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1 Introduction

Distributed systems are by their very nature, large and complex applications. They require
the interaction of many individual components scattered throughout a distributed collection of
hosts which are often physically dispersed.

Interaction is usually modelled on a message passing abstraction where services are requested
by sending a request message to a service provider and receiving an asynchronous or synchronous
reply. Service providers are often large grained encapsulated entities, whose interface is defined
by its message protocol. Internal synchronisation of multiple competing requests is handled by
the service provider either by message queuing, or language synchronisation primitives.

Such systems are natural candidates for the object-oriented model of software development
simply because the way that the majority of such systems are built maps closely to the object-
oriented model. Service providers are large grained, active objects; message protocols define
an ad-hoc type interface and message passing is a low level mechanism that supports method
invocation.

This obvious mapping has led many groups to attempt to extend existing object-oriented
languages with support for distributed objects, either by adding remote message passing facilities
(based on RPC) or supporting distributed objects [21] [22].

This approach has had mixed success. On the one hand it has demonstrated that the OO
languages provide sufficient support for building distributed applications. However, because the
efficiency of such an approach has been so poor it has served as a proof of concept but has failed
to provide the breakthrough that many in the distributed systems community have hoped for.

This inefficiency is mainly caused by a mismatch between the services and abstractions that
systems provide, and those that languages offer. System services are often generic, designed to
support multiple uses and achieving this with a lowest common denominator solution. In addi-
tion, the majority of existing operating systems provide abstractions that were never designed
to support modern programming languages and in particular, were never designed to support
distributed applications.

For example, object-oriented languages deal with fine grained objects. The majority of
modern systems provide an abstraction of an address space as the smallest system supported
concept. It is the compilers job to match the fine grained language model to the coarse grained
system model. For a single address space application this is fine, however, for distributed
applications, spanning multiple address spaces, the compiler support breaks down because the
compiler is not aware of the environment outside a single address space. Equally, some languages
support lightweight activities or active objects, again most systems support a heavier notion, a
process. Mapping between the two is a complex and often costly task. Lastly, current operating
systems provide distributed inter-process communication using protocols designed for unreliable
networks and often implemented as an ”add-on” feature. These communication mechanisms
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are often too costly to support applications built of fine grained objects, working in a tightly
coupled manner and making heavy use of inter-object invocation.

To deal with these kinds of mismatches a number of researchers have attempted to extend
their underlying system with some support for their particular programming model, [23] [24].

While we feel that this approach is correct, it doesn’t go far enough. System support needs
to be both efficient, flexible and it must fit in with existing systems. Rewriting an operating
system from scratch to support a particular programming model is a time consuming and difficult
process often resulting in more time devoted to operating system engineering issues than the
research goal. This has tended to force most people into the traditional solution of building
their support environment above an existing operating system leading us back to the mismatch
between language and system services.

However, with the availability of micro-kernel architectures such as Chorus[3], Amoeba[l]
and Mach|[2] which provide a basic set of abstractions designed to allow people to build operating
systems, it is now possible to explore how operating systems can better support programming
models.

Our goal within the COOL project has been threefold:

e to provide a set of generic services that reduce the mismatch between system abstractions
and language abstractions.

e to provide these services at the operating system level so that we are not hampered by the
inefficiencies of building above the existing operating system. To do this we wish to extend
the CHORUS micro-kernel with abstractions more suited to object-oriented systems.

e to provide these services in a way that they co-exist with existing traditional operating
systems; in our case UNIX. This allows new applications to use existing data and services
and provides a way to evolve existing applications.

This paper is structured as follows; we first introduce the COOL v2 architecture, discussing
its functionality and usage. We then outline details of its implementation and its performance.
After this we introduce the CIDRE distributed document application that has been built using
the COOL system, and explain both its functionality and its use of COOL. We use CIDRE
to justify some of the design decisions and as a proof of concept for our research. In the final
sections we discuss our experiences and outline future directions.

2 The Chorus object-oriented layer: COOL

The COOL project is now in its second iteration, our first platform, COOL v1!, was designed
as a testbed for initial ideas and implemented in late ’88 [4] [5] [8]. Our initial platform imple-
mented a simple notion of an object as a micro-kernel supported abstraction, with mechanisms

1COOL v1 was built as a joint project between Chorus Systéms, Institute national de research en informatique

et automatique (INRIA) and the SEPT
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to instanciate objects, migrate and store objects and make invocations on local and remote ob-
jects. COOL v1 was used to support a first version of the CIDRE system during the development
of which we identified several problems. In particular, we found that our generic mechanisms
were not easily used by the languages, partly because of the cost of our system level objects,
and partly because our mechanism were too generic. Further details of this can be found in [9].

We began a redesign of the COOL abstractions in 1990. This work was carried out in
conjunction with two European research projects, the Esprit ISA project [6] and the Esprit
Comandos project [7], both building distributed object based systems. This work was specifically
designed to address this issue of providing generic support mechanisms, yet allowing those
mechanisms to be efficiently used by languages.

The result of this work has been the specification of the COOL v2 system and its initial
implementation in late '91.

2.1 The COOL v2 architecture

COOL v2 is composed of three functionally separate layers, the COOL-base layer, the COOL
generic run-time (GRT) and the COOL language-specific run-time layer.

Application level

other
Language
specific

run-time

. . u
COOL-generic run-time spsaecre

Objects, distributed and persistent

COOL-base
. L System
Clusters: an abstraction over distributed kernels and secondary store space
CHORUS Nucleus CHORUS Nucleus CHORUS Nucleus

Secondary store

Bus or network

Figure 1: COOL v2 Architecture

2.2 The COOL-base

The COOL-base is the system level layer. It has the interface of a set of system calls and
extends the CHORUS micro-kernel (or Nucleus) abstractions. It acts as a micro-kernel for
object-oriented systems, on top of which the generic run-time layer can be built.
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The COOL-base provides memory abstractions where objects can exist, support for object
sharing through distributed shared memory and message passing, an execution model based on
threads and a single level persistent store that abstracts over a collection of loosely coupled
nodes and associated secondary storage.

In our initial work with COOL v1 our base level supported a simple generic notion of objects.
This proved to be too expensive in terms of system overhead. In COOL v2 we have moved the
notion of object out of our base layer and replaced it with two more generic abstractions, clusters
and context spaces.

A cluster is viewed from higher levels as a place where related objects exist. When mapped
into an address space, it is simply a collection of virtual memory regions [10]. The mapping may
be on an arbitrary address. The collection of regions that belong to a mapped cluster is a set of
CHORUS regions backed by segments, and forms a semantic unit managed by the base layer.
By using a distributed virtual memory mapper?, regions and hence clusters, can be mapped into
multiple address spaces or contexts, which leads us to the notion of context space.

Context Space 1 ]
made up of CO, Co ¢l c2
ClandC2
Cs1
.4
Context space 2
T | made up of C1
and C2
- < I CS2
\\
S — — \
Clusters COOL Base COOL Base m
Site 1 Site 2 -

Figure 2: anatomy of a cluster

A context space is a collection of distinct address spaces on one or more sites. Any cluster
belonging to a context space is mapped into all contexts of that context space. For example
in figure 2, cluster Cl1 is mapped into the context space comprising contexts C0, C1 and C2,
and cluster Cl2 is mapped into contexts C1 and C2. Note that cluster Cl1 is made up of three
separate secondary storage segments and so is mapped by three virtual memory regions. In the
case of Cl1 we must enforce that the cluster is always mapped at the same addresses in the
contexts forming the context space. Therefore, a context space represents a distributed virtual
address space, and can be used to share clusters among threads of execution of a particular
context space. It is important to note that when a cluster is mapped into a context, it will be

2 A mapper in CHORUS supports the relationship between virtual memory regions and the secondary storage
segments that a region ’maps’
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mapped into the same range of addresses in all contexts in the context space. However, the
binding between a cluster and a range of addresses may be changed. Thus a cluster may be
mapped out of a context space, and remapped at a later point at a different set of addresses.
Of course, this will require that higher layers in the system deal with any problems of pointer
relocation.

A significant difference between the distributed shared virtual memory (DSVM) model of
COOL-base and more standard implementations of DSVM is that cluster spaces offer a means to
structure the address spaces belonging to the contexts managed by the COOL-base. Although
a cluster is mapped into several contexts at one time, is does not need to be mapped into all
contexts managed by COOL-base. This approach means that we have more control over memory
allocation and are not forced to allocate memory in all contexts. If a memory clash occurs when
a context space extends into a new context, then we can unmap the cluster and map it back in
at a different set of addresses.

Each cluster is uniquely identified in the system as the unit of persistence. Clusters can have
references to other clusters and they are subject to garbage collection.

The COOL-base also provides a low level mechanism for communication between clusters.
This can be used to implement invocation of objects that exist inside the cluster. Transparent
remote invocation is achieved with a simple communication model which uses the CHORUS
communication primitives and protocols. This model supports multiple mechanisms so that
invocations among clusters on a local site may use a lightweight invocation mechanism, whereas
between clusters on different sites we use a traditional invocation model.

The COOL-base maps-in clusters on behalf of the upper layers. It can be used to enforce an
invoking thread to carry on execution in a remote address space. In addition, because clusters
are persistent, the COOL-base provides a means to locate non-active clusters, i.e., clusters
currently swapped-out on secondary storage and load them transparently into a cluster spaces.
This model is similar to that of the Clouds v2 project [12]. We use the virtual memory mapper
to store and retrieve passive clusters to and from secondary storage by performing load and flush
operations on virtual memory regions. This model is similar to paging in a page based virtual
memory system and provides an implementation of a single level store.

2.3 The COOL generic run-time

The generic run-time (GRT) implements a notion of objects. Objects are the fundamental
abstraction in the system for building applications. An object is a combination of state and
a set of methods. An object is an instance of a class which defines an implementation of the
methods.

The GRT has a sub-component, the virtual object memory that supports object manage-
ment including: creation, dynamic link/load, fully transparent invocation including location on
secondary storage and mapping into context spaces.

Two types of object identifiers are offered by the generic run-time: domain wide references
and language references. A domain wide reference is a globally unique, persistent identifier. It
may be used to refer to an object regardless of its location. A language reference is a virtual
memory reference and is valid in the context in which the object is presently mapped.
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Objects are always created in clusters. Each cluster’s address space is divided into two parts:
the first one is used to store all the structures associated with the cluster used by the generic
run-time, the second one is used to store the application objects.

The classes are structured in modules which are application defined clusters of associated
objects. The generic run-time allows the code to be dynamically linked and offers a primitive to
link a module. When an instance of a class is created in a cluster, the class descriptor is saved
in the cluster. This class descriptor is used to retrieve the appropriate module and therefore the
appropriate class when a cluster is remapped in another address space.

2.3.1 The activity model

The generic run-time provides an execution model based on the notion of activities which are
mapped onto CHORUS kernel supported threads; and jobs which model distributed execution
of activities.

An activity is a thread of execution and is created under application control and launched
within a particular object. The activity is then capable of diffusing to other object, in other
clusters or other machines by invoking other objects. When invocation is carried out, the GRT
causes the thread of control to be passed from the invoking to the invoked object. In the remote
case this will be carried out using a message to transport thread information and parameters to
the remote machine.

A job gathers together a number of contexts, each supporting several clusters, which in
turn have multiple objects. Each cluster can support multiple activities, with more than one
activity capable of running within the same object at any particular time. The job is the unit
of distributed control and will often represent a single distributed application.

Since the model supports multiple threads of control we have to provide support for synchro-
nisation. Since COOL is a distributed system, we support not only the usual local synchronisa-
tion primitives, but also a set of distributed synchronisation primitives based on a distributed
token manager.

The basic local synchronisation primitives are semaphores, mutexes and multiple reader/single
writer locks. These are implemented as GRT services, which when needed will call into the
COOL-base level. These services allow programmers to implement synchronisation as they need,
so for example, by coding the synchronisation constraints explicitly into the object’s method
code. Alternatively, it is possible to use pre-compiler techniques to implement a language specific
synchronisation model that is implicit in the code.

In addition to the basic local synchronisation primitives that are used to synchronise between
activities running in a single address space, we also provide support for distributed synchroni-
sation primitives that allow distributed objects to synchronise. Distributed synchronisation
is based on a distributed token manager that is accessed via a set of GRT calls. The token
manager implements a simple get/release token model, and relies on hint information to locate
tokens. The maintenance of the distributed hint information uses the CHORUS message passing
mechanisms and avoids the use of a broadcast primitive.
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2.3.2 Up-Call model

One of the main problems with trying to use a single generic base to support multiple language
level models is that of semantics. Most languages, and systems have their own semantics, each of
which are subtly different. To allow us to build sophisticated mechanisms that support multiple
models we have defined a generic run-time to language interface based on up-calls that enables
specialisation of the GRT mechanisms.

The up-call information, and associated functions are used for a variety of purposes, including
support for persistence, invocation and re-mapping between address spaces. In fact, any time
where the generic run-time needs access to information about objects that only the language
specific environment will know.

For example to support clusters persistence, and hence object persistence, we need access to
the layout of objects to locate references held in the objects data. When a cluster is mapped into
an address space all the objects are scanned by using the appropriate up-call function to locate
the internal references (to external objects) and performing a mapping from the domain wide
references (used when an object is on secondary storage) to address space specific references,
this technique if often called pointer swizzeling.

Another example is for object invocation; invocations between objects in the same cluster
are based on the standard method invocation of the language. Invocations between objects in
different address spaces use the model offered by the COOL-base layer (CHORUS communication
primitives). A type of proxy, called an interface object is used to trap the normal function
invocation and replace it by a remote invocation which marshals the parameters, issues a remote
procedure call, and unmarshals the results. At the receiver, a dispatch procedure, which is part
of the up-call function associated with an object is used to call the appropriate method on the
appropriate object.

Invocation may use the underlying cluster management mechanisms to map clusters into the
calling address spaces for efficiency reasons, or locally to allow light-weight RPC but maintain
protection boundaries.

2.4 The language specific run-time

The language specific run-time maps a particular language object model to the generic run-time
model. This may be achieved through the use of pre-processors to generate the correct stub
code to access the GRT functionality and the use of an up-call table to allow the GRT to access
language specific information.

A pre-processor called COOL++ supports an extended version of standard C++ which
is adapted to run on the COOL GRT. The extensions are minor, and reflect a programming
convention that we choose to adopt rather than a required extension to the language.

The most significant difference is that we have chosen to use an interface definition language
(IDL) to define objects, and that we use these to generate interface objects that are used to
represent all objects in the system.

The programmer when defining a class, will also define an interface that the class exports.

© Chorus systémes, 1993 -7- September 1, 1993
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We use a keyword, interface to denote this. In addition, we use a keyword implements to tell
the pre-processor which set of methods implement a particular interface.

Cluster 1 Cluster 2

Obiect 1 . Object 1 invokes object 2 using
< Object 2 its interface object 102. 102 may
cause an RPC like invocation, or

/ . it may cause object 2 (and cluster
2) to be mapped into the same

v / address space as cluster 1. This
policy is application dependent.

Figure 3: Using interface objects

Using this information, the pre-processor is capable of generating a special class, instances
of which are known as interface objects. Interface objects are used in COOL++ to access all
objects. The code for an interface object is generated automatically by the pre-processor and
includes code to carry out remote invocation, or to map objects locally.

The user can use this interface object not only to access methods defined on the objects,
but also to drive the decisions about where such an object will be invoked if it is to be mapped,
or shared using distributed shared memory. To do this, the interface object contains a set of
methods that allow application control over the invocation and mapping policy. The advantage
of this approach is that the programmer only ever sees local memory pointers, and can choose
to ignore the distributed nature of the application if required, simply using the default policies
in the interface object.

There is a cost to using this model because all invocation goes through the local interface
object. When an object is mapped locally then we can choose to update the interface object
to optimise local invocation. However, we will always pay an extra level of indirection. We feel
that this is acceptable for the ease of programming that it offers.

It should be stressed that this is a programming convention we have chosen to adopt, and
one which hides much of the distributed and persistent nature of the programming environment.
It is quite possible to use standard C++ and make explicit calls to the GRT to invoke and
manage remote objects. Thus for example, a particular pre-processor may only generate upcall
information and make visible global object references. In this case the programmer would not pay
the cost of the local invocation we discuss above, but equally not see a transparent programming
model.
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2.4.1 Implementation details

The Chorus micro-kernel supports an architectural model in which an operating system is made
up of a set of actors. Each actor implements a subset of the overall system functionality, uses
the micro-kernel to access resources and uses message passing to communicate with other actors.
The overall operating system functionality is the sum of these actors. For example, in the Unix
implementation, known as CHORUS/MiX, a set of actors implement the overall Unix system,
see figure 4. The process manager (PM) acts as the interface for Unix processes and services
all kernel traps. It implements the basic process management functions, such as ezec(), but
will communicate with the other actors for their services. In turn, the object manager (OM)
implements the SVR4 file system services, the streams manager (StM) implements SVR4
streams and the ipc manager (ipcM) implements SVR4 inter process communication.

User
level

System
level

Nucleus

Figure 4: COOL v2 Implementation outline

The micro-kernel allows other actors to be statically or dynamically added to an existing
system. New actors may be integrated into the system to provide extended functionality, or
they may implement a separate system interface.

In the case of COOL, the COOL-base actor is dynamically loaded into the system address
space when COOL is booted and provides its own system interface. This interface is accessed via
a trap mechanism. Thus COOL provides an example of a second operating system personality
running alongside the traditional Unix operating system.

However, as can be seen from the diagram, COOL as it is currently implemented is not a
completely separate operating system, rather some of the COOL servers, the name server, class
manager, and mapper run as Unix processes. The reason for this is to allow these servers to
access Unix services which they use to provide COOL services. Thus, the class manager uses
the Unix file store as its class repository. While it would be possible to run COOL as a self
contained operating system personality we have chosen not to do so because of the work required
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to implement device drivers and other basic system functionality.

In figure 4 we see that a COOL process has the GRT linked in as a library which in turn
traps into the COOL base actor to access lower level functionality. In addition, the GRT will use
the message passing mechanisms of Chorus to access functionality in the other COOL servers
that run as application level servers.

3 Performance

To be able to efficiently support closely coupled applications which exhibit a persistent and
dynamic nature it is necessary that we can move objects between address spaces, and between
machines efficiently. A prime concern therefore is the cost of mapping and unmapping clusters
of objects both between secondary storage, and between address spaces.

In the following tables we report figures for invocation and mapping of objects. These figures
were recorded on a Compaq Deskpro, using an Intel 80386, running at 25MHz, with 8MB of
memory and running Chorus MiX V3.2 r4.

Table 1 shows the basic cost of invocation using an interface object.

Table 1 Table 2
Time for invoke(microseconds) Time for UnMap operation (milliseconds)
Standard proc call 3 Size of cluster ~ write  nowrite
Via an interface object 97 1 *0 103 11
32 %0 152 11
Activity create 321 64 0 137 14
128%0 156 14
Activity switch 64 2560 157 15
1 #128 127 13

32 *128 187 14
64 * 128 215 14
128%128 24 16
256128 27 19

Table 2 shows the cost of un-mapping clusters of various size. The two columns represent
the cost when an un-map operation must write to disk, and when the operation simply leaves
the data in physical memory.

In all cases, the table shows the cost for various size clusters, where both the number and
size of the objects increase. As would be expected the overhead for mapping or unmapping a
cluster will increase equally.

Table 3 shows similar data for the map operation, in this case the time taken is higher than
the un-map operation because of the costs of; time to initialise internal cluster tables, time to
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initialise all objects and time to swizzle pointers held internally to objects.

Table 3 Table 4

Time for Map operation (milliseconds) Time for migrate (milliseconds)

Size of cluster ~ read no read Size of cluster ~ local

1 %0 241 43 1 %0 T
32 %0 257 43 32 %0 82
64 *0 252 49 64 *0 89
128%0 351 87 128%0 102
2560 356 113 256*%0 133
1 *128 400 72 1 *128 76
32 *128 402 97 32 *128 86
64 *128 387 102 64 *128 98
128128 428 124 128128 125
256 * 128 397 154 256 * 128 183

The final table shows the cost of migrating an object between two contexts on the same
machine, in this case the operation is a combination of an unmap without writing to disk and
a mapping without reading from disk.

These figures represent a non-optimised system. In addition, the times were subject to
some fluctuations caused by the interaction with the COOL servers that ran as Unix processes®.
Lastly, the increase in time when more than 128 objects are worked on is because more than

128 objects in a cluster cause the GRT to dynamically extend internal tables.

These figures are comparable to those reported in [12] and [16] but also show that although
an order of magnitude more expensive than traditional RPC [1], mapping clusters of objects
will provide a performance benefit when the cost of mapping plus subsequent local invocation
is compared to multiple remote invocations.

4 The CIDRE intelligent document system

To justify some of our design decisions and to illustrate how a platform such a COOL v2 can
be used the following section of this paper discusses the CIDRE intelligent document system.

COOL has been developed in conjunction with the S.E.P.T., a research laboratory of France
Telecom. The S.E.P.T. is currently researching next generation services for public and private
networks including distributed office groupware. CIDRE is an example of such groupware and
is designed as a distributed platform for the creation and management of intelligent documents.

3 A very significant optimisation could be achieved by running the mapper actor in system space, and accessing
the Unix file store by messaging directly into the Object manager. This would save a context switch as we move
from system to user space, a trap and context switch from mapper to Process Manager, plus the message costs.
We have kept the Mapper in user space for the moment because debugging is significantly easier in user space.
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4.1 Groupware as a distributed application exemplar

Groupware is software that supports virtually joined participants in structuring actions that
have a common goal. By its very nature it is distributed and dynamic.

Examples of such groupware are mail, shared diaries, conference systems, electronic meeting
systems, group editing and shared document preparation.

Groupware such as these can be usefully classified into two main categories, ezchange group-
ware which is unscheduled interaction whereby there is a loose coupling between participants.
Software such as mail or shared diaries fall into this category. These systems often use static
entities which are updated only once, or infrequently, and typically exchange the entities but
do not jointly work with the entities. Often these systems can be implemented in a centralised
manner.

The second category is termed production groupware, whose role is the production of shared
entities. For example, joint editing, or collaborative document management. Here the distinctive
attributes are close cooperation, i.e. highly concurrent interaction on dynamic documents.
Thus the application can not be modelled above a centralised system, it is by its very nature,
decentralised and parallel.

4.2 CIDRE

CIDRE fits into the second category, it is a system that supports intelligent structured documents
in a large scale distributed office environment.

The basic elements in CIDRE are folders which contain related documents and rules govern-
ing those relationships. Documents are structured ensembles made up of multiple components.
Associated with documents are actions that direct the flow of documents within the network
based on intelligent user or application provided scripts.

Documents are created dynamically, for example using joint editors and often comprise
multiple media. Each media element is an object in its own right and may be located at
different locations in the network. Hence a CIDRE document is a distributed entity.

Documents flow around the system according to control information associated with the
document. For example, a draft of a component report will originate from the author, be passed
to a secretary for initial proof reading and then will circulate amongst authors and interested
parties for comments. Comments dynamically annotated to the document will return with the
document to the original author.

To deal with unexpected events in the circulation, an intended recipient is on holiday for
example, the document control script is capable of reacting and adjusting its circulation pattern.
This is controlled by a Prolog program which is part of the document object and uses a simplified
Petri net.

From the above brief description of CIDRE we can derive the following set of broad require-
ments:

e Dynamic construction: Objects representing documents can be constructed from a collec-
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tion of existing smaller objects.

e Mobility: Objects need to be mobile in the distributed system, capable of moving between
processing nodes according to usage patterns.

e Active: Objects need to react to their environment, evaluate new input and make decisions
based on internal rules. To achieve this some objects must be active and must be capable
of supporting multiple invocations.

e Sharing: Objects will be shared in a number of ways, hence requiring both concurrent
access (and its control) and replication.

o Persistence: Objects, once created will exist independent of their original creator(s).

e Transparency: Objects, once in existence will move between sites and from primary to sec-
ondary storage. It is essential that transparency is available for accessing such documents,
although transparency may be turned off’ as required.

o Heterogeneity: Objects will consist of heterogeneous components, i.e. created under dif-
ferent systems. Further, the system will often comprise multiple heterogeneous nodes.

o Reactive: Objects must be able to deal with real world events and to change dynamically
to accommodate these events.

5 Using COOL to support CIDRE’s requirements

Objects in the COOL system are created in clusters. Clusters represent a form of dynamic
grouping or construction. By ensuring that clusters contain related objects, a first level of
support for dynamic construction is available. To support logical association, but physical dis-
persion we allow references between clusters which when used rely on the underlying mechanism
to co-locate objects using the virtual memory. For example, when a document is being created
it may consist of multiple objects, each object representing a chapter, or paragraph. Some of
the text may have been created at an earlier date, or by a different author, in which case it will
reside in a different cluster. When that document is being worked upon, or read, the COOL
system will locate the set of clusters, and migrate them locally.

Each cluster is free to move among individual address spaces using either distributed virtual
memory or re-mapping. The choice of technique depends on circumstances. For example,
a shared document that is under a joint editing session is mapped into two address spaces
corresponding to the two editing sessions. Strict coherency is supported by the underlying virtual
memory, usually based on page granularity that ensures that individual writes are serialised.

In contrast, when a CIDRE document needs to be moved between nodes as part of its
circulation pattern then it is physically unmapped from one address space and later re-mapped
where needed. As is often the case, there is a time delay between usage and so the document
is automatically moved to stable store until re-accessed. It is then dynamically mapped into
the new user’s node and may be placed at any free address. As discussed above, because
a document may consist of multiple clusters and because this group of clusters will contain
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mutual references, mapping an initial cluster will cause the other clusters to be lazily mapped-in
as they are accessed.

Clusters are persistent entities and when not currently active, i.e. there is no thread of
control executing within a cluster, it is eligible to be mapped out to stable store. The COOL
system implements a local garbage collection algorithm to ensure that unreferenced clusters are
garbage collected. Clusters, once created, are automatically maintained within primary memory
while they are referenced. Hence, the programmer is not forced to worry about the storage of
important parts of a document, or the location of those documents when they have been stored
for a period of time.

Access in COOL++ is fully transparent, objects are referenced through local virtual memory
pointers irrespective of their physical location, the underlying GRT and base level deal with the
actual location and invocation of objects. To allow applications to break that transparency,
for example, if they need to physically move objects to a removable storage device we allow
migration to be explicitly requested.

Each object may support multiple simultaneous invocations. In the CIDRE application
synchronisation is achieved by explicitly using the underlying COOL synchronisation primitives.
However, because COOL supports standard C++, a set of base synchronisation classes are
generally inherited from to reduce the burden of explicit control.

The COOL exception mechanism provide a first level of support for reactive systems, ex-
ceptions can be associated with objects using an ad hoc exception extension to C++4. We will
incorporate 'standard’ C++ exceptions when they are standardised.

5.1 Experiences with CIDRE

Using CIDRE to drive the development of COOL has resulted in several decisions that would
otherwise have been different. The major influence CIDRE has had on COOL has been related
to transparency. In our original design we had tried to produce a completely transparent pro-
gramming model, thus location was hidden from programmers. During usage we found that
although location transparency is often a benefit, there are cases where it needs to be broken.
For example, physically co-locating an object with a piece of hardware it manages or requires.
A further example concerns the usage of machines. In a typical computer science environment
machines are never switched off, in a business environment they are often switched off at the
end of the day®. In our original implementation of COOL, because of the distributed nature of
the system, an object could be active and mapped at one machine, but its physical data stored
on another machine. Switching off the storage machine would decouple the in-memory version
from its stored version resulting in unpredictable behavior.

CIDRE also places requirements on the closed nature of the system. Since CIDRE objects
can often interact with existing applications, including data bases and spreadsheets a means
is needed to allow them to access other environments. While it would be possible to provide
gateway objects between CIDRE and other systems, we benefited from the fact that COOL
runs alongside Unix to allow us to use Unix functionality. For example, CIDRE objects can
access Unix files by ensuring that application contexts run in actors that are both COOL actors,

*In fact in some cases, machines must be switched off overnight if the fire insurance regulations are to be met!
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and Unix processes. In effect, a COOL context can trap into both COOL, and Unix. Thus
for example, CIDRE can access X11 services providing it with an existing graphical interface
service.

6 Related work

The scope of the COOL system is large, ranging from low level system mechanisms to high level
language work. Our goal in the project has not been solely to investigate new techniques, but
rather to synthesise existing techniques into a coherent platform. As such our work draws from
many sources and has similarities to many systems. In this section we outline similar systems
and discuss the differences.

At the virtual memory level, the original COOL v1 system, and some of the COOL v2 base
system has similar features to Clouds[12], Amber[13] and Monads[14]. In particular the Clouds
kernel, Ra, implements a simple micro-kernel that offers memory and threads in a similar way to
Chorus and Mach. Memory is persistent and provides a single level store as in COOL-base. The
essential differences between Clouds and COOL at the VM level is that COOL supports DSVM
and an ability to re-map clusters into different parts of the address space. Further, COOL-base
allows clusters to mapped simultaneously into multiple contexts, but does not force clusters to
be seen in all contexts supported by the COOL system. The implementation of Clouds on Ra
uses a simple object model similar to the COOL vl approach. As reported in this paper, we
abandoned this approach due to the costs and difficulties in supporting language level objects
within the kernel.

The notion of a generic run-time is similar to the Portable Common Run-time [15]. Our
experiences with the COOL vl system led us to re-design the generic run-time to allow it to
be specialised by language run-times and to allow interaction in both direction using down and
up-calls.

COOL v2 was heavily influenced by the work carried out in the Comandos project, other
implementations [17], [18], [19] have approaches similar to this work and illustrate the way in
which the generic run-time can support multiple languages.

7 Conclusion and current status

The COOL project is building an object-oriented kernel above the CHORUS micro-kernel. Its
aims are to provide a generic set of abstractions that will better support the current and future
object oriented languages, operating systems and applications.

We currently have an initial COOL platform running above the CHORUS micro-kernel,
running native on a network of ix86 based machines. This platform implements the basic
cluster level including a minimal distributed virtual memory system. The COOL GRT offers
full support for object distribution and for persistence. In addition we have built a pre-processor
environment that allows us to generate pre-processor tools that can be used to extend existing
languages such as C++ to take full advantage of the COOL v2 operating system interface.
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Our premise is that the abstractions we provide at the lowest level will support both the
model of construction for operating systems, and that of application level via the intermediary
run-time levels. Our goal is to provide a flexible dynamic environment that will allow operating
systems builders to easily build and add new functionality allowing the operating system to
develop, in a coherent fashion, over time. To some degree we have achieved this goal, our
experiences with COOL vl and COOL v2 have led us to conclude that efficient system support
is key if we want to encourage programmers to build distributed applications.

However, our experience has also shown that one of our major problems, that of reducing
the mismatch between system mechanisms and language models still remains unresolved. The
use of the up-call mechanisms between generic and language specific run-time has attempted
to address the problem, but is still ad-hoc. A more promising approach, that of using meta
information that can be used to control the behavior of classes, has been adopted in the Apertos
project [16] and shows great promise. We hope to investigate how we can improve our system
by adopting some of these ideas.
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