CS/TR-92-30

Transparent object migration in COOL2

Paulo Amaral, Christian Jacquemot, Peter Jensen, Rodger Lea, Adam Mirowski

approved by:

distribution: general

action: none

keywords: ARC CHO REP

abstract: This is a position paper published in the Porceedings of the Wrokshop on
Dynaminc Object placement and Load Balancing in Parallel and Distributed
Systems

(© Chorus systémes, 1994

Chorus systémes, 1994 June 9, 1994
y))

Chorus systémes Transparent object migration in COOL2

Contents

1 Motivation

2 (COOL2 architecture

3 The programming model

4 Local identifiers are global identifiers

5 Object and activity migration

5.1 Object migration inside a context group
5.2 Object migration between context groups

5.3 Migration from disk into a context

6 Concluding remarks and status

7 Acknowledgments

© Chorus systémes, 1994 -i-

CS/TR-92-30

ot ot ot O

June 9, 1994

Chorus systémes Transparent object migration in COOL2 CS/TR-92-30

Transparent object migration in COOL-2!
Position Paper

Paulo Amaral?
Chorus Systémes and Université Pierre et Marie Curie (Paris VI)

Christian Jacquemot, Peter Jensen, Rodger Lea, Adam Mirowski
Chorus Systémes

Abstract

COOL2 is a distributed object oriented computing system which extends the traditional
single address space programming model to a distributed environment. COOLZ2 sits on the
top of the CHORUS? microkernel and can be used on a local network of workstations. The
current COOL2 implementation supports a standard C++ 2.0 programming interface.

The C++ programmer is provided an object oriented distributed computing system which
looks centralized from the outside. COOLZ2 objects are manipulated by the application always
through their local identifiers even if they are not local. Object distribution is transparent,
that is, objects are accessed uniformly irrespective of their location. Objects can also migrate
transparently.

We focus on the distributed transparent use of standard C++ objects in COOL2 , ex-
plaining why we kept the traditional local object identification with virtual memory pointers
and we present the base architecture of COOL2 that allows us to achieve this.

1 Motivation

Our motivation when designing COOL2 was to investigate base abstractions for a distributed
environment that would support multiple object oriented programming systems. We wanted to
understand the functional layers of such a system and work towards a generic model. Besides, we
wanted to investigate how to provide single address space semantics in distributed environments
using the techniques of distributed virtual memory and single level object identification.

The COOL2 programming model offers the traditional programming style of a centralized
computing system that works transparently on a distributed architecture. We focused the prob-
lem of object identification on distributed systems. COOLZ2 explores the use of local object
identifiers at language level, hiding distribution at system level.

In other systems (e.g. our previous work in COOL1 [Habert et al.-90]*) objects are addressed
differently in the local and the remote cases which means that the application programmer is
presented with a two tiered naming model with both local and global identifiers. Also, in systems
like Guide[BALTER et al.-91], ANSA[ISA] and SOS[SHAPIRO et al.-89], all objects have global
identifiers. In this respect, our work follows the ideas of Amber [CHASE et al.-89] which extends
local object identifiers to the network. Although, unlike Amber, COOL2 uses the shared memory
model to maintain coherency between shared objects in a distributed environment.

1C0OO0L2 The second version of the CHORUS Object Oriented Layer

2email: paulo@chorus.fr

SCHORUS is a registered trademark of Chorus Systémes

*COOL1 was a joint project between Chorus Systémes , SEPT (Service d’Etudes communes de la Poste et de
France Télécom) and INRIA (Institut National de Recherche an Informatique et en Automatique)

© Chorus systémes, 1994 -1- June 9, 1994

Chorus systémes Transparent object migration in COOL2 CS/TR-92-30

Our reasons for this are threefold: to maintain the traditional, and familiar programming
model in a distributed system; to provide a network transparent invocation model; and to
compare the performance penalties of a solution that completely avoids global identifiers in the
local case.

We also wanted to study the impact of a single level object identification scheme on object
migration both from the application and the the system point of view. An application that
always uses local object identifiers, disregarding object location, will not have to be aware of
migrations, i.e., these migrations are transparent.

COOL2 implements a persistent object oriented programming system. The application does
not need to access a second level store like a file system. Objects are automatically persistent
and remain present in persistent virtual memory until deleted.

This paper will overview our architectural model and then explore virtual memory and the
object identification support to achieve single address space semantics in an object oriented
distributed environment. We also present the generic COOL2 architecture and explore the
effects of the above functionality in object migration.

2 (COOL2 architecture

Applications are generated with COOLZ2 programming environment. In order to interface to the
system, they are parsed by a COOLZ2 preprocessor and through the standard C++ compilation
chain. Then, they execute on a distributed virtual machine given by the COOL2 system.

The COOL2 system works on a network of sites. Each site is a set of tightly coupled
processors. A COOL2 operating system is composed of a set of COOL2 kernels, each running
on each site.

COOLZ2 explores base operating system mechanisms to support multiple object oriented
models and its architecture reflects this with an intermediate generic interface. COOL2 has
three levels of interface:

e a language specific run-time interface, composed the run-time code generated by the
COOLZ2 pre-processor; this level is language dependent and uses generic underlying mech-
anisms;

e a generic runTime interface which provides the basic abstractions: objects, invocations
and activities and is implemented as library code linked with the application; this interface
level is intended to support multiple object oriented programming systems;

e an operating system interface: COOLZ2-base , with system calls that provide a base set of
mechanisms that support the generic runTime in a distributed environment;

e and a microkernel: CHORUS that provides a minimal base for building distributed op-
erating systems; in can be used concurrently by other independent subsystems, e.g., the
CHORUS/MIX UNIX subsystem; this enable the COOLZ2 subsystem, as seen by the CHO-
RUS microkernel, to cohabit with a UNIX environment that provide I/0, although this is
used simply to avoid re-writing device drivers and other low level code.

© Chorus systémes, 1994 -2- June 9, 1994

Chorus systémes Transparent object migration in COOL2 CS/TR-92-30

3 The programming model

COOLZ2 has developed out of our work with COOL1, COMANDOS [CAHILL et al.-91] and the
ISA project[ISA]. From the programming model point of view, COOL2 explores the model of a
centralized computing system on a distributed environment.

The COOL2 main programming entities are objects and activities. Objects are passive and
represent persistent memory for programs and activities abstract execution. These two entities
are orthogonal. Like CLOUDS [DASGUPTA et al.91] an activity may span several objects and
an object may have several activities executing concurrently as invocations.

The COOLZ2-base supports four further abstractions that abstracts the distributed program-
ming model. These are contezts, sites, context groups and clusters.

Contezts are a collection of resources and provide a linear and contiguous address space for
applications. Objects ocupy a portion of the context’s address space.

Context Group 1 Context
| Group2
V N |

Context 1 Context 2 Context 3 Context 4

Cluger] ——=......——1 .

"""" Cluger 2

Stel Ste? Ste3 Sited

Figure 1: The distributed programming model of COOL-2

A COOLZ2 objective was to identify objects in a location transparent manner, so we exper-
imented the use of direct virtual memory pointers to identify both local and remote objects.
COOLZ2 relies on shared memory among different contexts in different sites. Shared memory
provides a single address space semantics for a distributed application. To achieve this, a co-

© Chorus systémes, 1994 -3- June 9, 1994

Chorus systémes Transparent object migration in COOL2 CS/TR-92-30

herency mechanism has to exist for the set contexts® that use the same set of objects, i.e., that
share memory. This memory has to be the same and mapped also at the same addresses.

So, we defined two more abstractions that allow the system to control both the set of objects
being shared by a group of contexts and the group of contexts itself: these are clusters and
context groups.

Clusters are sparse chunks of persistent memory. They hold groups of related objects that can
be potentially shared and turned persistent at the same time. Clusters are used by COOL2 both
to control persistent memory (i.e. objects) sharing between contexts, and to group persistent
memory in arbitrary sized chunks.

Context groups are a super-contert that groups one or more contexts on one or more sites
into a single entity. All contexts of the group share the same address space. Applications that
use the same persistent memory are automatically inserted by the system in the same context

group.

The main benefit of clusters and context groups is that inside a context group, the objects
part of a cluster are always assured the same addresses because the address space is the same
for this set of contexts. Thus, using figure 1 we can see that objects A, B and C residing in
cluster 1, all belong to context group 1. At this particular time, objects A and B reside on site 1
and object C resides on site 2. A reference in object B to object C would use a virtual memory
pointer that reffered to a location in context 1. Any attempt to de-reference this pointer would
cause the underlying COOLZ2-base to map object C into context 1 using the distributed virtual
memory model.

4 Local identifiers are global identifiers

As shown above we are using the distributed shared memory model to support the use of local
virtual memory pointers within a group of clusters. There are however, circumstances where
this model will not, or should not work. Again reffering to figure one, an attempt by object C
to invoke object D, which is not part of the context group 1 would, under normal circumstances
cause context 4 to become a member of context group 1. However, we see that part of the cluster
2 overlaps addresses valid in cluster 1. A merge of these two clusters would cause a overwrite of
part of the address space. In such a case, using shared virtual memory would not work. In these
cases we resort to the use of local proxies® for remote object. For example, we would create a
local proxy for object D and place it in cluster 1 in context 2. Any invocation from object C
to object D would use a virtual memory pointer to a local proxy that would invoke the remote
object through standard IPC.

S Amber does the same for all contexts of a distributed application.
SA proxy is an object representative that performs a Remote Procedure Call to forward object invocations;

see [SHAPIRO-86] for details.

© Chorus systémes, 1994 -4- June 9, 1994

Chorus systémes Transparent object migration in COOL2 CS/TR-92-30

5 Object and activity migration

In COOLZ2 the local visibility of objects is not exclusive to one context and it may grow dynam-
ically with time spanning through different contexts, possibly in several sites. Objects may also
be passive on disk. Objects move between the disk and contexts with the piece of memory that
supports it (mapping and unmapping). We have to be aware that each time objects are mapped
to different addresses they have to be relocated which can be time consuming.

The only reason to make an object locally visible to a context, if it is already visible to
another, it is for performance enhancement because invocations will then be simple function
calls (instead of remote calls). So, if an activity in a context tries to invoke some object, the
object is mapped locally if possible.

Objects do not, by default, migrate explicitly, nor is the application aware of object migra-
tions. If objects can not migrate locally to be invoked, the activity migrates instead.

We identify three forms of migration that COOL-base supports:

5.1 Object migration inside a context group

As described in section 3, when possible, a reference to a remote object cause that object to
be mapped into the local address space using a distributed virtual memory model. Inside a
context group we are sure that the target context has free space for the object exactly at the
same address as the source context.

5.2 Object migration between context groups

If an object migrates between contexts that are not part of the same context group, it is un-
mapped from the first, mapped by the second and relocated. This operation, translates into a
COOL2-base operation to unmap the cluster containing the object and to map it into another
context. When the cluster is mapped into a new context, all internal references are updated
depending on the new location. This technique, often know as pointer swizzeling (address trans-
lation) is common in database operations.

5.3 Migration from disk into a context

A final possibility is mapping an object that resides in a cluster which is currently inactive and
which COOLZ2-base has moved to secondary storage. In this case the cluster is stored in an
address space neutral format until it is invoked again. Invocation implies allocating a virtual
memory address space and relocating the cluster the object if needed. This activation is done
after an object fault, hence it is transparent to the application. This basic mechanism supports
the single level persistent store that the generic runTime provides.

© Chorus systémes, 1994 -5- June 9, 1994

Chorus systémes Transparent object migration in COOL2 CS/TR-92-30

6 Concluding remarks and status

We presented briefly the COOL2 architecture that implements a model of cooperation between
contexts to allow the use of virtual memory identifiers that are kept valid on different sites of a
network. It supports single address space semantics between groups of contexts.

This model has an impact on object migration and on the transparency at programming
level of object use over different sites.

Our current COOLZ2 prototype implements the described functionality and runs above the
CHORUS micro-kernel on a network of IAPX386 based machines. We are currently experiment-
ing with its use to refine the base mechanisms.

We believe the benefit in our work is not in its novel nature, but in the combining of several
techniques, distributed virtual memory, proxies, and a single level store to provide a base set
of mechanisms that can be use to support multiple object oriented languages. Further, we
believe that only by providing these services in a coherent form, and at a low enough level in
the operating system can they be both useful and efficient.

7 Acknowledgments

We would like to thank Marc Guillemont for his helpfull comments on this paper.

References

[BALTER et al.-91] R. Balter, J. Bernadat, D. Decouchant, A. Duda, A, Freyssinet, S,
Krakoviak, M. Meysembourg, P. Le Dot, H. Nguyen Van, E. Paire, M. Riveill, C. Roisin,
X. Rousset de Pina, R. Scioville, G. Vandéme
Architecture and Implementation of Guide, an Object-Oriented Distributed System
Computing Systems, Vol4, Nol, Winter 1991]

[CAHILL et al.-91] V. Cahill, C. Horn, G. Starovic, R. Lea, P. Sousa
Supporting Object Oriented Languages on the Comandos Platform
Proc. of ESPRIT’91 Conference, Brussels, Belgium, November 25-29, 1991

[CHASE et al.-89] J. Chase, F. Amador, E. Lazowska, H. Levy, and R. Littlefield
The Amber System: Parallel Programming on a Network of Multiprocessors
ACM SIGOPS, Litchfield Park, AZ, December 1989

[DASGUPTA et al.91] P. Dasgupta, R. Ananthanarayanan, S. Menon, A. Mohindra, R. Chen
Distributed Programming with objects and Threads in the Clouds System
Computing Systems, Vol 4, No 3, Summer 1991, USENIX Association

[ISA] The Integrated Systems Architecture project ISA
Esprit Project 2267, The ISA Consortium, Castle Park, Cambridge, UK

© Chorus systémes, 1994 -6- June 9, 1994

Chorus systémes Transparent object migration in COOL2 CS/TR-92-30

[Habert et al.-90] Sabine Habert, Laurance Mosseri, Vadim Abrossimov
COOL - Operating System Support for Object Oriented Systems
Proceedings of ECOOP/OOPSLA’90 Conference, volume 25 of SIGPLAN Notices, Ottawa,
Canada 1990 ACM

[ROZIER et al.-89] Marc Rozier, Vadim Abrossimov, Francois Armand, Ivan Boule, Michel
Gien, C. Kaiser, Sylvain Langlois, Pierre Leonard, Will Neuhauser
The Chorus Distributed Operating System
Computing Systems, 1988

[SHAPIRO-86] March Shapiro
Structure and Encapsulation in Distributed Systems: the Proxy Principle
Proceedings of the 6th ICDS Conference, May 86

[SHAPIRO et al.-89] M. Shapiro, Y. Gourhant, S. Habert, L. Mosseri, M. Ruffin, and C. Valot
SOS: An Object-Oriented Operating System - Assessment and Perspectives
Computing Systems, Vol 2, No4, Fall 1989

© Chorus systémes, 1994 -7- June 9, 1994

