Implementing a modular object oriented operating system on top of
CHORUS

Paulo Amaral, Rodger Lea and Christian Jacquemot

Chorussystanes
6, avenueGustavetiffel
F-78182SaintQuentin-en-Yveline€edex
France

Tel: +331 30648200
Fax:+331 30570066

ABSTRACT

Building distributedoperatingsystemsenefitsfrom the micro-kernelapproachby
allowing better supportfor modularization.However,we believe that that we needto
takethis supporta stepfurther. A moremodular,or objectorientedapproachs neededf
we wish to crossthatbarrierof complexitythatis holding backdistributedoperatingsys-
tem development.The ChorusObjectOrientedLayer (COOL) is a layer built abovethe
Chorusmicro-kerneldesignedto extendthe micro-kernelabstractionsvith supportfor
object orientedsystems. COOL v2, the seconditeration of this layer providesgeneric
supportfor clustersof objects,in a distributedvirtual memory model. This approach
allows usto build operatingsystemsascollectionsof objects. It is built asa layeredsys-
temwherethelowestlayersupportonly clustersandthe upperlayerssupportobjects.

1. Introduction

Building distributedsystemsds difficult simply becauseéhe complexity of interactionsamongentitiesscat-
teredon a collectionof machineds enormousThe distributedsystemscommunityhaslong beenwrestling
with this complexity and hasdevelopedmethodssuchas RPC, group communicationsdistributedshared
memoryetc.in anattemptto providemechanismshatabstracbver someof this complexity.

However,in attemptingto build systemshat actively usethesemechanismsve haverun into two major
problems,performanceand integration. Performancebecauseve havetried to add thesemechanismdo
existingsystemsandintegrationbecauseave havetried to do soin anad-hocmannemwithout fully consid-
eringhow thesetools shouldinteract,or how applicationswill usetheseservices.

Work in the operatingsystemcommunity hastried to deal with theseissuesby re-visiting our existing
operatingsystemsand looking at the minimum abstractionsiecessaryo build distributedoperatingsys-
tems.By combiningthesewith a systembuilding architecturethat stressesnodularity, we can beginto
addresgshe performanceand complexity issues.This approach often called the micro-kernel approach,
allowsusto providea minimumsetof abstractionshatcanbe usedto build operatingsystemshemselves.

We feel however thatwhile this is the correctapproachijt is only onestepin the right direction.We need
to augmentour basicmechanismsvith a frameworkthat allows systembuildersto glue functional com-
ponentstogetherin a coherentand performantway. In effect, we needto provide a systembuilding
environmenthatsupportsa programmingmodel,toolsandservicesneededo work within thatframework.

The objectorientedparadigmoffers a solutionto this problemby offering a frameworkfor building large
complexapplicationssuchasOS’sin away thatis amenabldo distribution.However,we mustnotrepeat
the mistakesof early distributedsystembuilders by trying to imposea model on a set of mechanisms,
rather,we mustactively supportthe model at the lowest layersin our system,by making surethat our

abstractiongresuitablefor supportingobjects[Bla92]

In this paperwe discusshow the COOL systemhasbeendesignedto exploit the uniquefeaturesof the
Chorusoperatingsystemmodelto providean efficient setof abstractionshatarewell suitedto supportthe
object orientedmetaphor.We stressthat this approachnot only facilitatesbuilding distributedOS’s, but
any distributedobjectorientedapplication,becausét reduceshe mismatchbetweenour OO servicesand
themodelwe useto build distributedapplications.

Our goalis to providea frameworkthatwill allow operatingsystembuildersto developtheir applications,
theoperatingsystemjn awell structuredflexible andcoherenenvironment.

We will introducethe basicCOOL v2 architecture andthen concentrateon the PersistentContextSpace
modelthat we have developedto allow us to efficiently supportdistributed,sharedobjectsat the lowest
layerin the system.

2. COOL v2

The COOL projectis now in its secondteration,our first platform, COOL v11, wasdesignedasa testbed
for initial ideasandimplementedn late’'88 [Hab90,Des89] ea91]

Our earlywork with COOL (COOL v1) consistedf experimentatiorn the way thatsystemscould be built
usingthe objectorientedmodel,andhow this supportediistributedapplications.In anattemptto movethe
COOL platformfrom a testbedowardsa full objectorientedoperatingsystemwe begana redesignof the
COOL abstractiongn 1990. This work was carriedout in conjunctionwith two Europearnresearchpro-
jects, both building distributedobjectbasedsystemsthe EspritISA projectandthe Esprit Comandogro-
ject [Cah91]

Theresultof this work hasbeenthe specificationof the COOL v2 systemandits initial implementatiorin
late’91, [Lea92,Ama92].

3. The COOL v2 architecture

COOL v2 is composedof three functionally separatdayers,the COOL-baselayer, the COOL generic
run-timeandthe COOL languagespecificrun-timelayer.

Application level

o

') u
COOL-generic run—time ssgée

Objects, distributed and persistent

COOL-base
. o System
Clusters: an abstraction over distributed kernels and secondary store space

CHORUS Nucleus CHORUS Nucleus CHORUS Nucleus E/

ISecondry store

Bus or network

Figure 1: COOL v2 architecture

1 COOL vl was a joint project between Chorus Systemes,the SEPT (Service d’Etudes des Postes et
TelecommunicationspndINRIA (Institut Nationalde Recherchen Informatiqueeten Automatique)

Our goal when designingthis architecturewas twofold, efficiency and flexibility. We wantedto support
distributedinteractionsusinga numberof basemechanisms.

To allow objectsto interactwe can;

° supportacommunicationsnechanismshatwill allow transpareninvocation.

° allow objectsto migratebetweencontextsby unmappingfrom one contextand mappinginto
anotherrelocatinginternalpointersonthefly.

° useadistributedsharedmemorymechanismshatensure®bjectlevel faulting.

Eachof thesemechanismdiavetheir advantagesndtheir drawbacksand eachwill be usedin different
circumstancesA key elementof our work is thatthethreelevelsof the architecturejnteractto provideall
threemechanismsallowing policy to decidewhich mechanismso be usedatwhich particulartime.

In the following sectionswe briefly outline the functionality of the threelevelsandthenreturnto the base
level andexplainfurtherits supportfor a distributedvirtual memorymodelandits implementatiorasa dis-
tributedsystemsupportayer.

3.1. TheCOOL base

The COOL-bases the systemlevel layer. It hasthe interfaceof a setof systemcalls andencapsulatethe
CHORUSmMicro-kernel. It actsitself asa micro-kernelfor object-orientedsystemspn thetop of which the
genericrun-timelayer canbe built. The abstractionsmplementedn this layer havea closerelationship
with CHORUS itself and they are intendedto benefitfrom the performanceof a highly mature micro-
kernel.

The COOL-baseprovidesmemoryabstractionsvhereobjectscanexist, supportfor objectsharingthrough
distributedsharedmemoryand messageassingan executionmodelbasedon threadsanda singlelevel
persistenstorethatabstractovera collectionof looselycouplednodesandassociatedecondanstorage.

In our initial work with COOL our baselevel supporteda simplegenericnotion of objects.This provedto
betoo expensivan termsof systemoverheadsothatin COOL v2 we havemovedthe notion of objectsout
of our baselayerandreplacedt with a moregenericsetof abstractionsvhich we termthe Persistent Con-
text Space model(PCS).

The persistentcontext spacesupportsa basic abstractionthe cluster which is a setof virtual memory
regionsand provide a repository for objects. Clusters,being persistent,are representecbn secondary
storageusingthe CHORUSabstractiorof a segmentandarerepresentedin memoryusingthe CHORUS
abstractiorof regions.

Clustersare groupedtogetherinto containers which representollectionsof objectswhosereferencesre
completelycontainedj.e. all referencesvithin clusterspointinto clusterswithin the samecontainer.

A context abstractsthe notion of an addressspace,and providesa place into which containerscan be
mappedfor execution.To supportdistributedsharedmemorywe definethe context group whichis a col-
lectionof contextspn oneor moresites,thatmapidenticalcontainers.

We will returnto the PCSmodelandits implementatiorin section4

3.2. TheCOOL generic run-time.

Thegenericrun-timeimplementsa notion of objects.Objectsarethe fundamentahbstractiorin the system
for building applications An objectis a combinationof stateanda setof methodsAn objectis aninstance
of aclasswhich definesanimplementatiorof the methods. The genericrun-timehasa sub-componenthe
virtual objectmemorythat supportsobjectmanagemenincluding: creation,dynamiclink/load, fully tran-
spareninvocationincludinglocationon secondarstorageandmappinginto contextspaces.

Two typesof objectidentifiersare offered by the genericrun-time: domainwide referencesandlanguage
referencesA domainwide referencas a globally unique,persistentdentifier. It maybe usedto referto an
objectregardlesf its location. A languagereferenceis a pointerin C++ andis valid in the contextin
which the objectis presentlymapped.

The genericrun-time definesthe primitives to convertone type of referenceto the other one. When a
domainwide referenceto a remoteobjectis convertedto languagereferencea proxy associatedo the
objectis createdSha86].This proxy is usedto transparentlynvoke the remoteobject.

Objectsarealwayscreatedn clusters Eachcluster'saddresspaceis divided into threeparts:the first one
is usedto storeall the structuresassociateavith the clusterusedby the genericrun-time,the secondoneis
usedto storethe applicationsobjects,andthe lastoneis usedto storethe proxies.A different allocatoris
associatedo eachpart,this allocatoris usedto allocateandfree space.

Theclassesarestructuredn modules(setof classesunit of code).The genericrun-timeallowsthe codeto

be dynamicallylinked. The genericrun-time offers a primitive to link a module.Eachclasscontainedin

the module are store at the contextlevel. When an instanceof a classis createdin a cluster,the class
descriptoris savedin the cluster.This classdescriptoris usedto retrievethe appropriatenoduleandthere-
fore theappropriateclasswhena clusteris remappedn anotheraddresspace.

The genericruntime providesan executionmodelbasedon the notion of activities which are mappedonto
CHORUSKkernelsupportedhreadsandjobs which modelsdistributedexecutionof activities.Eachcluster
cansupportmultiple activities, with more than one activity capableof runningwithin the sameobjectat
anyparticulartime?.

One of the main problemswith trying to use a single genericbhaseto supportmultiple languagelevel
modelsis that of semanticsMost languagesand systemshavetheir own semanticsgachof which are
subtly different. To enablethe building of sophisticatednechanisnthat supportmultiple modelswe have
defineda genericrun-timeto languagenterfacebasedon upcalls.

The genericruntime maintainsfor eachobjecta link betweenthe objectandits class.This link is usedto
find theupcallinformationassociatedavith eachobject.

The upcallinformation, and associatedunctionsis usedfor a variety of purposesjncluding supportfor
persistenceinvocationandre-mappingbetweenaddresspacesin fact, any time wherea functionality of
the genericrun-timeneedsaccesgo informationaboutobjectsthat only the languagespecificenvironment
will know.

For exampleto supportclusterspersistenceandhenceobject persistencewe needaccesdo the layout of
objectsto locatereferencesieldin the objectsdata.Whena clusteris mappednto anaddresspaceall the
objectsare scannedby usingthe appropriateupcall function to locatethe internal referencegto external
objects)and performinga mappingfrom the domainwide referencegusedwhen an objectis locatedon
secondarystorage)o addresspacespecificreferencesthis techniqudf oftencalledpointerswizzeling.

Anotherexampleis for objectinvocation.Invocationsbetweenobjectsin the sameclusteris basedon the
standardmethod invocation of the language(C++ method). Invocations betweenobjectsin different
addresspaceusethe model offered by the COOL-basdayer (CHORUScommunicatiorprimitives). The
proxy is usedto trap the normal function invocation and replaceit by an remote invocation which
marshallsthe parametersissuesan remoteprocedurecall, and unmarshalithe results. At the receiver,a
dispatchprocedure,which is part of the upcall function associatedvith an object, is usedto call the
appropriatenethodon the appropriateobject.

Invocationmay alsousethe underlyingclustermanagemenmechanisms$o mapclustersinto local address
spacedor efficiency reasonspr locally to allow light weight RPC and maintain protectionbounderies,
againtheupcallfunctionsareusedto supportthis.

3.3. Thelanguage specific run-time.

The languagespecificrun-time mapsa particularlanguageobject model to the genericrun-time model.
This may be achievedhroughthe useof pre-processor® generatehe correctstubcodeandthe useof the
upcalltable.

As discussedhibove,the GRT will, in the processof operationssuchas mappingor unmappingan object
from an addressspace,upcall into the languagespecificrun time responsibleor that objectby usingthe

2 Subjectto languagdevel constraints.

upcalltableassociatedvith the objectand generatedy the languagespecificrun-time. This requiresthat
the languagerun-time, usuallythe compiler,generategnoughinformationto interfaceto the genericrun-
time. Currentlywe usepre-processatechniquedo generatehis informationsothatat run time objectscan
be managedy the underlyingCOOL system.

4., TheBase Level revisited.

In section 3.1 we briefly outlined the abstractionsthat the base level provides, however the
container/clustemechanisms designedo supportmorethana simplegroupingof objects.

Our goalswhendesigningthe baseabstractionsvhere:

° Supportdistributed, sharedvirtual memory so that we could efficiently supportlanguages
basedonvirtual memoryreferences.

° Provideaform of memorypersistencéncludingthe mechanismséor a singlelevel storesothat
higherlevelswould not seea multi-tieredstoragehierarchy.

° Providea meango structurethe distributedvirtual memoryspaceso that systembuilderscan
controltheir useof thedistributedvirtual memory.

The mechanismshatform partof individual languagerun-timesandthe GRT supportdistributedprogram-
ming, however,in all casegheyarecostly. Objectrelocationrequirespointerswizzlingwhenclustersare
mappedand unmappedjnvocationusinga messag@assingmechanismsieedparametemarshallingand
oftenbreakthe semantic®f objectinvocation.

Supportinga distributed,sharedvirtual memoryis one solutionthat allows efficient transparenprogram-
ming within a distributedenvironmentAlthough thereare many costsandrestrictionsto a distributedvir-
tual memorymodel,whencombinedwith a completesystemthat supportsothermechanismsuchasmap-
ping andremoteinvocation,it offers a powerfultool. A key differencebetweenour work andothersis that
we offer arangeof mechanismso supportdistribution,notjustone.

Our basicunit of distributionat the baselevel is the container which, asdescribedn section3.1,is made
up of severaklusters.

Containersarelazily mappedrom secondanstorageby thebaselevelinto a virtual addresspacepr con-
text. This mappingmy involve relocation,asthe form held on secondarystoragemay storepointersin a
globalforma#.

3 A vanilla languagemappedonto the GRT, without languagerun time supportwill not be ableto supportrelocation
andwill be constrainedo alwaysbe locatedat a particularsetof addressesAn extendedanguagethat wasdesignedo
exploitthe GRT would allow addresse® berelocatedthusallowing the systemto relocatecontainersasrequired.

view

user objects

AN
O O o O
cluster S

Figure 2: COOL-basdragmentedbjects

Eachcontaineris ultimately mappedto one or more CHORUS segmentsthe unit of secondarystorage.
When mapped,a containeris said to have a view. The view representghis mappingfrom secondary
storagesegmentsto primary storageregions.More than one view may be managedy a contextat one
time, allowing multiple containerdo be mappednto a singlecontext;seefigure 2. The managementf dis-
tributedviews of a containeris carriedoutby the baselevel.

A container,oncecreatedwill remainin the systemaslong astherearereferencego that container.This
persistencés managedy thebasdevel.

Oncemapped,objectswithin the containercan carry out invocation using virtual memoryreferencesilf
thatactivity wishesto diffuseto othersites,for exampleto allow physicalparallelactivity, thenwe createa
contextgroup.A contextgroupis a setof contextsthat supportone or more containersEachcontaineris
mappedat exactlythe samesetof addresses eachcontextin thegroup.

It is possible,andindeedlikely, thata contextwill supportmorethanonecontainerat a time. Hence,con-
texts may belongto multiple groupsat any onetime with partsof their addressspace’allocated’ to dif-

ferentgroups.A group of contextsthat map a particularcontaineras saidto supporta PersistenContext
Spaceadistributed persistenaddresspacefrom the containergoint of view.

The managementf thesePersistentContextSpacegsequiressomeform of distributedcontrol. Thereare
severalaspectdo this. Containerswhich wish to diffuse to new contextsneedto know if that contextis

capableof supportingthe container,e.g.if addressesisedby the containerare alreadyallocatedthenthe

diffusion cannot be carriedout*. Whennew virtual memoryis addedto a container thenallocationmust
be carriedout acrossall containersn the group, this is managedy the distributedview control mechan-
isms.

4.1. COOL-baseimplementation structure

To managethese distributed entities, the COOL-baseis composedof several objects, or fragment8
representean eachsite and eachusingthe underlyingCHORUS mechanismgo implementa distributed
algorithm. Theseobjectsaregroupednto threemajorcomponents:

4 |t maybe possibleto remapthe containetto a newsetof addressesompatiblewith the newcontext.

5 We usethetermfragment pecauseachlocal representatives a partof aglobaldistributed,or fragmented,
object.

° baseobject:it containsall stateinformationsaboutthelocal site;

° baseproxy: transparentlyaddresseshe correctbaseobjectwhenevera requestfor somesys-
temactionmustbere-directedo anothersite;

. baseserver:transparentiforwardsincomingremoterequestgo the local fragmentresponsible
for managinghatresource.

EachCOOL-baseserverimplementshreeprotocols(with one CHORUSthreadper protocol):

° Distributedgroupmanagementreatesanddeleteggroups, attachesanddetachegontexts
from groupsandcontrolsaddresspaceallocation;

° Distributedview managementattachesanddetachesiews to andfrom clusters andinforms
the COOL-baseo raisean upcallwhenevertheseoperationscaninfluencethe useof the data
storedinsidethe

° Distributedclustermanagementreatesdeletes activatesand de-activateslusters; it is also
responsibldor addinganddeletingsegments$o/from clusters.

Distributed base

COOL-base COOL-base

Server)

Figure 3: COOL-basdragmentedbjects

The protocolsare mappeddirectly on to CHORUSIPC. Someoperationshaveto upcall the genericrun
time to updateupperlayer stateinformation. This alsousesthe CHORUSIPC, allowing usto upcall both
locally andremotely.

4.2. Persistency support

Persistentnemoryis organizedin containers asexplainedabove. Eachcontaineris further subdividedin
clusters; aclusterbeinga setof persistensegments.

Eachentity managedy the systemlayer is namedusinga CHORUScapability, which uniquely namesit
in the distributedsystem.Capabilitiesare the meansto managesystementitiesand are passedbetween
serverslin the caseof clustersandcontainerspothvirtual memorybasedentities,capabilitiesare managed
by mappers. Each mapperis designedto managethe relationshipbetweensecondarystorageand main
store.When a requestto usea clusteris generatedthe COOL basesystemhandsof the requestfor an
unmappedlusterto the mappermanagingthat cluster. The mapperis responsiblefor locatingthe secon-
dary storagerepresentationf the cluster,andwill understananoughof this formatto allow it to mapthe
clusterinto primary store.

Persistencyf clustersis also managedy the mapper.In conjunctionwith higherlevel tools suchasgar-
bagecollectors,the mapperslecidewhich clustersarereferencecndwill alwaysensurethatsuchclusters
aremappedutinto secondanstorewheretheywill remainuntil referencedgain.

The capabilityassignedo the cluster,and managedy the mapperis guaranteedo remainuniqueduring
the lifetime of the system.This guaranteeis madeby the underlying CHORUS micro-kernelwhich is
responsibldor generatingcapabilities.

4.3. The exception mechanism for mapping

An applicationstartsto run within a singlecontext.Initially a single containerwill be associatedvith this
applicationwith a minimumof oneclustermappednto the contex®.

An exceptionmechanisnexistthat usesmemoryfaultsto mapthe correctmemoryat the right place. The
first containemappingcanbe consideredhe highestlevel fault. It makesvisible thenextlevelin the struc-
ture,thatis, clusters.

The secondexceptionlevel is the segmenfault: uponan accesgo someunmappednemoryaddressthe
exceptionhandlerverifiesif thereis someexistingcluster,partof the currentcompletememoryspacethat
containsa segmentwith the neededaddressvhen mapped.lt then mapsthe right cluster.Finally, in a
page-basedrchitecture gachsegmenis divided in pagessoit is only effectively readto in-corememory
if it is really accessedin athird levelfault).

After mapping,memorymay needto be relocated This is dependenbn the semanticof memorycontents
andonly applicationlevelsareawareof it. Therelocationitself is basedon symbolicinformationandonly
known symbolscan be relocated. The problemis that there may be pointersthat have no correspondent
symbolsgeneratechormally by the compilationchain, so, specialhigh level run-time codehasto existin
orderto accessntrinsic semanticinformation of memorycontentsat user-levelin a transparenmanner.
The baselevel, causeghe run-timelevel to carry out any relocationrequiredwhenthe clusteris mapped
into a contextfor thefirst time.

4.4. The upcall mechanism for unmapping

The upcall mechanisncan also be consideredan exception(but a distributedone). As we saw, cluster
mappingandrelocationis done automaticallyby the baseand the run-time systemwhen a memoryfault
occurs.In the simplecase mappingis carriedout from secondarystorageon aninactive cluster.However,
it is likely thata clusteris alreadyin useaspartof anotherpersistentontextspace.Henceit is necessary
to forcethatcluster,andits containerto be unmappedrom onepersistentontextinto thefaulting one.

An upcall hasto be issuedfrom the kernel to the run-time systemin order to unmapthe cluster tran-
sparentlyfrom the application contexts. This upcall is performedusing the CHORUS communication
mechanismallowing the upcallto work in the distributedsystem.

4.5. Combining exception and upcall mechanismsto assure mutual exclusion

With the exceptionand upcall mechanismsn placeit is straightforward to assuremutual exclusionof
clustersthatneedto be mappedat differentaddresses,e., thatbelongto differentactivepersistentontexts
spaces.

During memoryfault handling,if the systemseeshata clusteris beingusedby anotherpersistentontext
spaceit upcallsall contextsin that contextspaceto force the unmappingand proceeds.Later on, if any
oneof the othercontextsneedshatclusteragain,it will do exactlythesamein theinvertedsense.

After remappinga cluster,the systemhasto verify if the containerinformation aboutthat clusteris still
valid. The containemay havea differentsetof clustersor belongto anothermpersistentontext.This hasto
be doneimmediatelyafter cluster mappingbecausdat may now directly referenceanothercluster after
beingchangedn the persistentontextspacewvhereit waspreviouslymapped.

6 Remembethata containeris madeup of oneor moreclusters Clustersarethe unit of mapping.

4.6. Shared memory coherency

Memory mappedin a contextspaceneedsto be assuredsingle-writermultiple readercoherencebetween
all distributedcontextsthat haveit mappedinto its addressspace. A distributedsharedmemorysystem
suchas proposedby Li[App91] is used.This is a strict coherencyalgorithm but is well suitedto the
semanticof languagesuchasC++. We arecurrentlyinvestigatingiweakcoherencysupport.

5. Conclusion and current status

The CHORUSmMmicro-kernelis a setof low level functionality on which higherlevel systemscanbe built.
After four yearsof experienceusingit to build object orientedoperatingsystemswe are convincedthat
micro-kernelsarea sensibleapproacho reducesystemcomplexityandthe developmentycle.

The COOL projectis building an objectorientedkernelabovethe CHORUSmicro-kernel.lts aimsareto
provide a generic set of abstractionsthat will better supportthe current and future object oriented
languagespperatingsystemsandapplications.

Our experienceshowedthat much of thework in implementinga distributedsystemgoesinto the mainte-
nanceof distributedstate. We usedan object-basedystemto describedistributedstatewith fragmented
objects. The useof the CHORUSmicro-kernelallowedthe implementatiorof thesefragmentedbjectsin
a naturalmannerusinga setof protocolsover CHORUSIPC basedon a distributedcapability-basesham-
ing schemahat CHORUSsupports.

We currentlyhavea limited COOL platform runningabovethe CHORUSmicro-kernel,runningnative on
networked386 basedmachine.This platform implementsthe basicclusterlevel including the distributed
virtual memorysupport.The COOL GRT offers full supportfor objectdistributionandfor persistence.In
additionwe havebuilt a pre-processoenvironmenthat allows usto generatgre-processotools thatcan
be usedto extendexistinglanguagesuchasC++ to takefull advantagef the COOL v2 operatingsystem
interface.

6. Acknowledgments

We would like to thankour colleagueat CHORUSsystemdor their valuableinputto this work, in particu-
lar, PeterStrarupJenserand Adam Mirowski.

References

Ama92.
Paulo Amaral, Rodger Lea, and Christian Jacquemot,’A model for persistentsharedmemory
addressingn distributedsystems,”in Proceedings of the Inter national Workshop on on object orien-
tation in operating systems, IEEE ComputerSociety,Dourdon,France Septembef992.

App91.AndrewW. Appel andKai Li, “Virtual Memory Primitivesfor UserPrograms,”in Proceedings of
4th International Conference on Architectural Support for Programming Languages and Operating
Systems, pp. 96-107,SantaClara,CA USA, April 1991.

Bla92.GordonBlair and RodgerLea, “The impact of distribution on the object-orientedapproachto
softwaredevelopment,”| EE Software Engineering Journal, vol. 7, no. 2, March1992.

Cah91.VinnyCabhill, Chris Horn, GradamirStarovic,RodgerLea, and PedroSousa,‘Supporting Object
Oriented Languageson the ComandosPlatform,” in Proceedings of ESPRIT'91 Conference,
BrusselsBelgium,Novemberl991.

Des89.Jean-MarbDeshayesyadim Abrossimov,and RodgerLea, “The CIDRE Distributed Object Sys-
temBasedon CHORUS,” in Proceedings of TOOLS 89, p. 8, 1989.

Hab90.SabineHabert, LaurenceMosseri, and Vadim Abrossimov,“COOL: Kernel supportfor object-
orientedenvironments,”S GPLAN Notices, vol. 25, pp.269-277,1990.

Lea91.RodgerLea and JamesWeightman,“COOL: An object support environmentco-existing with
Unix,” in AFUU convention UNIX'91, p. 13, July 1991.

-10-

Lea92.Rodget eaandChristianJacquemot,; The COOL architectureandabstractiongor objectoriented
distributed operatingsystems,” in Proceedings of the 5th ACM European SGOPS, Mont Saint-
Michel, France Septembef992.

Sha86.MarcShapiro, “Structure and Encapsulationin Distributed Systems:the Proxy Principle,” in
Proceedings of the 6th ICDS conference, May 1986.

