
CS/TR-92-82

From Operating Systems to Cooperative Operating Environments

Michel Gien

The open systems environment has had a major impact on the value of general purpose comput-
ers. UNIX dominates the workstations environment.The server market has moved rapidly
toward UNIX and UNIX on PC hardware is becoming common place. However impressive this
expansion has been the enterprise requirements are larger than those represented by traditional
general purpose computer configurations.

The enterprise needs often include the ability to respond to real time situations, to perform high
speed calculations or massive numbers of data base inquiries, and to be on line and always
available.

Addressing the expanded enterprise needs requires a change in the way we think of operating
systems. Operating systems grew out of the need to manage a processor and its resources
(peripherals). With multi-processor, multi-computer configurations a whole environment needs
managing. Processorsneed to cooperate with other processors and resources of any processor
should be available transparently to any application or utility. The term "Cooperative Operating
Environment" better expresses this notion than the terms enhanced or multi-processor operating
system.

In order to achieve a cooperative operating environment in a non shared or distributed memory
configuration, new kernel architectures have been developed. Three major concepts are the
foundation of the architecture:

• Microkernel with transparent distribution support

• Modular operating system servers

• System level communication architecture.

Taking CHORUS/MiX and SYSTEM V.4 as concrete examples, available today on the market,
the paper expands on such a new operating system architecture and services and show how it
fulfills the requirements for a cooperative operating environment, needed to progress Open Sys-

tems further.

1. ExpandingOpen Systems With Advanced OS Technology

Fostering innovations is one most important yet overlooked benefits of theUNIX open systems
environment. A prime example ofUNIX innovation at work is how advanced operating system
architectures are being utilized to support new hardware and software technology and expand
the application address ofUNIX .

Innovation results from the fact thatUNIX is more than a binary operating system confined to
one company’s resources and ideas.UNIX is a technology that is provided in source form to the

© Chorus syste`mes, 1992 − 1 − October 1992

Chorus systèmes From Operating Systems to Cooperative Operating Environments CS/TR-92-82

entire computer industry. It achieves compatibility between vendors through a detailed and
tested set of application program interfaces (APIs) implemented byUNIX System Laboratories
(USL) in a reference technology source. It does not confine the implementation of computer sys-
tems to that reference source. The source is used by computer manufacturers and Valued Added
Resellers operating system companies, such as Chorus Systems, to add value and innovation.
They extend the application and functional range ofUNIX to address the expanding enterprise
needs without sacrificing compatibility.

From an operating system point of view these expanded needs include the ability to respond to
real time situations, to perform high speed calculations or massive numbers of data base
inquiries, and to be on line and always available. TheUNIX SVR4 environment now addresses
these expanded needs. In short, because of operating system advances, the open systems envi-
ronment ofUNIX now covers the enterprise’s entire range of operating system requirements.

Expanded
Low End

Traditional
UNIX

Expanded
High End

Real-time

Embedded

Real-time

Systems
PCs Workstations Servers OLTP

Massively

Parallel

Figure 1. − Expanded Enterprise Requirements

1.1 RealTime

Many enterprises are using computers for factory automation, process control, and/or as a criti-
cal element in their products. In fact, computers have been applied in real time situations since
the 1950’s. With the introduction of SVR4 many of these applications can utilizeUNIX in its tra-
ditional form. However, many real time applications can be more demanding in terms of config-
uration, determinism, and responsiveness, requiring an expanded operating system approach.
The advantages of having the real time operating system the same as the rest of the enterprise
computer environment are numerous. Training is much simpler and less expensive since there is
only one environment to learn. With UNIX there is a large pool of skilled and trained program-
mers. With one environment there is less confusion between the operation of one set of equip-
ment and another. Applications and development can be shared between one area and another.
And, the likelihood of finding existing applications from third party vendors is high in theUNIX

community.

1.2 HighPerformance Through Parallel Processing

Processor costs have seen a dramatic decrease in price, especially the high volume merchant
chips. As a result the cost per MIP has plunged into the "almost free" range. Specialized high
performance processors (and computers) on the other hand have not enjoyed the same degree of
economy. Tapping multiple merchant processors working in parallel to increase application per-
formance will result in the most economical approach to high performance computing, often

© Chorus syste`mes, 1992 − 2 − October 1992

Chorus systèmes From Operating Systems to Cooperative Operating Environments CS/TR-92-82

costing millions of dollars less than traditional super computer approaches.

High performance utilizing parallel processors have been associated with scientific/engineering
applications. Commercial applications can benefit equally if not more from this approach, espe-
cially data base applications.Symmetric multi-processing, where memory is shared and used as
a communication medium between processors, is the most straight-forward method of providing
multi-processor operating system support. However, this method has limits in the scalability of
the number of processors, and non shared memory arrangements make up the massively parallel
configurations. Typical scientific applications benefiting from massively parallel configurations
include simulations of all types, finite element analysis, image processing, neural networks, sta-
tistical methods, etc. Data base applications are relatively easy to parallelize and benefit greatly
from multi-computer configurations not only for increase in computation power but also in I/O
bandwidth from multiple disk and peripheral support.

Often these parallel machines have a collection of processors and associated memory without
any other peripheral except high performance communication channels to the rest of the system.
Peripherals are community resources with their own processors and memory. The challenge is to
have all of these pieces interact very efficiently and as a single unit acting like any standard
UNIX system. Communication is often the bottleneck in performance, and both hardware and
software technology are critical to obtaining the desired benefits. Compatibility withUNIX

allows to use such systems beyond the niche of strictly performance related needs.

1.3 HighAvailability

Computers have become essential to the operation of most enterprises.Failure of computer sys-
tems in some operations can have disastrous consequences. The most drastic example in recent
times is the AT&T failure in 1991 which shut down phone communications in the eastern US for
a few hours.

Yet the desire to automate and implement computers into operations is growing because of huge
returns. Like the parallel processing environment, multi-processors and multi-computers can be
used to increase the availability of processing operations through dynamic backup or mirroring,
reconfigurability, and process migration. Traditionally this functionality has required expensive
specialized hardware. If software techniques can be applied to the high availability requirements
the cost of the system can be a fraction of a hardware approach especially if the software permits
the use of commodity hardware building blocks.

The expanded enterprise requirements can be looked upon as the leading indicators of the gen-
eral purpose computer requirements in the future.Workstations and servers will gain more per-
formance by using multi-processor configurations. They will perform tasks that require higher
availability and more real time responsiveness. These expanded needs are merely a preview of
the future for all of computing.

2. CooperativeOperating Environment

In order to easily address the expanded requirements of the enterprise, operating system technol-
ogy, specifically the kernel, needs to be expanded.This means expanding real time attributes
such as preemptive scheduling and developing structures and protocols for managing many
closely or loosely coupled processors at the operating system kernel level. Incorporating cooper-
ating elements within a multi-processor distributed environment results in an environment where
processors cooperate with other processors, and where resources of any processor can be made
available transparently to any application program.

© Chorus syste`mes, 1992 − 3 − October 1992

Chorus systèmes From Operating Systems to Cooperative Operating Environments CS/TR-92-82

USL and Chorus Systems have teamed together to make this happen. USL provides an advanced
shared memory multi-processor version of SVR4.0 and is enhancing those facilities in the next
release,UNIX /SVR4.3 (ES/MP). In the shared memory model,UNIX spreads the execution of
applications and system services across multiple processors sharing the same memory. Applica-
tions written on a mono-processor work unchanged and gain the benefit of more throughput
capacity of the system. Applications written for multi-processors can take advantage of the extra
processing power directly and improve their execution performance accordingly. Also, the cur-
rent SVR 4.1 version, has priority scheduling as an option which can be used for many real time
situations.

CHORUS/MiX extendsUNIX as a non shared memory multi-processor operating system with pre-
emptive real time scheduling, fully compatible with SVR4. Because of it’s modular and fully
distributed architecture, CHORUS/MiX is able to unite multi-processors or multi-computers into a
single unit or cluster. Such an operating system architecture is referred to as a Cooperative Oper-
ating System Kernel or Coop kernel for short.

3. TheCoop Kernel Architecture

In order to achieve a cooperative operating environment in a non shared or distributed memory
configuration, a new kernel architecture was developed, a Coop kernel architecture. Three sim-
ple but major concepts are at the foundation of this operating system architecture:

• Microkernel with transparent distribution support

• Modular distributable operating system servers

• System level communication architecture

3.1 Microkernel With Transparent Distribution Support

The microkernel in CHORUS/MiX implements a minimum set of generic operating system ser-
vices necessary to support one processor with its local memory, or a group of shared memory
processors: management of the physical processor and memory, a real time preemptive sched-
uler, a (virtual) memory manager, and a facility to communicate with other microkernels. Each
microkernel cooperates with other microkernels to form a unified virtual machine, transparently
spread over a set of closely or loosely coupled processors.

All traditional operating system kernel services such as file services, device management,UNIX

communication functions (e.g., streams) and even device drivers are implemented outside of the
microkernel, as separate programs running in independent cooperating servers.

The communication services provided by the microkernel allow servers to cooperate without
needing to know where they are currently being executed in a distributed or cluster configura-
tion. Operating system configuration decisions in such an environment (as well as its reconfigu-
ration), can now be performed dynamically while the operating system is running as opposed to
when it is designed.

Such a microkernel can be compared to the basic building blocks in Lego.Before Lego, play
blocks had no interconnect facilities and could be used to build only limited structures. Lego,
because of its very simple interconnect facilities, appears unlimited in building complex struc-
tures. TheCHORUSmicrokernel with its transparent distribution support has a similar impact on
computer systems designs.

© Chorus syste`mes, 1992 − 4 − October 1992

Chorus systèmes From Operating Systems to Cooperative Operating Environments CS/TR-92-82

[Machine dependent]

[Portable]

� ��� �����
	���� ����
�� ����� ��
�� � ����
 ����� ����

[Machine dependent]

[Portable][Portable]

� � ��
 ��� � ��	�
 �
!���"$#���	�
�� %����&�����'
�� ��	'(�������� � ��)�

	���)����'*
� �
������$+,��+,%�� �$
� -�� ������� !��$��)�+,����
 ����!�%��� ��(�� �����'�$#
(�������� � ��)�

Supervisor

Memory ManagementReal-time Executive

Communications

Figure 2. − Microkernel with Transparent Distribution Support

3.2 Modular Distributed Operating System Servers

A set of cooperating distributed microkernels is only one element in building up the Coop kernel
architecture. The second most important concept is a set of encapsulated modular operating sys-
tem servers (e.g., file servers or stream servers) which sit on top of the microkernel and cooper-
ate with each others in the context of a "Subsystem" by means of the microkernel communica-
tion facilities, using messages or Remote Procedure Calls (RPC).

Such operating system servers can be transparently distributed across a cluster of computers.
Protocols for exchanging information and commands are not affected by whether servers are
running in the same computer or in different ones. Applications on nodes without disks easily
interact with files on those nodes which do have disks as if they were local. Some nodes might
provide special facilities or devices which every node can access as if they were local. This
allows to unify a collection of computers into a single operating system image.

A second benefit of modular operating system servers is the ability to easily replace servers with
new or enhanced servers providing improved or expanded services. Since communication
between servers is explicit through messages or RPC (as opposed to shared memory), other
servers are much less impacted by the installation process.

CHORUS/MiX servers include the Process Manager (PM), the File (Object) Manager (FM), the
Streams Manager (StM), and the SV IPC Manager IPCM). In addition device drivers are treated
as servers. All application system calls go through the Process Manager which exhibits aUNIX

system personality and provides for SVR4 binary compatibility.

© Chorus syste`mes, 1992 − 5 − October 1992

Chorus systèmes From Operating Systems to Cooperative Operating Environments CS/TR-92-82

Generic Micro-Kernel

(Transparently distributed)

UNIX Subsystem Servers

(Binary compatible interface)

UNIX Applications

Applications, Utilities

(sh, cc, ed, ...)

UNIX SVR4 system calls

. /10�2�3�4�5�6 317 8 9:3�;:<17 =�9:>�?�@�A 8�B C�D,E
Hardware

CHORUS Nucleus

CHORUS Nucleus calls

/1@�7 3�F�;:GH9:>�?�7 A

/1I�B C�DJ9:>�?�7 A
C17 <�0�3�G�GH9:>�?�7 A

K�L 6 3:9:>�?�7 A
✉ ✉

✉

✉

Figure 3. − Modular Distributed Operating System Servers

3.3 SystemLevel Communications Architecture

The third significant element is the system level communications architecture. Like the micro-
kernel, the inter-process communication architecture is simple yet powerful. As stated before,
the communications architecture is message based. The basic message format is a very low over-
head structure that can be easily enriched by the system builder. For example, there are no secu-
rity checks or typing overhead although these services can be easily added. Minimum overhead
is what is needed in a massively parallel environment.

At the same time the structure is quite powerful. Messages need addresses in order to know
where to go. Processes or servers are indirectly addressed through the concept of Ports. Ports act
as a kind of mail box.Ports are attached toUNIX processes and collect messages (queues them)
which are then passed onto the process. Ports can be moved dynamically to other processes. This
is useful if a new process is replacing an old one dynamically saving down time if the process
happens to be an operating service such as a file manager.

Port names are global (virtual) addresses, i.e., each port in the community of computers has a
unique name, and names do not change when ports migrate from one location to another. Mes-
sages sent by programs to a given port name all go to the same location, thus facilitating pro-
gramming of communications between processes in a multi-computer environment.Manage-
ment of port names is done in a distributed manner, thus suppressing single points of failure, and
allowing to achieve high availability more easily.

© Chorus syste`mes, 1992 − 6 − October 1992

Chorus systèmes From Operating Systems to Cooperative Operating Environments CS/TR-92-82

The port concept has been extended to the concept of a port group which can hold the addresses
of regular ports. Among other things port groups enable messages to be broadcasted to several
ports and thus several servers at once. Messages sent to a port group are copied and sent out to
all the addresses stored in that group. This enables creating redundancy or backup.

Client

S 1
P1

S 2
P2

P1, P2

G
Dest = G

Figure 4. − Port Groups for Redundancy

4. Examples

4.1 HighAvailability

Chorus has taken Veritas Volume Manager and Oracle database, and combined them with CHO-

RUS/MiX . The volume manager has mirroring capability that allows a configuration with two
disks and two disk controllers to provide data base backup transparently to the Oracle data base.
Normally those two controllers have to be on the same computer. The CHORUS/MiX configura-
tion allows mirroring to take place between two separate computers connected with a LAN.

Because the disk driver server uses message based communications, the driver can be on the sec-
ond computer and yet appear as if it were local to the Veritas Volume manager. In other words,
the volume manager sees the two disk controllers as if they were on the same computer when in
fact they are on separate computers. Now the mirroring functionality can take place on even two
simple PCs with low cost controllers instead of more expensive disk controllers utilizing expen-
sive buses. The specialized hardware, such as complex controllers, often doubles the system cost
whether it is on PC or large mainframes. Standard computer equipment can thus be applied to
high availability applications.

© Chorus syste`mes, 1992 − 7 − October 1992

Chorus systèmes From Operating Systems to Cooperative Operating Environments CS/TR-92-82

NODE 1 NODE 2

Communication medium

Volume
Manager

Disk
Driver

Process
ManagerManager

Process

Manager
Streams

Manager
File

login: francois
passwd:

Chorus MiX SR3.2 07/01/1991

You have new mail.

rondo:francois>

login: francois
passwd:

Chorus MiX SR3.2 07/01/1991

You have new mail.

rondo:francois>

Disk
Driver

Manager
Streams

UNIX SVR4 ABI Calls UNIX SVR4 ABI Calls

Standard Oracle Other applications

CHORUS NucleusCHORUS Nucleus

Figure 5. − Disk Mirroring between PCs

4.2 ParallelProcessing

CHORUS/MiX can also be used to increase the storage size and performance using a similar
approach to that described above. The Volume manager implements disk stripping. This tech-
nique enables a file to bridge across multiple disks and disk controllers as if they were one unit.
Using CHORUS/MiX , stripping can take place across multiple computers as well as disk con-
trollers attached to just one computer. Using Parallel Oracle all computers as well as disks can
be applied in parallel to the data base application with major performance improvement. The
same modular disk controller used in the high availability example enables the parallel opera-
tion. In fact the two examples can be combined.

In the past, the alternative to gain more performance has been to replace the existing computer
with a more powerful computer if one even exists (if it doesn’t then the user is stuck with poor
performance). This approach is much more disruptive and costly than simply adding another low
cost computer to the application. The Coop architecture means there is always a path for perfor-
mance improvement.

© Chorus syste`mes, 1992 − 8 − October 1992

Chorus systèmes From Operating Systems to Cooperative Operating Environments CS/TR-92-82

4.3 DynamicReconfiguration

If a new version of the volume manager has to be installed this can be done without taking the
system down. This is because the ports from the old volume manager can be migrated to the new
version dynamically. Upgrading the system software can constitute a major element in a mission
critical system down time. With the Coop kernel architecture this time can be limited to a mini-
mum. Chorus demonstrated to the European Space agency how the European Space Station,
Columbus, could refresh and upgrade significant elements in the system software without down
time.

4.4 RealTime

There are many real time examples. One of the most interesting is how Alcatel, the world’s
largest supplier of business PBXs, is applying CHORUS/MiX . Traditionally a PBX employs a
small real time executive to manage switching of phones. Modern PBX have other functionali-
ties besides switching telephones such as voice mail and directory data bases. For large compa-
nies and institutions these data bases can be quite large. Normally a separate computer running
UNIX was used to provide the expanded services. Now the two functions, real time switching
and data base retrieval, can be combined. This means that smaller configurations can be built
with expanded functionality passing cost savings on to the customers. Also, this architecture
gracefully expands to huge multi-computer configurations with high availability capability with-
out rewriting any of the real time or general purpose applications. In other words, a complete
PBX product line can be built out of common software parts.

UNIX system calls interface

login: francois
passwd:

Chorus MiX SR3.2 07/01/1991

You have new mail.

rondo:francois>

External
Data Base

Server

X
Clients

Data Base

Server
Admin Application Application

UNIX Subsystem Servers

UNIX Processes

StM PM FM

Priorities

Application System Servers

CHORUS Nucleus

Hardware

Figure 6. − Real-time andUNIX in a PBX

© Chorus syste`mes, 1992 − 9 − October 1992

Chorus systèmes From Operating Systems to Cooperative Operating Environments CS/TR-92-82

Application ApplicationData Base

Server
Admin

login: francois
passwd:

Chorus MiX SR3.2 07/01/1991

You have new mail.

rondo:francois>

StM PM FM

X
Clients

CHORUS Nucleus CHORUS Nucleus CHORUS Nucleus

UNIX Processes

Figure 7. − Scalable PBX system

5. Compatibility with Today’s Products and Tomorrow’s Technology

It’s not enough to have good products today if those products don’t leverage the technology
advances that will provide improved operations and productivity. Conversely, the advances need
to be compatible with today’s products. UI, USL and Chorus are committed to improving the
technology in a compatible fashion. They also have the support of the European Economic Com-
munity.

In 1992, a consortium of industrial partners, Olivetti, Siemens, Thomson, and Alcatel have
teamed with the EEC, UI, USL and Chorus to invest $16 million over three years into advancing
operating system technology. The work includes insuring CHORUS/MiX tracks theUNIX SVR4
releases and exploring Object Oriented technologies as it relates to operating system issues. The
project is calledMONQPSRUTWV:NJTQR .

6. Conclusion

The cooperative computing environment is a significant step in the evolution of open systems. It
provides a compatible path for the emerging hardware configurations, in particular multi-
processor and multi-computers.

It extends the range of the Open systems environment to complete coverage of enterprises needs.
It provides a path for continued advancement of the technology in a compatible fashion.

© Chorus syste`mes, 1992 − 10 − October 1992

