
Implementing a modular object oriented operating system on top of
CHORUS

Paulo Amaral, Rodger Lea and Christian Jacquemot

Chorussystèmes
6, avenueGustaveEiffel

F-78182SaintQuentin-en-YvelinesCedex
France

Tel: +331 30648200
Fax:+331 30570066

ABSTRACT

Building distributedoperatingsystemsbenefitsfrom themicro-kernelapproachby
allowing better supportfor modularization.However,we believe that that we needto
takethis supporta stepfurther.A moremodular,or objectorientedapproachis neededif
we wish to crossthatbarrierof complexitythat is holdingbackdistributedoperatingsys-
temdevelopment.TheChorusObjectOrientedLayer (COOL) is a layer built abovethe
Chorusmicro-kerneldesignedto extendthe micro-kernelabstractionswith supportfor
object orientedsystems.COOL v2, the seconditeration of this layer providesgeneric
support for clustersof objects,in a distributedvirtual memory model. This approach
allowsusto build operatingsystemsascollectionsof objects. It is built asa layeredsys-
temwherethelowestlayersupportonly clustersandtheupperlayerssupportobjects.

1. Introduction

Building distributedsystemsis difficult simply becausethecomplexityof interactionsamongentitiesscat-
teredon a collectionof machinesis enormous.Thedistributedsystemscommunityhaslong beenwrestling
with this complexityandhasdevelopedmethodssuchasRPC,groupcommunications,distributedshared
memoryetc.in anattemptto providemechanismsthatabstractoversomeof thiscomplexity.

However,in attemptingto build systemsthat actively usethesemechanismswe haverun into two major
problems,performanceand integration. Performancebecausewe havetried to add thesemechanismsto
existingsystems,andintegrationbecausewe havetried to do soin anad-hocmannerwithout fully consid-
eringhow thesetoolsshouldinteract,or how applicationswill usetheseservices.

Work in the operatingsystemcommunityhas tried to deal with theseissuesby re-visiting our existing
operatingsystemsand looking at the minimum abstractionsnecessaryto build distributedoperatingsys-
tems.By combiningthesewith a systembuilding architecturethat stressesmodularity,we can begin to
addressthe performanceand complexity issues.This approach,often called the micro-kernel approach,
allowsusto providea minimumsetof abstractionsthatcanbeusedto build operatingsystemsthemselves.

We feel however,thatwhile this is thecorrectapproach,it is only onestepin theright direction.We need
to augmentour basicmechanismswith a frameworkthat allows systembuildersto glue functional com-
ponentstogetherin a coherentand performantway. In effect, we need to provide a systembuilding
environmentthatsupportsa programmingmodel,toolsandservicesneededto work within thatframework.

The objectorientedparadigmoffers a solutionto this problemby offering a frameworkfor building large
complexapplications,suchasOS’s in a way that is amenableto distribution.However,we mustnot repeat
the mistakesof early distributedsystembuildersby trying to imposea model on a set of mechanisms,
rather,we must actively supportthe model at the lowest layers in our system,by making sure that our



- 2 -

abstractionsaresuitablefor supportingobjects[Bla92]

In this paperwe discusshow the COOL systemhasbeendesignedto exploit the uniquefeaturesof the
Chorusoperatingsystemmodelto provideanefficientsetof abstractionsthatarewell suitedto supportthe
object orientedmetaphor.We stressthat this approachnot only facilitatesbuilding distributedOS’s, but
any distributedobjectorientedapplication,becauseit reducesthemismatchbetweenour OO servicesand
themodelwe useto build distributedapplications.

Our goal is to providea frameworkthatwill allow operatingsystembuildersto developtheir applications,
theoperatingsystem,in a well structured,flexibleandcoherentenvironment.

We will introducethe basicCOOL v2 architecture,andthenconcentrateon the PersistentContextSpace
model that we havedevelopedto allow us to efficiently supportdistributed,sharedobjectsat the lowest
layerin thesystem.

2. COOL v2

TheCOOL projectis now in its seconditeration,our first platform,COOL v11, wasdesignedasa testbed
for initial ideasandimplementedin late’88 [Hab90,Des89,Lea91]

Our earlywork with COOL (COOL v1) consistedof experimentationin theway thatsystemscouldbebuilt
usingtheobjectorientedmodel,andhow this supporteddistributedapplications.In anattemptto movethe
COOL platformfrom a testbedtowardsa full objectorientedoperatingsystemwe begana redesignof the
COOL abstractionsin 1990. This work wascarriedout in conjunctionwith two Europeanresearchpro-
jects,bothbuilding distributedobjectbasedsystems,theEsprit ISA projectandthe Esprit Comandospro-
ject [Cah91]

Theresultof this work hasbeenthespecificationof theCOOL v2 systemandits initial implementationin
late’91, [Lea92,Ama92].

3. The COOL v2 architecture

COOL v2 is composedof three functionally separatelayers, the COOL-baselayer, the COOL generic
run-timeandtheCOOL languagespecificrun-timelayer.

User
space

System
space

CHORUS Nucleus CHORUS Nucleus CHORUS Nucleus

Secondary store

COOL−base
Clusters: an abstraction over distributed kernels and secondary store

COOL−generic run−time
Objects, distributed and persistent

Bus or network

Language
specific
run−time

C++ Eiffel
Language
specific
run−time

other
Language
specific
run−time

Application level

Figure 1: COOL v2 architecture

�����������������������������������

1 COOL v1 was a joint project between Chorus Systemes, the SEPT (Service d’Etudes des Postes et
Telecommunications),andINRIA (Institut NationaldeRechercheenInformatiqueetenAutomatique)



- 3 -

Our goal whendesigningthis architecturewas twofold, efficiency andflexibility. We wantedto support
distributedinteractionsusinga numberof basemechanisms.

To allow objectsto interactwe can;

� supporta communicationsmechanismsthatwill allow transparentinvocation.
� allow objectsto migratebetweencontextsby unmappingfrom onecontextandmappinginto

another,relocatinginternalpointerson thefly.
� usea distributedsharedmemorymechanismsthatensuresobjectlevel faulting.

Eachof thesemechanismshavetheir advantagesandtheir drawbacks,andeachwill be usedin different
circumstances.A key elementof our work is that thethreelevelsof thearchitecture,interactto provideall
threemechanisms,allowingpolicy to decidewhich mechanismsto beusedat which particulartime.

In the following sectionswe briefly outline the functionalityof the threelevelsandthenreturnto thebase
level andexplainfurther its supportfor a distributedvirtual memorymodelandits implementationasa dis-
tributedsystemsupportlayer.

3.1. The COOL base

TheCOOL-baseis thesystemlevel layer. It hasthe interfaceof a setof systemcallsandencapsulatesthe
CHORUSmicro-kernel. It actsitself asa micro-kernelfor object-orientedsystems,on thetopof which the
genericrun-time layer canbe built. The abstractionsimplementedin this layer havea closerelationship
with CHORUSitself and they are intendedto benefit from the performanceof a highly maturemicro-
kernel.

TheCOOL-baseprovidesmemoryabstractionswhereobjectscanexist,supportfor objectsharingthrough
distributedsharedmemoryand messagepassing,an executionmodelbasedon threadsanda singlelevel
persistentstorethatabstractsovera collectionof looselycouplednodesandassociatedsecondarystorage.

In our initial work with COOL our baselevel supporteda simplegenericnotionof objects.This provedto
betoo expensivein termsof systemoverheadsothat in COOL v2 we havemovedthenotionof objectsout
of our baselayerandreplacedit with a moregenericsetof abstractionswhich we termthePersistent Con-
text Space model(PCS).

The persistentcontextspacesupportsa basicabstraction,the cluster which is a set of virtual memory
regionsand provide a repository for objects. Clusters,being persistent,are representedon secondary
storageusingthe CHORUSabstractionof a segment,andarerepresentedin memoryusingthe CHORUS
abstractionof regions.

Clustersaregroupedtogetherinto containers which representcollectionsof objectswhosereferencesare
completelycontained,i.e. all referenceswithin clusterspoint into clusterswithin thesamecontainer.

A context abstractsthe notion of an addressspace,and providesa place into which containerscan be
mappedfor execution.To supportdistributedsharedmemorywe definethe context group which is a col-
lectionof contexts,ononeor moresites,thatmapidenticalcontainers.

We will returnto thePCSmodelandits implementationin section4

3.2. The COOL generic run-time.

Thegenericrun-timeimplementsa notionof objects.Objectsarethefundamentalabstractionin thesystem
for building applications.An objectis a combinationof stateanda setof methods.An objectis aninstance
of a classwhich definesanimplementationof themethods.Thegenericrun-timehasa sub-component,the
virtual objectmemorythat supportsobjectmanagementincluding: creation,dynamiclink/load, fully tran-
sparentinvocationincludinglocationonsecondarystorageandmappinginto contextspaces.

Two typesof object identifiersareofferedby the genericrun-time:domainwide referencesandlanguage
references.A domainwide referenceis a globally unique,persistentidentifier.It maybeusedto refer to an
object regardlessof its location.A languagereferenceis a pointer in C++ and is valid in the context in
which theobjectis presentlymapped.



- 4 -

The genericrun-time definesthe primitives to convert one type of referenceto the other one. When a
domainwide referenceto a remoteobject is convertedto languagereferencea proxy associatedto the
objectis created[Sha86].Thisproxy is usedto transparentlyinvoketheremoteobject.

Objectsarealwayscreatedin clusters.Eachcluster’saddressspaceis divided into threeparts:thefirst one
is usedto storeall thestructuresassociatedwith theclusterusedby thegenericrun-time,thesecondoneis
usedto storethe applicationsobjects,andthe last oneis usedto storethe proxies.A different allocatoris
associatedto eachpart,thisallocatoris usedto allocateandfreespace.

Theclassesarestructuredin modules(setof classes,unit of code).Thegenericrun-timeallowsthecodeto
be dynamicallylinked. The genericrun-timeoffers a primitive to link a module.Eachclasscontainedin
the moduleare storeat the context level. When an instanceof a classis createdin a cluster, the class
descriptoris savedin thecluster.This classdescriptoris usedto retrievetheappropriatemoduleandthere-
fore theappropriateclasswhena clusteris remappedin anotheraddressspace.

Thegenericruntimeprovidesanexecutionmodelbasedon thenotionof activities which aremappedonto
CHORUSkernelsupportedthreadsandjobs which modelsdistributedexecutionof activities.Eachcluster
cansupportmultiple activities,with more thanoneactivity capableof runningwithin the sameobjectat
anyparticulartime2.

One of the main problemswith trying to use a single genericbaseto supportmultiple languagelevel
modelsis that of semantics.Most languages,and systems,havetheir own semantics,eachof which are
subtlydifferent.To enablethe building of sophisticatedmechanismthat supportmultiple modelswe have
defineda genericrun-timeto languageinterfacebasedonupcalls.

The genericruntimemaintainsfor eachobjecta link betweenthe objectandits class.This link is usedto
find theupcall informationassociatedwith eachobject.

The upcall information,and associatedfunctionsis usedfor a variety of purposes,including supportfor
persistence,invocationandre-mappingbetweenaddressspaces.In fact, any time wherea functionalityof
thegenericrun-timeneedsaccessto informationaboutobjectsthatonly the languagespecificenvironment
will know.

For exampleto supportclusterspersistence,andhenceobjectpersistence,we needaccessto the layout of
objectsto locatereferencesheld in theobjectsdata.Whena clusteris mappedinto anaddressspaceall the
objectsarescannedby usingthe appropriateupcall function to locatethe internal references(to external
objects)andperforminga mappingfrom the domainwide references(usedwhenan object is locatedon
secondarystorage)to addressspacespecificreferences,this techniqueif oftencalledpointerswizzeling.

Anotherexampleis for object invocation.Invocationsbetweenobjectsin the sameclusteris basedon the
standardmethod invocation of the language(C++ method). Invocationsbetweenobjects in different
addressspaceusethe modelofferedby the COOL-baselayer (CHORUScommunicationprimitives).The
proxy is used to trap the normal function invocation and replace it by an remote invocation which
marshallsthe parameters,issuesan remoteprocedurecall, andunmarshallthe results. At the receiver,a
dispatchprocedure,which is part of the upcall function associatedwith an object, is usedto call the
appropriatemethodon theappropriateobject.

Invocationmayalsousetheunderlyingclustermanagementmechanismsto mapclustersinto local address
spacesfor efficiency reasons,or locally to allow light weight RPC and maintainprotectionbounderies,
againtheupcall functionsareusedto supportthis.

3.3. The language specific run-time.

The languagespecificrun-time mapsa particular languageobject model to the genericrun-time model.
This maybeachievedthroughtheuseof pre-processorsto generatethecorrectstubcodeandtheuseof the
upcall table.

As discussedabove,the GRT will, in the processof operationssuchasmappingor unmappingan object
from an addressspace,upcall into the languagespecificrun time responsiblefor that objectby usingthe
�����������������������������������

2 Subjectto languagelevel constraints.



- 5 -

upcall tableassociatedwith the objectandgeneratedby the languagespecificrun-time.This requiresthat
the languagerun-time,usuallythe compiler,generatesenoughinformationto interfaceto thegenericrun-
time. Currentlywe usepre-processortechniquesto generatethis informationsothatat run timeobjectscan
bemanagedby theunderlyingCOOL system.

4. The Base Level revisited.

In section 3.1 we briefly outlined the abstractions that the base level provides, however the
container/clustermechanismis designedto supportmorethana simplegroupingof objects.

Our goalswhendesigningthebaseabstractionswhere:
� Supportdistributed,sharedvirtual memory so that we could efficiently support languages

basedonvirtual memoryreferences.
� Providea form of memorypersistenceincludingthemechanismsfor a singlelevel storesothat

higherlevelswouldnotseea multi-tieredstoragehierarchy.
� Providea meansto structurethe distributedvirtual memoryspaceso that systembuilderscan

controltheir useof thedistributedvirtual memory.

Themechanismsthatform partof individual languagerun-timesandtheGRT supportdistributedprogram-
ming, however,in all casestheyarecostly. Objectrelocationrequirespointerswizzlingwhenclustersare
mappedandunmapped;invocationusinga messagepassingmechanismsneedparametermarshallingand
oftenbreakthesemanticsof objectinvocation.

Supportinga distributed,sharedvirtual memoryis onesolutionthat allows efficient transparentprogram-
ming within a distributedenvironment.Although therearemanycostsandrestrictionsto a distributedvir-
tual memorymodel,whencombinedwith a completesystemthatsupportsothermechanism,suchasmap-
ping andremoteinvocation,it offersa powerful tool. A key differencebetweenour work andothersis that
we offer a rangeof mechanismsto supportdistribution,not justone.

Our basicunit of distributionat thebaselevel is thecontainer,which, asdescribedin section3.1, is made
upof severalclusters.

Containersarelazily mappedfrom secondarystorage,by thebaselevel into a virtual addressspace,or con-
text. This mappingmy involve relocation,as the form held on secondarystoragemay storepointersin a
globalformat3.

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	

3 A vanilla languagemappedonto the GRT, without languagerun time supportwill not be ableto supportrelocation
andwill be constrainedto alwaysbe locatedat a particularsetof addresses.An extendedlanguage,that wasdesignedto
exploit theGRT wouldallow addressesto berelocated,thusallowing thesystemto relocatecontainersasrequired.



- 6 -

cluster

user objects

view

context

context group

c1 c2

Figure 2: COOL-basefragmentedobjects

Eachcontaineris ultimately mappedto one or more CHORUSsegments,the unit of secondarystorage.
When mapped,a containeris said to have a view. The view representsthis mappingfrom secondary
storagesegments,to primary storageregions.More than one view may be managedby a contextat one
time,allowing multiple containersto bemappedinto a singlecontext;seefigure2. Themanagementof dis-
tributedviewsof a containeris carriedoutby thebaselevel.

A container,oncecreatedwill remainin the systemaslong astherearereferencesto that container.This
persistenceis managedby thebaselevel.

Oncemapped,objectswithin the containercan carry out invocationusing virtual memoryreferences.If
thatactivity wishesto diffuseto othersites,for exampleto allow physicalparallelactivity, thenwe createa
contextgroup.A contextgroupis a setof contextsthat supportoneor morecontainers.Eachcontaineris
mappedat exactlythesamesetof addressesin eachcontextin thegroup.

It is possible,andindeedlikely, thata contextwill supportmorethanonecontainerat a time. Hence,con-
textsmay belongto multiple groupsat any one time with partsof their addressspace’allocated’ to dif-
ferentgroups.A groupof contextsthat mapa particularcontainerassaid to supporta PersistentContext
Space,a distributed,persistentaddressspacefrom thecontainerspointof view.

The managementof thesePersistentContextSpacesrequiressomeform of distributedcontrol. Thereare
severalaspectsto this. Containerswhich wish to diffuse to new contextsneedto know if that contextis
capableof supportingthe container,e.g. if addressesusedby the containerarealreadyallocatedthenthe
diffusion cannot becarriedout4. Whennew virtual memoryis addedto a container,thenallocationmust
be carriedout acrossall containersin the group,this is managedby the distributedview control mechan-
isms.

4.1. COOL-base implementation structure

To managethesedistributed entities, the COOL-baseis composedof several objects, or fragments5

representedon eachsite andeachusingthe underlyingCHORUSmechanismsto implementa distributed
algorithm. Theseobjectsaregroupedinto threemajorcomponents:

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�


4 It maybepossibleto remapthecontainerto anewsetof addressescompatiblewith thenewcontext.
5 Weusethetermfragment,becauseeachlocal representative,is apartof aglobaldistributed,or fragmented,

object.



- 7 -

� baseobject:it containsall stateinformationsaboutthelocal site;
� baseproxy: transparentlyaddressesthe correctbaseobjectwhenevera requestfor somesys-

temactionmustbere-directedto anothersite;

 baseserver:transparentlyforwardsincomingremoterequeststo thelocal fragmentresponsible

for managingthatresource.

EachCOOL-baseserverimplementsthreeprotocols(with oneCHORUSthreadperprotocol):
� Distributedgroupmanagement:createsanddeletesgroups, attachesanddetachescontexts

from groupsandcontrolsaddressspaceallocation;
� Distributedview management:attachesanddetachesviews to andfrom clusters andinforms

the COOL-baseto raiseanupcallwhenevertheseoperationscaninfluencetheuseof thedata
storedinsidethe

� Distributedclustermanagementcreates,deletes,activatesandde-activatesclusters; it is also
responsiblefor addinganddeletingsegmentsto/from clusters.

CHORUS CHORUS

base

proxyserver

COOL−base

base

proxyserver

COOL−base

Distributed base

Figure 3: COOL-basefragmentedobjects

The protocolsaremappeddirectly on to CHORUSIPC. Someoperationshaveto upcall the genericrun
time to updateupperlayer stateinformation. This alsousestheCHORUSIPC, allowing usto upcallboth
locally andremotely.

4.2. Persistency support

Persistentmemoryis organizedin containers asexplainedabove. Eachcontaineris further subdividedin
clusters; a clusterbeinga setof persistentsegments.

Eachentity managedby the systemlayer is namedusinga CHORUScapability,which uniquelynamesit
in the distributedsystem.Capabilitiesare the meansto managesystementitiesand are passedbetween
servers.In thecaseof clustersandcontainers;bothvirtual memorybasedentities,capabilitiesaremanaged
by mappers. Eachmapperis designedto managethe relationshipbetweensecondarystorageand main
store.When a requestto usea cluster is generated,the COOL basesystemhandsof the requestfor an
unmappedclusterto the mappermanagingthat cluster.The mapperis responsiblefor locatingthe secon-
darystoragerepresentationof thecluster,andwill understandenoughof this format to allow it to mapthe
clusterinto primarystore.



- 8 -

Persistencyof clustersis alsomanagedby the mapper.In conjunctionwith higherlevel toolssuchasgar-
bagecollectors,themappersdecidewhich clustersarereferencedandwill alwaysensurethatsuchclusters
aremappedout into secondarystorewheretheywill remainuntil referencedagain.

The capabilityassignedto the cluster,andmanagedby the mapperis guaranteedto remainuniqueduring
the lifetime of the system.This guaranteeis madeby the underlying CHORUSmicro-kernelwhich is
responsiblefor generatingcapabilities.

4.3. The exception mechanism for mapping

An applicationstartsto run within a singlecontext.Initially a singlecontainerwill be associatedwith this
application,with a minimumof oneclustermappedinto thecontext6.

An exceptionmechanismexist thatusesmemoryfaults to mapthecorrectmemoryat the right place. The
first containermappingcanbeconsideredthehighestlevel fault. It makesvisible thenextlevel in thestruc-
ture,thatis, clusters.

The secondexceptionlevel is the segmentfault: uponan accessto someunmappedmemoryaddress,the
exceptionhandlerverifiesif thereis someexistingcluster,partof thecurrentcompletememoryspace,that
containsa segmentwith the neededaddresswhen mapped.It then mapsthe right cluster.Finally, in a
page-basedarchitecture,eachsegmentis divided in pages,so it is only effectively readto in-corememory
if it is really accessed(in a third level fault).

After mapping,memorymayneedto berelocated.This is dependenton thesemanticsof memorycontents
andonly applicationlevelsareawareof it. Therelocationitself is basedon symbolicinformationandonly
known symbolscanbe relocated. The problemis that theremay be pointersthat haveno correspondent
symbolsgeneratednormally by the compilationchain,so,specialhigh level run-timecodehasto exist in
order to accessintrinsic semanticinformation of memorycontentsat user-levelin a transparentmanner.
The baselevel, causesthe run-timelevel to carry out any relocationrequiredwhenthe clusteris mapped
into a contextfor thefirst time.

4.4. The upcall mechanism for unmapping

The upcall mechanismcan also be consideredan exception(but a distributedone). As we saw, cluster
mappingandrelocationis doneautomaticallyby the baseandthe run-timesystemwhena memoryfault
occurs.In thesimplecase,mappingis carriedout from secondarystorageon an inactivecluster.However,
it is likely thata clusteris alreadyin useaspartof anotherpersistentcontextspace.Henceit is necessary
to forcethatcluster,andits container,to beunmappedfrom onepersistentcontextinto thefaultingone.

An upcall has to be issuedfrom the kernel to the run-time systemin order to unmapthe cluster tran-
sparentlyfrom the applicationcontexts. This upcall is performedusing the CHORUS communication
mechanismsallowing theupcall to work in thedistributedsystem.

4.5. Combining exception and upcall mechanisms to assure mutual exclusion

With the exceptionand upcall mechanismsin place it is straight forward to assuremutual exclusionof
clustersthatneedto bemappedat differentaddresses,i.e., thatbelongto differentactivepersistentcontexts
spaces.

During memoryfault handling,if thesystemseesthata clusteris beingusedby anotherpersistentcontext
spaceit upcallsall contextsin that contextspaceto force the unmapping,andproceeds.Later on, if any
oneof theothercontextsneedsthatclusteragain,it will doexactlythesamein theinvertedsense.

After remappinga cluster,the systemhasto verify if the containerinformation aboutthat clusteris still
valid. Thecontainermayhavea differentsetof clustersor belongto anotherpersistentcontext.Thishasto
be done immediatelyafter cluster mappingbecauseit may now directly referenceanothercluster after
beingchangedin thepersistentcontextspacewhereit waspreviouslymapped.

�����������������������������������

6 Rememberthatacontaineris madeupof oneor moreclusters.Clustersaretheunit of mapping.



- 9 -

4.6. Shared memory coherency

Memory mappedin a contextspaceneedsto be assuredsingle-writermultiple readercoherencebetween
all distributedcontextsthat haveit mappedinto its addressspace. A distributedsharedmemorysystem
suchas proposedby Li[ App91] is used.This is a strict coherencyalgorithm but is well suited to the
semanticsof languagessuchasC++.We arecurrentlyinvestigatingweakcoherencysupport.

5. Conclusion and current status

The CHORUSmicro-kernelis a setof low level functionality on which higherlevel systemscanbe built.
After four yearsof experienceusing it to build object orientedoperatingsystemswe are convincedthat
micro-kernelsarea sensibleapproachto reducesystemcomplexityandthedevelopmentcycle.

The COOL projectis building anobjectorientedkernelabovethe CHORUSmicro-kernel.Its aimsareto
provide a generic set of abstractionsthat will better support the current and future object oriented
languages,operatingsystemsandapplications.

Our experienceshowedthatmuchof thework in implementinga distributedsystemgoesinto the mainte-
nanceof distributedstate. We usedan object-basedsystemto describedistributedstatewith fragmented
objects. Theuseof theCHORUSmicro-kernelallowedtheimplementationof thesefragmentedobjectsin
a naturalmannerusinga setof protocolsoverCHORUSIPC basedon a distributedcapability-basednam-
ing schemethatCHORUSsupports.

We currentlyhavea limited COOL platformrunningabovetheCHORUSmicro-kernel,runningnativeon
networked386 basedmachine.This platform implementsthe basicclusterlevel including the distributed
virtual memorysupport.TheCOOL GRT offers full supportfor objectdistributionandfor persistence.In
additionwe havebuilt a pre-processorenvironmentthatallowsus to generatepre-processortools thatcan
beusedto extendexistinglanguagessuchasC++ to takefull advantageof theCOOL v2 operatingsystem
interface.

6. Acknowledgments

We would like to thankour colleagueat CHORUSsystemsfor their valuableinput to this work, in particu-
lar, PeterStrarupJensenandAdamMirowski.

References

Ama92.
Paulo Amaral, Rodger Lea, and Christian Jacquemot,‘‘A model for persistentsharedmemory
addressingin distributedsystems,’’in Proceedings of the International Workshop on on object orien-
tation in operating systems, IEEE ComputerSociety,Dourdon,France,September1992.

App91.AndrewW. Appel andKai Li, ‘‘Virtual MemoryPrimitivesfor UserPrograms,’’in Proceedings of
4th International Conference on Architectural Support for Programming Languages and Operating
Systems, pp.96-107,SantaClara,CA USA, April 1991.

Bla92.GordonBlair and Rodger Lea, ‘‘The impact of distribution on the object-orientedapproachto
softwaredevelopment,’’IEE Software Engineering Journal, vol. 7, no.2, March1992.

Cah91.VinnyCahill, Chris Horn, GradamirStarovic,RodgerLea, and PedroSousa,‘‘Supporting Object
Oriented Languageson the ComandosPlatform,’’ in Proceedings of ESPRIT’91 Conference,
Brussels,Belgium,November1991.

Des89.Jean-MarcDeshayes,Vadim Abrossimov,andRodgerLea, ‘‘The CIDRE DistributedObjectSys-
temBasedonCHORUS,’’ in Proceedings of TOOLS’89, p. 8, 1989.

Hab90.SabineHabert,LaurenceMosseri,and Vadim Abrossimov,‘‘COOL: Kernel supportfor object-
orientedenvironments,’’SIGPLAN Notices, vol. 25,pp.269-277,1990.

Lea91.RodgerLea and JamesWeightman,‘‘COOL: An object support environmentco-existing with
Unix,’’ in AFUU convention UNIX ’91, p. 13,July1991.



- 10 -

Lea92.RodgerLeaandChristianJacquemot,‘‘The COOL architectureandabstractionsfor objectoriented
distributedoperatingsystems,’’ in Proceedings of the 5th ACM European SIGOPS, Mont Saint-
Michel, France,September1992.

Sha86.MarcShapiro, ‘‘Structure and Encapsulationin Distributed Systems:the Proxy Principle,’’ in
Proceedings of the 6th ICDS conference, May 1986.


