Segments
encapsulate data within a CHORUS system and typically represent some form of backing store,
such as a swap area on a disk. A region is a contiguous range of virtual addresses within an
actor that map a portion of a segment into its address space. Requests to read or to modify data
within a region are converted by the virtual memory system into read or modify requests within
the segment. “External Mappers” interact with the virtual memory system using a nucleus-to-
Mapper protocol to manage data represented by segments. Mappers also provide the synchroni-
sation needed to implement distributed shared memory. For more details on the CHORUS V3
virtual memory system, see [Abr89].

3.6 Actor Context

CHORUS V2 was built around a “pure” message-passing model, in which strict protection was
incorporated at the lowest level; all servers were implemented in protected user address spaces.
This distinct separation enforced a clean, modular design of a subsystem. However, it also led
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to several problems:


 A UNIX subsystem based on CHORUS V2 required the use of user-level system call stubs
and altered the memory layout of a process and, therefore, could never provide 100% binary
compatibility;

� All device drivers were required to reside within the nucleus;

� Context switching expense was prohibitively high.

The most fundamental enhancement made between CHORUS V2 and V3 was the introduction of
the supervisor actor. Supervisor actors share the supervisor address space and their threads exe-
cute in a privileged machine state. Although they reside within the supervisor address space,
supervisor actors are truly separate entities; they are compiled, link edited, and loaded indepen-
dently of the nucleus and of each other.

The introduction of supervisor actors creates several opportunities for system enhancement in
the areas of compatibility and performance. Section 4 discusses the ramifications of supervisor
actors in-depth.

3.7 UNIX Subsystem

As a consequence of these nucleus evolutions, the UNIX subsystem implementation has also
evolved. In particular, full UNIX binary compatibility has been achieved. Internally, the UNIX

subsystem makes use of new nucleus services, such as multi-threading and supervisor actors.
The CHORUS V2 user-level UNIX system-call library has been moved inside the process
manager and is now invoked directly by system-call traps.

Experience with the decomposition of UNIX System V for V2 showed, not surprisingly, that
performing this modularisation is difficult. Care must be taken to decompose the data structures
and function along meaningful boundaries. Performing this decomposition is an iterative pro-
cess. The system is first decomposed along broad functional lines. The data structures are then
split accordingly, possibly impacting the functional decomposition.
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Chorus systèmes A New Look at Microkernel-Based UNIX Operating Systems CS/TR-91-7

Generic Micro-Kernel

(Transparently distributed)

UNIX Subsystem Servers

(Binary compatible interface)

UNIX Applications

Applications, Utilities

(sh, cc, ed, ...)

UNIX system calls

� ������������� ��� ��� ��! "�� #$�&%('�)+* �+, -�. /

Hardware

CHORUS Nucleus

CHORUS Nucleus calls

0 ��1�2 �3�4�&%�'�� *

�5"6�87���)���%('�� *

-�� "6�9�6:9:$�&%('�� *

; 2 � �4�&%�'�� *
✉ ✉

✉

✉

Figure 3. CHORUS/MiX-V3 Architecture

4. Evolution in Nucleus Support for Subsystems: Supervisor Actors

Supervisor actors, as mentioned above, share the supervisor address space and their threads exe-
cute in a privileged machine state, usually implying, among other things, the ability to execute
privileged instructions. Otherwise, supervisor actors are fundamentally similar to regular user
actors. They may create multiple ports and threads, and their threads access the same nucleus
interface. Any user program can be run as a supervisor actor, and any supervisor actor which
does not make use of privileged instructions or connected handlers (see below) can be run as a
user actor. In both cases a recompilation of the program is not needed. Although they share the
supervisor address space, supervisor actors are paged just as user actors and may be dynami-
cally loaded and deleted.

Supervisor actors, alone, are granted direct access to the hardware event facilities. Using a stan-
dard nucleus interface, any supervisor actor may dynamically establish a handler for any partic-
ular hardware interrupt, system call trap, or program exception. A connected handler executes
as an ordinary subroutine, called directly from the corresponding low-level handler in the
nucleus. Several arguments are passed to it, including the interrupt/trap/exception number and
the processor context of the executing thread. The handler routine may take various actions,
such as processing an event and/or awakening a regular thread in the actor. The handler routine
then returns to the nucleus.
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User actors

Supervisor actors

Actors Address spaces
Figure 4. Supervisor Actors

4.1 External Device Drivers

It is important to note that no subsystem in CHORUS V3 is ever required to use connected
handlers or supervisor actors. For example, a subsystem designer may choose to export a pro-
gramming interface based entirely upon messages rather than upon traps. The CHORUS nucleus
can handle program exceptions either by sending an RPC message to a designated exception
port or by calling a connected exception handler. Only actors that process device interrupts are
required to be implemented as supervisor actors. Even so, device drivers may be split into two
parts, if desired; a “stub” supervisor actor to translate interrupts into messages and a user-mode
actor that processes these interrupt messages. Connected handlers, however, provide significant
advantages in both performance and binary compatibility:

< The nucleus need not be modified each time that a new device type is to be supported on a
given machine;

= Interrupt processing time is greatly reduced, allowing real-time applications to be imple-
mented outside of the nucleus.

Connected interrupt handlers allow device drivers to exist entirely outside of the nucleus, and to
be dynamically loaded and deleted, with no loss in interrupt response or overall performance.
For example, to demonstrate the power and flexibility of the CHORUS V3 nucleus, we have con-
structed a user-mode file manager that communicates using CHORUS IPC with a supervisor
actor which manages a physical disk. Both the supervisor actor and the user-mode file manager
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can be dynamically loaded from a remote site. Additionally, the user-mode file manager can be
debugged using standard debuggers.

MACHINE 1 MACHINE 2

login: francois
passwd:

Chorus MiX SR3.2 07/01/1991

You have new mail.

rondo:francois>

login: francois
passwd:

Chorus MiX SR3.2 07/01/1991

You have new mail.

rondo:francois>

Ethernet

Load dynamically and remotely a file Manager
on Machine 2 from machine 1 :

on machine_2  FM_PROC

usr bin

Disk_driverFM_PROC

/

File

Manager

Disk
Driver

Process

ManagerManager

Process

Manager

DeviceManager

File

Disk Driver

CHORUS Nucleus CHORUS Nucleus

Unix

Process Unix

Process

Unix

Process

Unix

Process Unix

Process

System Space

User Space

Figure 5. CHORUS/MiX File Manager as a UNIX Process in User Space

Interrupt handlers may be stacked, since multiple device types often share a single interrupt
level. In this case the sequence of handlers is executed in priority order until one of them
returns a code indicating that no further handlers should be called. Connected interrupt handlers
have been designed to allow subsystems to incorporate proprietary, object-only device drivers
that conform to one of the relevant binary standards that are emerging in this area. Without this
mechanism, object compatibility would require incorporating entire device drivers within the
nucleus.

4.2 Compatibility

System call trap handlers are essential for both performance and, as it has been pointed out in
[Tan90], binary compatibility. Any subsystem may dynamically connect either a general trap-
handling routine or a table of specific system call handlers, the latter providing an optimised
path for UNIX-style interfaces. An alternative mechanism, the system-wide user-level shared
library used in CHORUS V2, would seem to provide equivalent system call performance. How-
ever, we found that it is difficult to protect subsystem data that share the address space of the
user program, especially if processes are multi-threaded. As we have seen, malicious or
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innocent but erroneous programs can change the behaviour of system calls. If functions must be
moved from the shared library into separate servers for protection, increased IPC traffic results.
Finally, the presence of the library code and data in the user context can interfere with programs
that use a large portion of the address space or manage the address space in some particular
fashion. Traps to supervisor actors, by contrast, provide a low-overhead, self-authenticating
transfer to a protected server, while maintaining full transparency for the user program.

Lesson: Use of shared libraries produces compatibility and error-detection problems. For
100% UNIX binary compatibility, it is necessary to maintain the standard UNIX trap inter-

face and address space layout.

4.3 Performance Benefits

Performance benefits of supervisor actors come in several areas. Memory and processor context
switches are minimised through use of connected handlers rather than messages, and in general
through address-space sharing of actors of a common subsystem which happen to be running on
a single site. Trap expense can be avoided for nucleus system calls executed by supervisor
actors. Finally, supervisor actors allow a new level of RPC efficiency. The “lightweight RPC”
mechanism of [Ber90] optimises pure RPC for the case where client and server reside on the
same site. We further optimise for the case where no protection barrier need be crossed
between client and server. This “featherweight” RPC is substantially lower in overhead, while
still mediated by the nucleus and still using an interface similar to that of pure RPC.

Lesson: Implementing part of an operating system in user-level servers, while elegant,
imposes prohibitive message passing and context switching overheads not present in a
monolithic implementation of the system. To allow microkernel technology to compete in
the marketplace, it was necessary to provide a solution to these problems. Supervisor
actors provide the advantages of a modular system while minimally sacrificing perfor-

mance.

4.4 Construction of Subsystems

Subsystems may be constructed using combinations of supervisor or user actors. Any server
may itself belong to a subsystem, such as UNIX, as long as it does not produce any infinite
recursions, and may be either local or remote. Servers that need to issue privileged instructions
or that are responsible for handling traps or interrupts must be supervisor actors.

4.5 Protection Issues

Computer systems often give rise to tradeoffs between security and performance, and we must
consider the nature of the sacrifice being made when multiple servers and the microkernel share
the supervisor address space. Protection barriers are weakened, but only among mutually-
trusted system servers. The ramifications of the weakening of protection barriers can be minim-
ised by systematically adhering to the following design rule: individual servers must never pass
data through shared memory.

Allowing a server to explicitly access other servers’ data would completely break system modu-
larity. This rule being enforced, the only genuine sacrifice for using supervisor actors is a
degree of bug isolation among the components of a running system. This is somewhat miti-
gated by the fact that subsystem servers may be debugged in user mode. In fact, this forms our
day-to-day development activity: servers are developed and debugged in user mode. When
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validated, they are loaded as supervisor actors for better performance, if desired. However, the
overall CHORUS philosophy is to allow the subsystem designer or even a system manager to
choose between protection and performance on a case-by-case basis, and to alter those choices
easily.

5. Evolution in CHORUS IPC

CHORUS V3 IPC is based on the accumulated experience gained since CHORUS V0. Here again,
the main characteristics of the IPC facilities are their simplicity and performance.

5.1 Naming

The first aspect which has evolved since V2 is naming: for many reasons, distributed applica-
tions need to transfer names among their individual components. This is most efficiently
achieved with a single space of global names that are usable in any context, from nucleus to
application level. The main difficulty with this style of naming is protection.

In CHORUS V3, ports and port groups are named using unique identifiers which are visible at
every level. Basic protection for these names is threefold:

1. All messages are stamped by the nucleus with the sending port’s unique identifier as well
as its protection identifier. Protection identifiers allow the source of a message to be reli-
ably identified as they may be modified only by trusted actors. Using these facilities pro-
vided by the nucleus, subsystems have the choice to implement their own more stringent
user authentication mechanisms if needed.

2. Global names are randomly generated in a large, sparse name space; knowing a valid glo-
bal name does not help much in finding other valid names.

3. Objects within CHORUS may be named using capabilities which consist of a <name, key>
tuple. Capabilities are constructed using whatever techniques are deemed appropriate by
the server that provides them, and may incorporate protection schemes.

Port groups, as implemented by the nucleus, have keys related to the group name by means of a
non-invertible function. Knowledge of the group name conveys the right to send messages to
the group, but knowledge of the key is required to insert or delete members from the group.

Higher degrees of port and/or message security can be implemented by individual subsystems,
as required. Subsystems may act as intermediaries in message communications to provide pro-
tection, or may choose to completely exclude CHORUS IPC from the set of abstractions they
export to user tasks.

5.2 Message Structure

A second area of evolution in the CHORUS V3 IPC is message structure.

The memory management units of most modern machines allow moving data from the address
space of one actor to the address space of another actor by remapping. This facility is exploited
in CHORUS V3 IPC, which allows transmission of message bodies between actors within a sin-
gle site by means of address remapping. In situations where data is to be copied and not moved
between address spaces, CHORUS V3 has copy-on-write facilities that allow the data to be
efficiently transferred only as needed. The typical communication that makes use of this facil-
ity involves the exchange of a large amount of data (e.g. I/O operations).
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It is often the case that messages contain a large data area, accompanied by some auxiliary
information such as a header or some parameters, such as a path-name, a size, or the result of an
I/O operation. Frequently, the auxiliary information is physically disjoint from the primary
data. In CHORUS V2, assembling these two discontiguous fragments into a single message
required that extra copying be done by the user.

CHORUS V3 splits message data into two parts:

> a message body, which has a variable size and may be copied or moved; it typically contains
the raw data;

? the message annex, which has a fixed size and is always copied; it typically contains the
associated parameters or headers.

This division also allows one software layer to provide data, while another provides header or
parameter information. For example, the V3 implementation of the write system call receives
the address of a data buffer from the caller and appends a header describing the data area and
sends both to the device responsible for performing the operation.

5.3 Processing vs. Communication

A third issue is the relationship between the processing model and communication model. The
CHORUS V2 execution model was event or communication-driven. In CHORUS V3, the process-
ing model has been inverted − actors are multi-threaded and the basic mechanism for inter-
process synchronisation is RPC. Thus, the CHORUS V3 model is much closer to the traditional
procedural model of computation. Multi-threading allows the multiplexing of servers, simplify-
ing their control structure while potentially increasing concurrency and parallelism. RPC is
well understood and straightforward to program.

In addition, for applications that require basic, low-level communication, asynchronous IPC is
provided. This IPC has very simple semantics − it provides unidirectional communication
incorporating location transparency, with no error detection or flow control. Higher-level proto-
col layers provided by the user or subsystem can be built on top of this minimal nucleus func-
tion.

6. Conclusion

With CHORUS V2, we experimented with a first-generation microkernel-based UNIX system.
UNIX emulation was built as an application of a pure message-based microkernel. Our micro-
kernel approach proved its applicability to building UNIX operating systems for distributed
architecture in a research environment.

The challenge in designing CHORUS V3 was to make this technology suitable for commercial
systems requirements; to provide performance comparable to similar monolithic systems and to
provide full compatibility with these systems. Our second-generation microkernel design was
driven by these requirements and we were forced to reconsider the role of the microkernel.
Instead of strictly enforcing a single, rigid, system architecture, the microkernel is now
comprised of a set of basic, flexible, and versatile tools. Our experience with CHORUS V2
taught us that some functions, such as IPC management, belong within the microkernel. Device
drivers and support for heterogeneity, on the other hand, are best handled by separate servers
and protocols. Supervisor actors are crucial to both performance and binary compatibility with
existing systems. A global name space is necessary to simplify the interactions between system
servers and the nucleus. Using CHORUS V3, subsystem designers have the freedom to define
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their operating system architecture and to select the most appropriate tools. Decisions, such as
the choice between high security and high performance, are not be enforced a priori by the
microkernel.

The CHORUS V3 microkernel has met its requirements: the CHORUS/MiX microkernel-based
UNIX system provides the level of performance of real-time executives, is compatible with
UNIX at the binary level, and is truly modular and fully distributed. It has been adopted by a
number of manufacturers for real-time and distributed commercial UNIX systems.

Further work will concentrate on exploiting this technology to provide advanced operating sys-
tem features, such as a distributed UNIX with a single system image and fault tolerance.
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