
Micr o-kernel Based Operating Systems:

Moving UNIX onto Modern System Architectures

Michel Gien, Lori Grob

Chorus syste`mes

CS/TR-91-81

6, avenue Gustave Eiffel,
F-78182, Saint-Quentin-en-Yvelines

(France)

High-end Computer Architectures

characterized by multi-processor and distributed memory,

High-volume, low-end systems are driving the pricing and gathering most of the attention of much of the
industry, but the high-end systems are driving the technology innovations since the low-end systems are
built from standard components. Those innovations in the high-end work their way down to the low end,
just as multiprocessing, graphics, etc. have moved down to the PCs. Having a successful strategy in the
high end is important for ensuring a continuing technology flow into the medium and low end systems.

Many high-end open systems under development today are characterized by the innovative use of
multiple processors in distributed memory configurations ("multicomputers"). These parallel processors
provide wider I/O throughput for mainframe-powerUNIX systems, redundancy for reliable OLTP systems
and enormous computation power for massively parallel supercomputer systems.

need a powerful operating system development environment,

To build these systems, system builders need tools and services that will let them more easily integrate
complex hardware architectures into high performance, reliable, distributed environments. To master
these more complicated environments and get these more complicated machines to market faster, system
builders need an operating system development environment that is as powerful as the development
environment provided to applications builders by theUNIX system.

The emphasis for such a development environment should be on two critical areas. First is enabling
systems services which let the OS engineer focus on the specific high valued added features of the system
and on the most efficient and flexible implementation of those features and not on how to shoe-horn those

To appear in the Proceedings of the UniForum’92 Conference, San Francisco, USA, January 22-24, 1992.
CHORUS is a registered trademark of Chorus systèmes
UNIX is a registered trademark ofUNIX Systems Laboratories

© Chorus systèmes, 1991 - 1 - UniForum 22-24/01/92

Chorus systèmes Micro-kernel based operating systems CS/TR-91-81

features into the existing code base. System builders should be able to add value in several ways, such as
adding TP, DB and performance monitors to the operating system, supporting multicomputer
architectures, improving reliability, high availability and fault tolerance, increasing performance, or
extending levels of security.

Transparent re-usability of system components, modularity and scalability of system services, structured
integration of device drivers and specific hardware features, are key characteristics of such a powerful
operating system development environment. A monolithic operating system such as todays’UNIX
implementation does not offer as much flexibility, resulting in greater development cost and later time to
market for systems.

enhanced scalability and portability,

Second is scalability and portability, which lets developers build ranges of products where optimization is
possible because of the homogeneity of the operating system base.UNIX took the first step in this
direction (portability between microprocessors), but now there is a need to go further to be certain the
system can be scaled down to real-time embedded systems and scaled up to suit multiprocessor, parallel
supercomputer, reliable OLTP, or network systems.

while still fully standards compliant...

Modern operating systems have to meet certain design objectives to meet these requirements and support
the inherent distributed environment of high-end systems. And they must do this while providing
complete BCS/ABI compatibility withUNIX interfaces and Open Systems standards.

Key Attributes of modern operating systems for high-end computing

Strong structuring concepts, allowing distribution of individual components

Transparent reusability of system components (client-server model)

Portability over full range of machine architectures, preserving real-time performance
(embedded systems, mono/multi processors, multicomputers, network architectures)

Support for scalability of system servers at system configuration time

Support for dynamic configuration of system servers into user or system space

Support for dynamic configuration of hardware dependent servers (device drivers)

Enablers for transparent distribution of operating system services

Enablers for fault tolerance and duplication of system servers and resources

Enablers for secure behavior

Enablers for performance optimization depending on configuration and application requirements

Binary compatibility with Open System standard interfaces

© Chorus systèmes, 1991 - 2 - UniForum 22-24/01/92

Chorus systèmes Micro-kernel based operating systems CS/TR-91-81

Micr o-kernel Based Operating System

One approach to modern operating system design, which is becoming popular, is to build the distributed
operating system as a set of independent system servers using the primitive, generic services of a micro-
kernel. The micro-kernel provides a virtual machine for processor use, memory allocation and
communication between operating system components. This approach has been used in several key
projects such as CHORUS[1] (researched at INRIA, France, then developed and commercialized by Chorus
Systems), Amoeba[2] (Free University and Center for Mathematics and Computer Science, Amsterdam),
MOS[3] (Hebrew University of Jerusalem), Topaz[4] (DEC/SRC), the V-system[5] (Stanford University).
the V-system, and is being looked at for future evolutions of the Mach system (Carnegie Mellon
University).[6]

With distributed computing built into their virtual machine layer, micro-kernel architectures provide a
means of handling modern systems complexity in a structured design manner. Systems can be designed
better and, as a result, their increasing complexity is easier to accommodate and understand. Micro-kernel
designs are, therefore, well suited to the requirements of building systems for distributed environments as
used in modern high-end computer architectures.

Compared with traditional operating systems, the micro-kernel approach adds two new aspects to the low-
level kernel foundation: distribution and subsystem support. In other words, this technology adds to the
traditional monolithic architectures the necessary modularity, key to their evolution, introducing the
object oriented approach to operating system design.

A distributed computing technology

Micro-kernel architectures have been, and remain, strongly related to distributed computing. Both
research and commercial work presumed a set of distributed computing requirements, within or between
networked ‘‘boxes’’. Message passing, which has come to be one of the often distinguishing
characteristics of micro-kernel architecture, is a very natural way to structure systems in which
components are distributed over a loosely-coupledset of individual processors, boards or complete
machines. Itenforces very clear isolation between each individual component of the system, by making
explicit the communications rules used between them, while at the same time providing a very flexible
way to assemble distributed components into a higher level global entity. Message passing can take the
form of simple send/receive protocols exchanged for transferring data between remote entities as well as
means for synchronizing parallel independent execution flows. Simple send/reply messages can be
combined into a form of remote procedure call (RPC) to better suit client-server types of
communications. This concept has been used under various forms in automaton-driven systems, real-time
distributed systems, parallel scientific applications, and transaction-oriented systems.

Challenges for commercial micro-kernel based systems

The virtues of a generalized, message passing foundation for assembling operating system functions are
well known as long as these functions do not share common state information and global data. When
applied to shared memory, a closely coupled environment, or a single-processor architecture, the
challenge is more significant. Years of engineering work have led to mature techniques for structuring
operating system functions, and the data structures they manipulate, to minimize their interactions, and to
optimize message-passing algorithms by taking advantage of the locality of correspondents (Light-Weight
RPC as in[7]).

© Chorus systèmes, 1991 - 3 - UniForum 22-24/01/92

Chorus systèmes Micro-kernel based operating systems CS/TR-91-81

CHORUS

CHORUS-v3 represents the fourth generation of such an architecture.It builds upon the CHORUS−v0,
CHORUS−v1, and CHORUS−v2 experiences[8] and integrates contributions from the V-system in the area
of IPC and RPC mechanisms, Mach for distributed virtual memory architecture and threads, Amoeba for
addressing and binding capabilities. Also, at the server level, design of several generations of distributed
UNIX servers have been required to mature the technology to a stable state, which can now be widely
generalized into a family of operating system products.

The CHORUS product line includes the CHORUS Nucleus, a micro-kernel for core operating system
services, and CHORUS/MiX, a binary compatible, multi-serverUNIX System V implementation. Some of
the critical aspects of a distributed operating system for high end architectures − to support such
important trends as distribution, multiprocessing, and open systems − illustrated by CHORUS include:

• Efficient low-level real time foundations.

• Optimized interprocess and interprocessor communications and user-transparent distribution of
resources.

• Portability across hardware architectures from single processor to multiprocessors (loosely or tightly
coupled) to advanced distributed environments, from linear to segmented to virtual memory
architectures.

• Interoperability of a wide range of operating systems, from real time to fault-tolerant, in a single
distributed environment.

• Scalability and flexibility, in design, configuration and in run-time resource utilization.

• A framework for operating system innovation, integration, development, testing, debugging,
maintenance and extension.

• Absolute conformance to industry standards.

Basic structure − Nucleus and Subsystems

The CHORUS architecture is based on a minimal real time distributedNucleusthat integrates distributed
processing and communication at the lowest level. The Nucleus provides generic tools − thread
scheduling, real time event handling, network-transparent inter-process communications (IPC) and virtual
memory management − to sets of independent servers calledsubsystems, which coexist on top of the
Nucleus.

Subsystems separate the functions of the operating system into sets of services provided by autonomous
servers, and provide operating system interfaces to application programs. In the past, these functions were
incorporated in the kernel of monolithic systems.

The CHORUS organization of Nucleus and subsystems represents the most logical view of an open
operating system for cooperative computing environments. Separating functions increases the modularity,
portability, scalability and “distributability” of the overall system, which has a small, trustworthy micro-
kernel as its foundation.

The Nucleus

The CHORUS Nucleus provides both local and global management of services (Figure1). At the lowest
level, it manages the physical resources at each “site” with four clearly defined components:

© Chorus systèmes, 1991 - 4 - UniForum 22-24/01/92

Chorus systèmes Micro-kernel based operating systems CS/TR-91-81

• a powerful multi-tasking executivewhich controls allocation of local processors, manages priority-
based preemptive scheduling of CHORUS threads, and provides primitives for fine grain
synchronization of, and low-level communication between, threads;

• a distributed memory managerwhich can support the full range of memory architectures − linear,
segmented or virtual;

• a low level hardwaresupervisorwhich dynamically dispatches external events such as interrupts,
traps and exceptions to dynamically defined routines or ports;

• an Inter Process Communication(IPC) manager provides the high-performance global
communication services (exchange ofmessagesandRemote Procedure Calls throughports) which are
the key to CHORUS architecture’s transparent support of services distribution and dynamic
reconfiguration capabilities.

[Machine dependent]

[Portable]

� ��� �����
	���� ����
�� ����� ��
�� � ����
 ����� �����

[Machine dependent]

[Portable][Portable]

� � ��
 ��� � ��	�
 �! ��#"%$���	�
�� &����������'
�� ��	'(�������� � ��)#�

	���)��#�'*
� �
������%+���+�&�� ���
� ,�� ���#��� ��%�#)�+�����
 �#�� �&��� ��(#� ���#�'�%$!(��#����� � ��)#�

Supervisor

Memory ManagementReal-time Executive

Communications

Figure 1. − The CHORUSNucleus

The CHORUS Subsystems concept

Subsystems in CHORUSarchitecture are sets of system servers that use the generic services of the Nucleus
to provide higher-level services.More simply, a subsystem is an operating system built on top of the
CHORUSNucleus.

Subsystems manage physical and logical resources such as files, devices and high-level communication
services and they communicate via theIPC facility provided by the Nucleus. Their position “on top” of
the Nucleus provides a structured, well-defined way for system builders to cope with complexities of
operating system development.

In the operating system context, a subsystem offers the means by which to supply a complete standard
operating system interface to standard application programs (Figure2). New servers can then be added to
the set of servers delivering this interface as a means of gracefully extending system and operating system

© Chorus systèmes, 1991 - 5 - UniForum 22-24/01/92

Chorus systèmes Micro-kernel based operating systems CS/TR-91-81

capability. Serversare the building block, the toolset, that system builders use to incorporate new
distributed functions. This framework for innovation within the open system context can facilitate the
addition of product differentiators usually found only in proprietary systems, such as fault tolerance and
security features.Price/performance and reliability can also be enhanced because developers can
efficiently incorporate new hardware connection technologies and new processors in their next-generation
designs.

P1 P2 R2Q2Q1

Subsystem 1 Subsystem 2

CHORUS Nucleus

Subsystem 2 InterfaceSubsystem 1 Interface

CHORUS Nucleus Interface

Lib.Lib.Lib.Lib.Lib.

Application Programs

Generic Nucleus

Libraries

&

System Servers

Figure 2. CHORUS/Nucleus supporting different operating systems interfaces

The CHORUS/MiX Subsystem

CHORUS/MiX integrates aUNIX System V subsystem with the CHORUS Nucleus to provide system
builders with a standards-based, real time, transparently distributedUNIX environment (Figure4).
CHORUS/MiX UNIX services have been extended to real time and to the distributed environment
(distribution of programs as well as files), all in a way that is completely transparent toUNIX application
programs. CHORUS/MiX is compatible atthe executable binary code levelwith SystemV 3.2. A first
version of a fully SVR4 compliant CHORUS/MiX implementation has just been released.

CHORUS/MiX of fers the traditional set ofUNIX functions for managing signals, but extends them to
manage real time, multi-threaded and distributed processes. This extension permits the creation − and
manipulation from a distance − of processes on any machine, while respecting rules ofUNIX regarding
environments, open files and so on.

Finally, because CHORUS/MiX is fully compatible with − and actuallycontainsUNIX System V source
code, it allowsUNIX processes to take advantage of such CHORUS facilities as multi-threading, location

© Chorus systèmes, 1991 - 6 - UniForum 22-24/01/92

Chorus systèmes Micro-kernel based operating systems CS/TR-91-81

transparent IPC, virtual memory management, device drivers and servers development in user space and
more.

Generic Micro-Kernel

(Transparently distributed)

UNIX Subsystem Servers

(Binary compatible interface)

UNIX Applications

Applications, Utilities

(sh, cc, ed, ...)

UNIX system calls

-/.10�213!4!516 3!7 8�9:31;:<17 =>9�?!@BA�C 8�D EGFIH

Hardware

CHORUS Nucleus

CHORUS Nucleus calls

J 3BK�L 0�3:9�?!@17/C

.G<�0�MN3�AO9�?!@17/C

EO7�<�0�3BP#P>9�?!@!7�C

Q L 6 3:9�?!@17/C
✉ ✉

✉

✉

Micro-kernel operating systems provide a more structured architecture than conventional, monolithicUNIX

kernels. When the micro-kernel architecture is applied toUNIX , a small, generic micro-kernel, such as the
CHORUS/Nucleus provides support for basic operations such as processor real-time scheduling, (virtual)
memory management and location transparent IPC between servers that implement more complex operating
system-dependent functions.UNIX system calls are made to these servers through the Process Manager which
transforms them into (Remote) Procedure Calls.

Figure 3. − CHORUS/MiX: Micro-kernel based multi-serverUNIX system

CHORUS/MiX support of distributed ar chitectures

The modular design of CHORUS/MiX allows binary compatibility withUNIX , while maintaining a well-
structured, portable and efficient implementation. It also includes several significant extensions which
offer, at theUNIX subsystem level, access to CHORUSfacilities.

© Chorus systèmes, 1991 - 7 - UniForum 22-24/01/92

Chorus systèmes Micro-kernel based operating systems CS/TR-91-81

Powerful real time facilities available at theUNIX subsystem level make it possible to dynamically
connect handlers to hardware interrupts.UNIX processes enjoy the benefit of priority-based preemptive
scheduling provided by the CHORUS Nucleus, possibly at a higher priority than the CHORUS/MiX
subsystem servers themselves.

UNIX processes running on CHORUS can communicate with otherUNIX processes, bare CHORUS

processes or entities from other subsystems using the CHORUS IPC mechanisms. Processes, for example,
are able to create and manipulate CHORUSports; send and receive messages; and issue remote procedure
calls.

User defined servers.

The CHORUS architecture provides a powerful, convenient platform for operating system development.
The homogeneity of server interfaces provided by the CHORUS IPC allows system builders to develop
new servers and integrate them at will into a system, either as user or as system servers.For example,
new file management strategies such as real time file systems, or fault-tolerant servers can be developed
and tested as a user level utility without disturbing a running system, using the powerful debugging tools
available for user-level application development (See Figure4). Later, the server can be migrated easily
within the system for performance consideration.

NODE 1 NODE 2

login: francois
passwd:

Chorus MiX SR3.2 07/01/1991

You have new mail.

rondo:francois>

login: francois
passwd:

Chorus MiX SR3.2 07/01/1991

You have new mail.

rondo:francois>

Communication medium

Load dynamically and remotely a
File Manager on node 2 from node 1

on machine_2 FM_PROC
usr bin

Disk_driverFM_PROC

/

File

Manager

Disk
Driver

Process

ManagerManager

Process

Manager

DeviceManager

File

Disk Driver

CHORUS Nucleus CHORUS Nucleus

Unix

Process Unix

Process

Unix

Process

Unix

Process Unix

Process

System Space

User Space

Figure 4. UNIX servers in user space

© Chorus systèmes, 1991 - 8 - UniForum 22-24/01/92

Chorus systèmes Micro-kernel based operating systems CS/TR-91-81

Modularity .

CHORUS incorporates both distribution support concerns at the lowest levels in a manner consistent with
emerging computer and communications requirements. Further, modularity extends from the CHORUS

Nucleus to higher levels and in between. The result is a set of well-engineeredenablersfor the design,
implementation and operation of next-generation systems.

Because CHORUS uses modular, independent servers, to divide the operating system into manageable
units, along an object-oriented approach, debugging and testing can be handled more efficiently. The
clear, message-based interfaces between server modules permit greater independence, which simplifies
and speeds integration. The simpler micro-kernel interfaces can also be used to build higher level
semantics.

A fully distributed operating system configuration.

As shown on Figure5, a high-end distributed memory configuration (or a LAN based distributed
computing environment) will be able to take advantage of such a modular distributed operating system
implementation by transparently distributing theUNIX servers among the various nodes of the distributed
configuration according to tradeoffs decided upon by the system builder (or system adminisatrator, as
opposed to the operating system designer). Shared memory multi-processors can be transparently
integrated into the distributed configuration as well (as shown on the Figure).

Replication of system servers can be envisaged for fault tolerance purposes, thus moving open systems
forward into supporting not only hardware but also system software failures transparently for the
application program.

Application level distributing computing environments (as well as object-oriented platforms) can also
take advantage of such an operating system structure to exhibit higher performance characteristics by
making direct use of the efficient underlying IPC facilities rather than user level networking protocols.

Conclusion

Mature micro-kernel based distributed operating system architectures such as CHORUS, are now available
that allow modern operating systems to be built along a modular approach, consistent with the way
modern hardware and application environments are being constructed. Moreover, microkernel
architectures meet system builders greatest unmet needs: the"software engineering need"for operating
system architectures in which system components can be developed and assembled in various ways; and
the "distributed systems technology need", for a cooperative framework between distributed system
components closely interacting through high performance communication media. By insuring complete
compatibility with open system standard, micro-kernel architectures need not affect the application
environment and can therefore be gracefully introduced into new system platforms.

Microkernel architectures indeed provide a sound foundation for meeting modern operating systems
needs, while maintaining the best ofUNIX ’s heritage in this new generation of cooperative computing
environments.

© Chorus systèmes, 1991 - 9 - UniForum 22-24/01/92

Chorus systèmes Micro-kernel based operating systems CS/TR-91-81

UNIX system calls

Application

Application

Application

Application

Application

Application Application

UNIX system calls UNIX system calls

Application

✉

R�S T
UWV%X�X�Y[Z
\
S^]

UNIX system calls

✉

✉

✉
_`V%aWb UWV[Y[Z
\cS/]

d T
U�efV%g�Y[Z
\
S^]_`V%aWb U�V[Y[Zc\
S^]

✉

✉

✉ ✉

hWb i V[Y[Zc\
S^]

R�S T
UWV%X�X�Y[Z
\
S^]

Network or Back-plane Bus

✉

R�S TcU�VjX�XkY[Zc\
S^]

CHORUS Nucleus calls

CHORUS Nucleus calls

R�S TcU�V%XfXkY[Z
\cS/]

CHORUS Nucleus

CHORUS Nucleus

CHORUS Nucleus CHORUS Nucleus

CHORUS Nucleus calls

✉

CHORUS Nucleus calls

There are four key points to an effective micro-kernel based operating system implementation:

[1] The definition of the services that need to appear at the micro-kernel interface is a real design issue. It must
represent a good balance between fully supporting those functions that are key to all systems, and a well
engineered set of enablers to facilitate customisation of specific application areas to take advantage of particular
machine architectures.

[2] Efficient message passing is another key to the micro-kernel architecture’s ability to deliver high performance
as well as distribute functions over communications media from shared memory to a wide area network.

[3] Correctstructuring of higher level operating system services into system servers according to a Client-Server
based model. Special care is indeed necessary to split the various system data structures on which they operate
in order to optimise overall performance by minimising interactions.

[4] Providingbinary compatibility with standard Open Systems interfaces is required to insure complete portability
of existing applications while providing a path to further system interface extensions.

Figure 5. − CHORUS/MiX: A Fully Distributed Micro-kernel basedUNIX Operating System

© Chorus systèmes, 1991 - 10 - UniForum 22-24/01/92

Chorus systèmes Micro-kernel based operating systems CS/TR-91-81

References
[1] Marc Rozier, Vadim Abrossimov, François Armand, Ivan Boule, Michel Gien, Marc Guillemont,

Frédéric Herrmann, Claude Kaiser, Sylvain Langlois, Pierre Léonard, and Will Neuhauser, ‘‘CHORUS
Distributed Operating Systems,’’ Computing Systems Journal, vol. 1, no. 4, The Usenix Association,
(Dec. 1988), pp. 305-370.

[2] SapeJ. MullenderEd.,The Amoeba Distributed Operating System: Selected Papers 1984 -1987,CWI
Tract No. 41, Amsterdam, Netherlands, (1987), p. 309.

[3] Amon Barak and Ami Litman, ‘‘MOS : A Multicomputer Distributed Operating System,’’ Software
Practice & Experience, vol. 15, no. 8, (Aug. 1985), pp. 725-737.

[4] PaulR. McJones and Garret F. Swart, ‘‘Evolving the UNIX System Interface to Support Multithreaded
Programs,’’ Technical Report 21, DEC Systems Research Center, Palo Alto, CA, (Sept. 1988), p. 100.

[5] David Cheriton, ‘‘The V Distributed System,’’ Communications of the ACM, vol. 31,no. 3,(Mar. 1988),
pp. 314-333.

[6] Rick Rashid, ‘‘Threads of a New System,’’ Unix Review, (Aug. 1986).

[7] Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry M. Levy, ‘‘Lightweight
Remote Procedure Call,’’ ACM Transactions on Computer Systems, vol. 8, no. 1, (February 1990),
pp. 37-55.

[8] Allan Bricker, Michel Gien, Marc Guillemont, Jim Lipkis, Douglas Orr, and Marc Rozier, ‘‘A New
Look at Microkernel-Based UNIX Operating Systems: Lessons in Performance and Compatibility,’’ i n
Proc. of EurOpen Spring 1991 Conference, EurOpen, Tromso, Norway, (20-24 May, 1991), pp. 13-32.

Authors’ s Biography
Michel Gien is co-founder, General Manager and Director of R&D at Chorus systèmes, which was created at the
end of 1986. He joined the Cyclades computer network team at INRIA in 1971 and became a major contributor in
the early ISO/OSI standardization efforts. He then led a project that introducedUNIX in France and helped to
understand how it could be re-architectured along the Chorus distributed systems concepts.
Michel Gien is a leading figure within the EuropeanUNIX community. He is chairman of EurOpen, the European
Forum for Open Systems (formerly EUUG).

Lori Grob is a senior system engineer, Manager of Technical Support at Chorus systèmes. From 1983 until 1985, she
was an Adjunct Faculty Member and an Instructor at NYU Courant Institute of Mathmatical Sciences. In 1984, she
joined the NYU Ultracomputer Research Project as a research scientist, working on their symmetric, scalable unix
kernel and parallel programming support for scientific applications. She joined Chorus systèmes in 1989, as a
member of the development group.
Lori Grob was the co-Chair of the 1988 Usenix workshop on Unix and Supercompters and the technical program
chair of the 1991 Winter Usenix Technical Conference. She is the author of several publications and has been on
more program committees than she cares to think about.

© Chorus systèmes, 1991 - 11 - UniForum 22-24/01/92

