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This paper considers how two kernelized systems, Mach 3.0 with the BSD4.3 Single Server and

CHORUS/MiX V.4, move data to and from files under a variety of circumstances.  We give an

overview of the kernel abstractions and system servers and describe in detail the read() and write()

paths of these two systems. We then break down their read() and write() performance and compare

them to two monolithic systems, Mach 2.6 MSD(BSD4.3) and System V R4.0.  We then describe

the compromises each of the two kernelized systems made in order to achieve a goal of

performance comparable to the monolithic systems.  We conclude with a description of what

techniques each system uses that could benefit both each other and traditional monolithic systems.

1. Introduction
A recent trend in operating system research has been towards small kernels exporting a small set of

abstractions that are used by a server or set of servers to implement the services provided by traditional
operating systems [7, 9, 14, 18]. This approach to building operating system services gives OS developers
a sophisticated environment for building and testing new services and meeting the needs of newer hardware
platforms. A kernelized system also allows a developer to mix and match components as needed,
minimizing or eliminating unneeded capabilities that are a permanent part of traditional monolithic
systems. Kernelized systems have also demonstrated that they are a sound basis on which one can build
distributed operating systems [2, 5] and/or provide features such as real-time [15, 19] or Object-Oriented
environment [16].

For kernelized systems to gain acceptance, they must be binary compatible with and perform comparably
to monolithic systems. Many papers have described efforts and experiences towards achieving these goals
[6, 13]. Some authors have asserted that some services, such as, the file system, do not belong outside of
the kernel [20]. One of the major fears appears to be the need for costly context switching.  To meet the
performance goal, a kernelized system must either make context switching faster than in systems where it is
not in the critical path, or somehow avoid them entirely where possible.  Data movement must also be
carefully designed in these systems to avoid extra copying of data.

This paper considers how two systems, Mach 3.0 with the BSD4.3 Single Server and CHORUS/MiX V.4,
achieve the performance goals by controlling data movement.  We are particularly concerned with how fast
these two systems can move data to and from files under a variety of circumstances.  First we give an
overview of the kernel abstractions and system servers and describe in detail the read() and write() paths of
these two systems. We then break down their read() and write() performance and compare them to two
monolithic systems, Mach 2.6 MSD(BSD4.3) and System V R4.0.  Next we describe the compromises each
of the two kernelized systems has made to achieve performance comparable to the monolithic systems.  We



conclude with a description of what techniques each system uses that could benefit both each other and
traditional monolithic systems.

2. Microkernel Abstractions
The Mach 3.0 Microkernel and the CHORUS Nucleus supply a similar set of abstractions for building

systems servers [10, 17]. Unfortunately, for historical reasons, the two systems often use different names
to describe the same thing.  The remainder of this section describes the abstractions of Mach 3.0 and
CHORUS relevant for understanding the rest of the paper using either the common name or both when
necessary.

• A Task [4] or Actor [8] is an execution environment and the basic unit of resource allocation.
Both include virtual memory and threads.  The Mach task also includes port rights. An actor
includes ports as communication resources. A task or actor can either be in kernel or user
space.

• Threads are the basic unit of execution.  A task or actor can have multiple simultaneous
threads of execution. Threads may communicate via Ports.

• Both systems are built around Interprocess Communication or IPC.
• Mach ports are protected communication channels [12] managed by the kernel with

separate port rights residing in each task.  A thread uses the local name and right for a
port residing in its task to send typed data to the task having the unique receive right for
that port. Port Sets allow a task to clump a group of ports together for the purpose of
receiving from multiple ports with only one thread.

• CHORUS IPC uses a single global name space with each port named by a Unique
Identifier (UI) to send untyped data to ports.  CHORUS ports, which may belong to
different actors, may be grouped into port groups. CHORUS IPC offers the capability of
broadcasting a message to all ports in a group.  Actors running in supervisor space may
define message handlers to receive messages.  Instead of explicitly creating threads to
receive the messages, an actor may attach a handler, a routine in its address space, to the
port on which it waits for messages.  When a message is delivered to the port, the
handler is executed within the context of the actor using a kernel provided thread.  This
mechanism avoids extra copy of data and context switches when both the client and the
server run on the same site. The connection of message handlers is transparent to the
client of a server.

• Address spaces
• In Mach, the address space of a task is made up of VM Objects. Objects often map

secondary storage managed by an External Pager [21]. An object, which is represented
by a send right to a port, must be entered into the task’s address space with vm_map and
can subsequently accessed through normal memory accesses.

• The address space of a CHORUS actor is made up of Regions. Regions often map
secondary storage called segments managed by Mappers. A segment is represented by
a capability, a port UI and a key.  CHORUS also allows segments to be read or written
directly without mapping them using sgRead() and sgWrite() Nucleus calls.

• Device Access
• Mach gives direct access to disks and other devices through device_read() and

device_write(). The device_read() call, which, like most Mach calls, is an RPC to the
kernel, returns the data in out of line memory directly from the disk driver without any
unnecessary copies.

• By contrast, the CHORUS nucleus doesn’t know about any device except the clock.
Instead, it allows actors to dynamically connect handlers to interrupts and traps. Device
drivers are implemented this way by actors running in the supervisor address space.

• To allow for binary compatibility, Mach and CHORUS each have a mechanism for handling



TMUnix system call traps called Trap Emulation or Trap Handlers. The Mach kernel
enables a task to redirect any trap number back into the user task making the trap.  CHORUS has
a mechanism for allowing traps to be handled by any actor runing in supervisor address space
which has attached a handler to these traps.

3. System Servers
Both Mach 3.0 with the BSD4.3 Single Server and CHORUS/MiX V.4 consist of a small kernel or nucleus

described in the previous section, and a server or set of servers running in user mode or possibly supervisor
mode supporting Unix semantics. This section gives on overview of both of these systems server
components.

3.1. Mach 3.0 with the BSD4.3 Single Server
The BSD4.3 Single Server is a single user application which exports Unix semantics to other user

applications. To communicate with this server, an Emulation Library is loaded into the address space of
all clients beginning with /etc/init and inherited subsequently by all of its children. A typical system call
traps into the kernel and is redirected by the Trap Emulation mechanism back out into the Emulation
Library. The Emulation Library sends a message to the BSD4.3 Single Server which then executes the
actual Unix call and returns back through the Emulation Library to the user application.  The remainder of
this section describes the Emulation Library and BSD4.3 Single Server and how they support Unix files.
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Figure 3-1: A System Call in Mach 3.0 with the BSD4.3 Single Server



3.1.1. BSD4.3 Single Server and Emulation Library Structure
The BSD4.3 Single Server is a single task made up of numerous CThreads [11]. Most of the CThreads

are part of a pool which responds to messages from the Emulation Libraries of Unix processes.  When they
receive a message from a client Emulation Library, they internally take on the identity of that client and
execute the appropriate Unix system call.  Upon completion, they return the result and reenter the pool of
waiting threads.  Each of the remaining CThreads provides a particular service.  There is the Device Reply
Thread, which handles all responses from the server to the kernel for device interaction, the Softclock
Thread, which implements internal timeouts and callbacks, the Net Input Thread, which handles network
device interactions with the kernel, and the Inode Pager Thread, which implements an external pager
backing Unix file objects.

The Emulation Library is actually a self-contained module that is loaded into the address space of
BSD4.3 Single Server clients.  It is entered from the kernel’s Trap Emulation code in response to a system
call. The Emulation Library then either handles the system call locally or forwards the request as a
message to the server to handle it.  To allow the Emulation Library to handle some system calls without
contacting the BSD4.3 Single Server, the Emulation Library and the BSD4.3 Single Server share two pages
of memory.  While the Emulation Library can read both pages, it can only write one of them.  The
read-only page contains information that a client can already get through querying system calls such as
getpid(), getuid(), and getrlimit(). The writeable page contains data that the client can already set through
system calls such as sigblock() and setsigmask(). The writeable page also contains an array of special files
descriptors used by the mapped files system.

3.1.2. Mapped Files
The BSD4.3 Single Server is capable of mapping files backed by the Inode Pager directly into the

address space of clients for direct access by the Emulation Library.  These mapped regions are actually
windows into the Unix files that can be moved by a request from the Emulation Library. There is exactly
one window of 64K bytes in size for each open file.  For each mapped region, there is a corresponding file
descriptor in the writeable page of shared memory.  This file descriptor contains information on the current
mapping window and a copy of the real file descriptor in the BSD4.3 Single Server.

To allow for Unix file semantics which permit multiple readers and writers of files and the sharing of the
current file pointer, there is a Token scheme. The Token protects the mapping window information, the
file pointer and the file size.  The Token can be in three states.  These are active, invalid and, to limit the
number of messages sent to the BSD4.3 Single Server, passive. The transitions between these states is
covered in section 4.

3.2. CHORUS/MiX V.4

3.2.1. The CHORUS/MiX V.4 subsystem
MiX V.4 is a CHORUS subsystem providing a Unix interface that is compatible with Unix SVR4.0. It is

both BCS and ABI compliant on AT/386 and 88K platforms. It has been designed to extend Unix services
to distribution such as access to remote files and remote execution.

MiX V.4 is composed of a set of cooperating servers running in independent actors on top of the
CHORUS Nucleus and communicating only by means of the CHORUS IPC. The following servers are the
most important:

• The Process Manager (PM) provides the Unix interface to processes.  It implements services



for process management such as the creation and destruction of processes and the sending of
signals. It manages the system context of each process that runs on its site.  When the PM is
not able to serve a Unix system call by itself, it calls other servers, as appropriate, using
CHORUS IPC.

• The Object Manager (OM), also named the File Manager (FM), performs file management
services. It manages various file system types such as S5, UFS, and NFS. It also acts as a
CHORUS Mapper for "mappable" Unix files and as the Default Mapper for swap space
management. Disk drivers are generally part of the Object Manager.

• The Streams Manager (StM) manages all stream devices such as pipes, network access, ttys,
and named pipes when they are opened.  It cooperates with the Object Manager which
provides the secondary storage for the files’ meta-data.
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Figure 3-2: CHORUS/MiX V.4 subsystem

All MiX servers are fully independent and do not share any memory and thus can be transparently
distributed on different sites.  Although they may run in either user space or supervisor space they are
usually loaded in the supervisor address space to avoid numerous and expensive context switches each time
a new server is invoked.  This paper discusses the case where all servers are loaded into supervisor space.

3.2.2. Regular File Management in CHORUS/MiX V.4
The management of regular files is split between three components in MiX V.4: the Object Manager, the

Process Manager and the CHORUS Nucleus. Pages of regular files are read, written and cached using the
Virtual Memory services, sgRead() and sgWrite(), without having to map them.  This allows the support of
mapped files and provides the benefit of the Virtual Memory mechanisms for caching files from local or
remote file systems.  The Virtual Memory cache replaces the buffer cache, moreover in the distributed case,
file consistency are maintained by the same mechanisms that are used to provide distributed shared
memory.

In MiX V.4, open files are named by a capability built from a port Unique Identifier and a 64-bit key
only meaningful to the server.  This capability is returned to the PM by the OM when the open() system
call is made.  All opens of the same file get the same capability.  For each open system call, the PM
manages an open file descriptor similar to the file_t structure of a native Unix, that handles flags and the
current offset.  In addition, the PM manages an object descriptor for each file in use on its site.  This
object descriptor handles the following information: size of the file, mandatory locks posted against the file
(if any), last access and last modification time and, the capability of the file exported by the OM.  The PM



uses this information to convert read()/write() Unix system calls into sgRead()/sgWrite() CHORUS Nucleus
calls.

3.2.3. File Size Management
Due to the separation between the Process Manager and the Object Manager, a benefit which allows

them to potentially be distributed on different nodes, the file size is protected by a Token. Since the Token
may have been granted to another site or recalled by the OM, the PM must check whether the file size
information it holds is valid or not before using the file size. If the information is not valid, the PM must
retrieve the information first.

4. Read() and Write() Path Analysis
This section takes a detailed look at the read() and write() paths of both Mach 3.0 with the BSD4.3

Single Server and CHORUS/MiX V.4.

4.1. Mach 3.0 with the BSD4.3 Single Server read() Path
This section describes how the read() system call works in Mach 3.0 with the BSD4.3 Single Server.

When a user makes a read() call the kernel redirects that call trap back into the Emulation Library.  After
making sure that the file is mapped, that it has a valid Token, and that the mapping is into the desired part
of the file, the Emulation Library copies the data from the mapped region into the user’s buffer and returns.
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Figure 4-1: Mach 3.0 with the BSD4.3 Single Server Mapped File Read



4.1.1. Read() in the Emulation Library
To examine the file descriptor in the writeable shared page, the Emulation Library must first acquire the

share lock which protects this region. A share lock is different from a simple spin lock in that the BSD4.3
Single Server does not trust the Emulation Library.  The Emulation Library resides in user memory and can
be over-written at any time by an incorrect or malicious user program.  Therefore, the BSD4.3 Single
Server must take measures to ensure it does not deadlock on this share lock.  The share lock is implemented
as a simple spin lock in the Emulation Library and as a test-and-set and block with timeout in the server.
When the server blocks, it requests a callback from the Emulation Library when the Emulation Library
releases the lock.  If the callback is not received in a configurable amount of time, the server assumes the
client is malicious or incorrect and kills the task.

Once the Emulation Library has acquired the share lock, it can examine the state of the Token.  If the
Token is invalid, the Emulation Library must send a message to the server to acquire the Token.  If the
Token is passive, it may be switched directly to active without contacting the server Once the Emulation
Library has the Token, its file pointer and mapping info are guaranteed to be correct. If the mapping
information is not adequate for the current call, the Emulation Library can send a message to the server to
change the mapping.  With a valid mapping, the Emulation Library simply copies the data into the user’s
buffer, updates the file pointer, and releases the Token.  If the BSD4.3 Single Server has indicated, by
setting a bit in the file descriptor, that another task is waiting for the Token, the Emulation Library sends a
message to the server to completely release the Token.  If no call-back is needed, the Emulation Library
moves the Token to passive.

4.1.2. Read() in the BSD4.3 Single Server
The BSD4.3 Single Server can become involved in a read() call in a number of ways.  The Emulation

Library can call it directly in order to request a Token, request a window remapping, or release a Token.
The BSD4.3 Single Server can also be called by the Mach kernel when the Emulation Library faults on
mapped data and the Inode Pager must be contacted to satisfy the fault.  Each of these operations is
described in detail below.

A Token request is straightforward to process. The server keeps track of who has the Token and
examines the state of that process’s file descriptor.  If the holder of the Token has it passive, the server
invalidates the Token and grants it to the requester.  If the Token is active, the server leaves a call back
request with the holder and waits for it to send a Token release call.

A request to change the mapping window is extremely simple when just reading from a file.  All the
server has to do is deallocate the existing window into the file and generate a new mapping which covers
the range necessary for the read(). The handling of the remapping operation for write() is covered in detail
in section 4.2.

When the Emulation Library first touches a page of data mapped into its address space, a page-fault
occurs. The kernel receives this fault and resolves it in one of two ways.  If the page is already present in
the kernel VM system, but the task does not have a valid mapping, then the kernel enters the page mapping
and returns from the fault. If the page is not present in the kernel, the kernel sends a
memory_object_data_request() message to the External Pager backing this object.  In the case of Unix file
data, this is the Inode Pager in the BSD4.3 Single Server.  The Inode Pager then reads the appropriate data
off disk with device_read() and provides this page back to the kernel.

For historical reasons, the Inode Pager uses the buffer cache interface to read and write from and to disk.



This leads to unnecessary caching in the BSD4.3 Single Server. This also results in the Inode Pager using a
less efficient and now obsolete interface memory_object_data_provided() instead of
memory_object_data_supply() to return the data to the kernel.  The former requires a copy within the
kernel, whereas the latter uses a page stealing optimization that eliminates the copying.  In the page stealing
optimization, the VM system just removes the physical page from the server and places it directly in the
Memory Object without copying it.

4.2. Mach 3.0 with the BSD4.3 Single Server write() Path
The write() path is almost identical to the read() path. The differences lie in correctly managing the file

size and writing out dirty pages in a timely fashion.  As in the read() case, the Emulation Library sets up a
valid mapping and copies the user’s data into the window. A valid mapping may exist past the end of the
file, so there is no need to handle file extension as a special case in the Emulation Library.

If the Emulation Library write faults on a page that is in the file, the Inode Pager returns the page from
the disk file to be over written.  In the case of write() faulting on a new page, such as filling a whole or
extending the file, the Inode Pager returns memory_object_data_unavailable() which causes the kernel to
supply a zero filled page to the client.  If the write() extends the file, the Emulation Library updates the file
size field in the local file descriptor.

Actual writes to disk and propagation of the file size occur when the Token is taken away from a writer,
when the writer changes its mapping, or when the kernel needs free pages and starts sending the mapped
file pages to the Inode Pager to be cleaned.  In the first two cases, the mapped file code first updates the file
size from the writer’s file descriptor.  The server then calls memory_object_lock_request() to force the
kernel, which knows which pages have actually been written by the user, to request cleaning of the dirty
pages. This generates messages from the kernel to the pager requesting that the dirty pages be written out.
When the Inode Pager receives the dirty pages from the kernel, it writes them out to disk.

Disk block allocation is delayed until the data is actually written out to disk. It would be possible for the
Inode Pager to allocate new blocks in a timely fashion since it gets a data request message when the
Emulation Library page-faults on the new page to be written.  The Inode Pager currently ignores the write
fault attribute when returning the empty page to satisfy the page-fault.  By not allocating at the time of the
initial fault, the semantics for failure in the BSD4.3 Single Server are not the same as Mach 2.6
MSD(BSD4.3).

The difficulty occurs when there was a involuntary request to clean pages from the kernel driven by a
memory shortage.  In the previous cases where dirty pages and the file size were written out, the writing
was initiated by a call from the Emulation Library.  In this case the Emulation Library could be in the
middle of a read() or write() call, so the Inode Pager must read the file size from the current holder of the
Token without taking that Token away.

4.3. CHORUS/MiX V.4 read() Path
This section illustrates how a Unix read() system call is handled in the CHORUS/MiX V.4 system.  When

a Unix process traps to the system, it executes the trap handler connected by the Process Manager.  The PM
performs various checks and invokes the CHORUS Nucleus call sgRead(). The Nucleus looks for the
corresponding page.  If the page is found, data is directly copied into the user’s buffer.  If the page is not
found, an upcall to the appropriate mapper is performed by sending a message to the port whose UI is part
of the file capability. In this case, the mapper, which implements the disk driver, reads the data from the



disk and replys to the Nucleus which copies out the data into the user’s buffer. The overall mechanism is
summarized in the figure 4-2.
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Figure 4-2: CHORUS/MiX V.4 read path

4.3.1. Process Manager
As in any Unix system, the library part of a system call runs in user space and builds a stack frame with

the system call arguments and then traps. The trap is handled by the CHORUS Nucleus which redirects the
invocation to the trap handler connected by the PM at init time by means of the svTrapConnect() Nucleus
call (arrow 0 in figure 4-2).

The trap handler executes in supervisor space in the context of the process invoking the system call.  The
system stack used by the trap handler is the one provided by the CHORUS Nucleus at thread creation time.
Using software registers provided by the CHORUS Nucleus, the handler retrieves the thread and process
system context.  The user stack frame is then copied into the thread structure since multiple threads can run
concurrently within a process (arrow 1).

Once the file descriptor has been validated, the PM distinguishes between files that are accessible
through the Virtual Memory Interface, such as regular files and mappable character devices, and other files
such as directories and streams that are read and written by sending messages to the appropriate server.
The PM then acquires the current offset for the file.  This requires that it hold a Token in the distributed



release of the system.  When the system runs on a single site, the PM is assured that the offset information
it has is always valid.

The PM then must determine whether the read starts beyond the current End Of File, or not, and thus
must acquire the file size information.  This information is protected by a token mechanism which is
separate from the Token for the current offset.  At the time the read() occurs, the Token might not be
present in the PM, but may have been recalled by the OM.  Finally, after having checked the read operation
against mandatory locks (if any), the PM invokes the sgRead() CHORUS Nucleus call.

4.3.2. CHORUS Nucleus
The CHORUS Nucleus first tries to retrieve the local cache [1] associated with the segment being

accessed. A local cache is created for the segment upon the first access to the segment.  Through the local
cache descriptor the Nucleus accesses the pages of the segment that are present in main memory, and their
associated access rights whether readable or writable.  In case the page being read is present (arrow 2a) in
the local cache, data is copied out to the user’s buffer (arrow 3a).  If not present, a free page is acquired
(arrow 2b) and the Mapper managing the segment is invoked (arrow 3b).  Upon return from the Mapper,
the data is copied out into the user’s buffer (arrow 5b).

It should be noted that the sgRead() operation insures the seriability of concurrent overlapping reads and
and writes on a segment.

4.3.3. Mapper
In MiX V.4, regular files are managed by the Object Manager, which acts as the Mapper for these files

and thus handles pullIn (read page) and pushOut (write page) requests for these files.  When the Object
Manager runs in supervisor address space it uses a message handler to handle incoming requests.  The
client thread is made to run in the server context.  Direct access to invoker message descriptors is permitted
thus avoiding extra copy of data.

The Object Manager then invokes the corresponding function (e.g.: ufs_pullin()) using an extension to
the vnode_ops mechanism.  The file system specific pullin function converts the page offset in the file into
a physical block number and then invokes the disk driver to load data.  The buffer area is set up so that it
points directly to the physical page provided by the Nucleus and passed as part of the reply message (arrow
4b). The OM only buffers inodes, directory and indirect blocks.

4.4. CHORUS/MiX V.4 write() Path
The basic mechanisms are similar to the ones described for the read() system call.  However, a write()

may extend a file or fill a hole in the file.  In such a case, the system must immediately allocate disk blocks
for the written data.

When the Object Manager returns a page of a file to the Nucleus, it returns also an associated access
right enabling the page to be read-only or read-and-written.  When a process wants to extend a file by
writing after the EOF, the Nucleus requests the entire page for read/write access if there was a cache miss,
or only the write permission if there was a cache hit, with no previous write access granted by the Mapper.

Before the Object Manager returns a write permission for a page, it insures that blocks will be available
later to write the data on the disk.  Blocks are allocated to the file at the time the write permission is
required. When the file is closed, blocks that have been allocated but which are not used (past the EOF) are



returned to the free block pool.

Finally if the extension of the file has been successful, the PM changes the size of the file.  This requires
that the PM has the file size token with a write access granted to the size information.

5. Performance
This section contains the performance breakdown for the read() and write() calls described in the

previous sections plus composite numbers for both these systems and from Mach 2.6 MSD(BSD4.3) and
System V Release 4.0/386. The micro-benchmarks show where the time is consumed in the full read() and
write() call. The benchmarks for Mach 3.0 with the BSD4.3 Single Server and Mach 2.6 MSD(BSD4.3)
were run on a HP Vectra 25C 80386/25Mhz with 16MB and 32K cache, a WD 1007 disk controller and a
340MB disk.  The benchmarks for CHORUS/MiX V.4 and System V R4.0 were run on Compaq Deskpro
80386/25Mhz with 16MB of memory and 32K SRAM cache, a WD 1007A disk controller and a 110MB
disk drive.  The testing methodology was to run a given test three to ten times and to report the median
value.

As a number of tests show, the two test platforms, HP Vectra and Compaq Deskpro, have quite different
disk and memory throughput performance characteristics. Basically, the HP Vectra memory throughput is
between 40% and 50% higher than the Compaq Deskpro throughput (see table 5-1). In comparing the
performance of the different systems below, it is essential to remember these differences and relate the
figures to the maximum memory and disk throughput of the two different platforms.

To measure the performance of the memory system a simple bcopy was run on both machines.  Repeated
movement of 4096 bytes was used for the cached result and repeated movement of between 256k and 1M
was used for the uncached result. Table 5-1 shows throughput and the time for copying a page of 4096
bytes.

HP Vectra Compaq

Cached 21.2MB/sec 14.7MB/sec

184µs 265µs

UnCached 10.4MB/sec 6.4MB/sec

379µs 615µs

Table 5-1: Bcopy of 4096 bytes

Two of the primary primitives used by the kernelized systems are trap times and Remote Procedure Call
or RPC times. We measured the cost of reaching the Emulation Library or Trap Handler in the kernelized
system, versus the cost of a kernel trap in the monolithic systems.  For this test we used getpid() on all
architectures. To show how much overhead there is in reaching the Emulation Library or Trap Handler for
a Unix call, including such things as checking for signals, we measured the cost of a null trap into the
kernel. Table 5-2 also shows RPC times for the two kernelized systems.  The Mach 3.0 RPC times are
between two user tasks since this is the type of communication that occurs between the Emulation Library
and the BSD4.3 Single Server.  The Chorus Null RPC times corresponds to a null ipcCall() issued from a
supervisor actor to another supervisor actor handling messages via a message handler, which is what is
used between PM and OM, and between Chorus Nucleus and OM.  CHORUS/MiX V.4 has a more
expensive getpid() call than the native SVR4 implementation.  This is due, at least partially, to the MiX PM
having already implemented support for multithreaded processes and multiprocessor platforms. Thus, MiX



has some synchronization mechanisms that are not present within the native Unix SVR4.

HP Vectra Compaq

Mach 3.0 Mach 2.6 CHORUS/MiX V.4 SVR4.0

Null Trap 40µs 61µs 36µs 85µs

Trap to Unix 61µs 61µs 119µs 85µs

Null RPC 310µs 83µs

Table 5-2: Trap and RPC times

The primary measurement we are concerned with in this paper is read() and write() throughput. Table
5-3 measures throughput on all four systems for moving data to and from disk plus the extrapolated time it
took for each 4096 byte page.  The read()’s and write()’s were large enough so no caching effects would be
seen. As can be seen, the only case where the kernelized system does not perform as well as the monolithic
system is the Mach 3.0 write() which performs 6% slower.

HP Vectra Compaq

Mach 3.0 Mach 2.6 CHORUS/MiX V.4 SVR4.0

Read 320KB/sec 320KB/sec 270KB/sec 270KB/sec

12.5ms 12.5ms 14.8ms 14.8ms

Write 300KB/sec 320KB/sec 250KB/sec 250KB/sec

13.3ms 12.5ms 16.0ms 16.0ms

Table 5-3: Read and Write Throughput

To approximate the cost of the code path for read() and write() we measured the cost of read()’s without
requiring disk access.  For this test we did a sequential read of a file of approximately 2 megabytes in size
for the kernelized systems and SVR4 and a file as large as possible and still able to fit into the buffer cache
for Mach 2.6.  Table 5-4 shows these results.

HP Vectra Compaq

Mach 3.0 Mach 2.6 CHORUS/MiX V.4 SVR4.0

4.3M/sec 4.3M/sec 3.3M/sec 3.0M/sec

900µs 900µs 1100µs 1300µs

Table 5-4: Cached Read Throughput

The next benchmark measures the cost for repeated calls to read() or write() of one byte with a lseek()

between each iteration. So that the lseek() time can be removed for further comparisons, a benchmark to
measure lseek() time is included.  Table 5-5 shows the results of these tests. The read time for
CHORUS/MiX V.4 is consistent with the equivalent time measured for SVR4:  the difference
(80µs)corresponds roughly to the additional cost of the trap handling (34µs for the seek call and for the
read call).  Among the four systems, all of them except SVR4 exhibit equivalent times for reading and
writing one byte. The reason why SVR4 writes much faster one byte than it reads it, is quite unclear.

Table 5-4 measured the cost of reading 4096 bytes from a file when reading sequentially through the
entire file.  The difference between that result and the results shown in table 5-5 should be the difference of



HP Vectra Compaq

Mach 3.0 Mach 2.6 CHORUS/MiX V.4 SVR4.0

Lseek 95µs 79µs 155µs 121µs

Read 210µs 390µs 710µs 630µs

Write 200µs 380µs 720µs 420µs

Table 5-5: Cached Read and Write Times

an uncached and a cached bcopy and the addition of a fast page-fault resolved in the VM cache.  For the
Mach 3.0 system table 5-4 also includes the cost of a mapping window change every 16 iterations of 4096
bytes. To account for the mapping window change operation in Mach 3.0 with the BSD4.3 Single Server, a
test was run which lseek()ed 61440 bytes after each 4096 byte read to force a mapping operation on each
read(). This resulted in a cost of 2250υs for each iteration including the lseek() cost. By looking at 16
reads covering 64KB, we can extrapolate the cost of just the mapping operation and the cost of a page-
fault. The measured result from table 5-4 is 900µs times 16 which must be equal to 2250µs plus 15 times
the quantity 115µs, from table 5-5, plus 379υσ plus the page-fault time. From this, the cost of the fast
page-fault time is 316µs. By breaking down the 2250µs measurement, we get the cost of the mapping
operation to be 1440µs.

Another test of interest both for understanding the break down of read() costs and for comparison
between the kernelized systems and monolithic systems is the reading of data directly from raw disk
partitions. Table 5-6 shows the throughput and per 4096k byte page performance of Mach 3.0 and Mach
2.6 for different size reads.  When these tests were run with block increments of one between each read, the
performance was lower than that actually measured for a full read(). This result is consistent with the
BSD4.3 Single Server’s uses of readahead which will not consistently miss disk rotations like this test must
have. To account for this and better simulate what is happening in the BSD4.3 Single Server, various block
increments from one to eight times the data size were used in the benchmark and the increment which
produced the best result was reported.  An interesting point about the results is Mach 2.6 reads from raw
partitions slower than it reads from Unix files.

Bytes 4KB 8KB 16KB 32KB 64KB

Mach 3.0 10.5ms 10.0ms 7.5ms 7.5ms 6.5ms

device_read() 380KB/sec 410KB/sec 530KB/sec 530KB/sec 620KB/sec

Mach 2.6 14.3ms 14.3ms 14.3ms 14.3ms 14.3ms

read() 280KB/sec 280KB/sec 280KB/sec 280KB/sec 280KB/sec

Table 5-6: Raw Read Performance

The CHORUS Nucleus does not provide any direct access to devices.  MiX Object Manager accesses
directly the disk driver as a native Unix implementation does, through a bdevsw/cdevsw interface.  Tests
were done to measure the disk throughput from within the OM using 4KB, 8KB 16KB and 32KB transfers.
The test was run in two different ways:  the first run was reading the disk sequentially while the second run
was always reading the same block of the disk. As the controller as an internal cache reading the same
block goes faster than reading the disk sequentially.

As it was difficult to get the same measure for Unix SVR4, we measured the disk throughput through the
raw disk interface using standard read system calls, the throughput achieved is 530KB/sec for 4096 byte



Bytes 4KB 8KB 16KB 32KB

Sequential 7.1ms 7.1ms 7.1ms 7.1ms

read 560KB/sec 560KB/sec 560KB/sec 560KB/sec

Same Block 4.49ms 4.19ms 4.10ms 4.00ms

read 890KB/sec 952KB/sec 975KB/sec 990KB/sec

Table 5-7: CHORUS/MiX V.4 Raw Read Performance

pages.

The results in table 5-8 were gathered to show the combined effect of reading from disk and supplying
the data to the VM system and to show what potential improvements could be made by tuning the file
system implementation to the kernelized architecture.  The Data_Provided column corresponds to
memory_object_data_provided() the obsolete call that is used in the current implementation.  Data_Supply
corresponds to memory_object_data_supply(), the new Mach call which has the previously mentioned page
stealing optimization. Like the results from table 5-6, the block increment was adjusted to remove disk
rotation misses.  Both tests reached maximum throughput of 530KB/sec at 16k reads and maintained that
speed for larger block sizes.

Comparison of Mach Per Page Fault Cost

Bytes 4KB 8KB 16KB

Data_Provided 12.1ms 10.0ms 7.5ms

330KB/sec 400KB/sec 530KB/sec

Data_Supply 11.5ms 10.0ms 7.5ms

346KB/sec 410KB/sec 530KB/sec

Table 5-8: Mach 3.0 Data_Provided and Data_Supply

Measures have been taken within the CHORUS Nucleus to measure the cost of a pullIn operation: a loop
for loading the same from the Mapper in physical memory has been measured: this includes the RPC from
the CHORUS Nucleus to the Mapper (83µs). This has been run with a 4096 byte page size. The time
reported is 5ms which leads to a throughput of 800KB/sec. As this test doesn’t really access the disk but
only the cache of the controller, this figures must be compared to the figures achieved by reading
continually the same block of 4096 bytes from the raw disk (4.49 ms, and 890KB/sec). The overhead
introduced by the Object Manager for loading page can then be deduced as 5ms - 4.49 ms: 0.51 ms.  These
510µs comprise the 83µs due to the RPC from the Nucleus to the OM. Thus, the actual overhead induced
by the OM remains to some 430µs.

To bring together all of the previous results, table 5-9 shows a break down of the read() path with
associated costs.  The micro-benchmark total comes out only 4% higher than the measured result.  Since
the measurements for device_read() and memory_object_data_provided() are only an approximation, the
measured and projected totals can be considered the same.  The Mach 2.6 numbers were included for
comparison. Since there is no easy way to measure the internal access time to the disk driver for reading,
an extrapolated value was supplied for read which yielded a identical measured and projected total.

While the end measured result for read() and write() performance is the same in Mach 3.0 with the
BSD4.3 Single Server and Mach 2.6 MSD(BSD4.3), table 5-9 shows a result which may question



Operation Time (µs) Time (µs)

Mach 3.0 Mach 2.6

Trap to Unix 61 61

Misc Costs 54 250

1/16th Remap Window 90 N/A

Pagefault 316 N/A

Read from Disk 10500 11810

Data Provided 1600 N/A

Bcopy Uncached to User 379 379

Total w/o Disk Read 2500 690

Total 13000 12500

Measured Total 12500 12500

Table 5-9: Mach 3.0 with the BSD4.3 Single Server Read() Path

scalability the result under load.  Because the disk latency is so high, the 262% increase in processing
overhead necessary in the BSD4.3 Single Server is hidden.  Further measurements should look at whether
the effects of this increased processing outweigh the benefits seen in cached performance where the
BSD4.3 Single Server read() overhead is only 54% of the Mach 2.6 MSD(BSD4.3) read() overhead.

6. Conclusions

6.1. Compromises
The kernelized systems have achieved their performance in a number of cases by compromising some of

their modularity and portability goals.

Mach 3.0 with the BSD4.3 Single Server makes liberal use of the shared memory pages between the
BSD4.3 Single Server and Emulation Library.  While this works well on a uniprocessor or shared memory
multiprocessor, it would not work well on a NUMA or NORMA machine.  The mapping information
which is used by the Emulation Library could be updated by messages instead of being written directly by
the BSD4.3 Single Server. This would eliminate the passive Token state optimization since there is no
mechanism for an upcall from the BSD4.3 Single Server to the Emulation Library.  A dedicated thread in
the Emulation Library for upcalls would solve this problem but with the cost of adding an additional thread
creation at each fork() call. Another solution would be to have a proxy task running on each node on behalf
of the BSD4.3 Single Server to share the memory with the Emulation Library and respond to upcalls.  The
cost here would be at startup in the creation of an additional task per node.

CHORUS/MiX V.4 is capable of runnings its system servers in either supervisor or user mode.  The
configuration used for the previous sections measurements was the version where the servers reside in
supervisor mode.  This results in no context switches and faster IPC times to read or write from/to the disk.
Moreover, CHORUS/MiX V.4 servers do not share any memory, thus it is quite easy to make a component
evolve without changing the other servers as long as the protocol between them remains unchanged.  The
configuration where CHORUS/MiX V.4 is running with its servers in user mode is primarily intended to be
used for debugging purposes, thus no particular attention has been paid yet to achieve similar performances



in such a configuration. However some experiments have been done in the previous release of MiX (MiX
V3.2) to measure the additional costs that such a configuration will imply.  Further details can be found in
[3].

One of the key point in the design of CHORUS/MiX V.4 has been the introduction of the message handler
mechanism. However, this mechanism should be extended to work whether the receiver of a message is
running in supervisor address space or user address space.

6.2. Cross Pollenation
A number of techniques used by CHORUS/MiX V.4 could readily be adopted by Mach 3.0 with the

BSD4.3 Single Server.  The movement of device drivers such as disk drivers out of the kernel or nucleus
into systems servers is one good example of this.  By locating the device manipulation code in the same
task which needs the data, context switches and data copies can be avoided.  For this to really work on a
Mach based system, the device driver needs to really be able to run in user mode where systems servers are
run. This is feasible on architectures which allow user mode access to device registers such as the
R2000/R3000 based DECstation and 80386/80486 based platforms.  The current version of the BSD4.3
Single Server for the DECstation platform uses a user mode ethernet driver and preliminary work has been
done on moving disk drivers.

Another technique which CHORUS/MiX V.4 uses which could be adopted by Mach 3.0 with the BSD4.3
Single Server is the concept of a handler.  By having the kernel redirect the trap directly into another
address space, CHORUS avoids the protection problem the BSD4.3 Single Server has with the Emulation
Library and avoids the associated RPC needed by the Emulation Library to cross into a trusted server.  The
question about this technique, is whether the additional cost of always redirecting into another address
space outweighs the cost of the occasional RPC.  Since Mach 3.0 servers are run in user mode, the cost of
this redirection may turn out to be much higher than that seen by CHORUS for the redirection into a
supervisor mode actor.

Mach 2.6 MSD(BSD4.3) could benefit from a mapped file system using the Emulation Library
technique. This will only work because it already has the complex VM system, a fast IPC, and the Trap
Emulation mechanism that resides in Mach 3.0.  In general, monolithic systems can not benefit the
kernelized techniques because they do not have the necessary mechanisms for building system servers with
new structures.

To fully compare the two approaches taken by Mach 3.0 and CHORUS, one could use the CHORUS Trap
Handler mechanism to implement an Emulation Library instead of a Process Manager in CHORUS. As long
as device drivers are part of CHORUS subsystems’ specific actors, it will be difficult to have multiple
subsystems running simultaneously sharing the same devices.  The isolation of the drivers out of the servers
as done in Mach would help to solve this issue. This has been experimented in CHORUS/MiX V3.2 and
described in [3].

6.3. Final Words
Section 5 shows that Mach 3.0 with the BSD4.3 Single Server and CHORUS/MiX V.4 have achieved

performance in the movement of data comparable to the monolithic systems which they are compatible
with. In no case was read() or write() throughput less then 94% of the performance of the monolithic
system. Many of the micro-benchmarks clearly indicated better performance on kernelized systems for
certain types of cached access.



There is also still clear room for improvement in Mach 3.0 with the BSD4.3 Single Server. By moving
to the memory_object_data_supply() call from the obsolete interface and better optimizing read sizes and
readahead for the performance of the microkernel, disk throughput could approach 600KB/sec or almost a
100% improvement over the existing BSD4.3 Single Server and Mach 2.6 MSD(BSD4.3) systems.

CHORUS/MiX V.4 may also expect some significant improvement since no readahead is used in the
systems that have been described and measured.  Pages being pushed out to the disk are written
synchronously, adding some asynchronicity should help to handle multiple disk access more gracefully by
making the disk sort algorithm much more useful.

Regarding the history of microkernels, their current performance has been achieved through multiple
iterations which allows them to now be used in commercial products as opposed to just being interesting
research tools.  Yet, microkernel based systems are still very young and have not benefited from the
thousands of man-years that have been spent to make monolithic systems as fast as they are now.  Even as
young as they are, we believe that kernelized systems have shown themselves to be both flexible and fast
enough for the challenging task of building file systems and moving data.  You can only imagine what
kernelized systems will look like a few years from now, after receiving a fraction of the effort that has gone
into monolithic systems in the past.

7. Availability
Mach 3.0 is free and available for anonymous FTP from cs.cmu.edu.  The BSD4.3 Single Server is

available free to anyone with an AT&T source license.  Contact mach@cs.cmu.edu for information.
CHORUS is available from CHORUS Systemes. Contact info@chorus.fr for licensing information.  Reports
and documentation is freely accessible by anonymous FTP from opera.chorus.fr.
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