CS/TR-94-140

Matching operating systems to application needs: a case study

authors : Martin Herdieckerhoff and Frédéric Ruget

project :

state : Approved

classtfication : Public

distribution :

keywords : CHO,MES

abstract : The increasing complexity of current computer systems has generated

new requirements for advanced monitoring and debugging support. This
is particularly true for real-time and distributed applications. In this
paper, we present new kernel support for monitoring and debugging
tools, within the CHORUS micro-kernel architecture. The highlights of
the support are its modularity, the use of an upcall mechanism, and a
flexible extendable object oriented interface.

This paper also appears in the proceedings of the SIGOPS’94 European
Workshop, Dagstuhl, Germany, September 1994.

Copyright © Chorus systémes, 1994

Public/Approved -1- July 22, 1994

Matching operating systems to application needs: a case study*'

Position paper
pap

Martin Herdieckerhoff

Siemens AG, Dept. ZFE ST SN 1

Otto-Hahn-Ring 6
D-81730, Munich, Germany
mhe@zfe.siemens.de

abstract

The increasing complexity of current com-
puter systems has generated new requirements
for advanced monitoring and debugging sup-
port. This s particularly true for real-time
and distributed applications. In this paper,
we present new kernel support for monitor-
ing and debugging tools, within the CHORUS
The highlights of
the support are its modularity, the use of an
upcall mechanism, and a flexible extendable
object oriented interface.

micro-kernel architecture.

1 Introduction

The increasing complexity of current com-
puter systems has generated new require-
ments for advanced monitoring and debug-
ging support.
real-time and distributed applications.

This is particularly true for

*This work is partially supported by the Eu-
ropean Community under ESPRIT Project 6603
“OUVERTURE”.

IThis paper also appears in the proceedings of the
SIGOPS’94 European Workshop, Dagstuhl, Germany,
September 1994.

Frédéric Ruget
Chorus Systems
6, av. Gustave Eiffel
78182 Montigny le Bx, France
ruget@chorus.fr

In this paper we present new kernel support
for monitoring and debugging tools within
the CHORUS distributed micro-kernel archi-
tecture [Cho92]. This support has enabled
us to port two application level tools on
CHORUS: PATOC [Her91], a real-time moni-
tor, and CDB [Rug94|, a debugger with an
execution replay facility for distributed appli-
cations running on top of CHORUS. The work
is an actual example of a cooperation between
a system provider (Chorus Systems) and ap-
plications builders (teams from Siemens AG
and Alcatel Elin Austria, specialized in moni-
toring and debugging) to match the operating
system to application needs.

During the design phase, we have been
faced with several issues as to what kind of
monitoring mechanism should be used, what
level of monitoring support, and what inter-
face to the monitoring service should be pro-
vided. Our approach to the problem has been
strongly influenced by the micro-kernel archi-
tecture, and our final design is structured by
the concept of modularity, the use of an up-
call mechanism, and of an object oriented in-
terface.

The remainder of this paper is organized as
follows. In Sect. 1.1, we advocate the use of

Chorus systémes

upcalls as the base mechanism for the mon-
itoring support.
the object oriented interface to the monitor-
ing service, and we show how it has enabled us

In Sect. 1.2, we introduce

to derive more sophisticated, application spe-
cific support from the raw micro-kernel sup-
port. The global architecture of the monitor-
ing service is sketched in Sect. 1.3. We give
a few performance evaluations in Sect. 2. We
conclude in Sect. 3.

1.1 An upcall mechanism

The monitoring service is based on a mech-
anism to notify a client of the occurrence of
kernel events. The notification is done via
an upcall [Cla85] from the micro-kernel to the

client of the monitoring service.

Among several other possibilities (e.g. ker-
nel internal counting, event logging by the
kernel itself, asynchronous event signalling via
IPC, etc.), we think the upcall mechanism is
the most appropriate:

e in contrast to a (though more efficient)
kernel internal counting scheme, it is
much more flexible and puts much less
restrictions on the services that may be
built on top of the offered kernel primi-
tives.

e in contrast to a kernel internal logging
facility [LB90] it prevents the problems
related to event buffer management
(allocation, periodic spooling, overflow

handling).

e its synchronous nature enables the ker-
nel to provide only a minimal number of
event parameters at event notification,
since the client of the notification can
retrieve the other (application specific)

Public/Approved

Matching operating systems

CS/TR-94-140

parameters by itself (e.g. time, schedul-
ing context...). This makes it an open
architecture.

There are however a few drawbacks to us-
ing upcalls. For instance, there are some con-
straints on the kind of operations that the
client of the monitoring service can perform
while in the context of the upcall. For in-
stance, re-entering the kernel must be limited
to a restricted set of system calls. The reason
for this restriction is that the kernel is left in
a non coherent state during the upcall.

In practice, the set of allowed system calls
is the same as in the context of an interrupt
handler. For CHORUS, this notably includes
the possibility to wake up an ordinary thread
(executing in a “standard” context) to per-
form the work that could not be done directly
in the context of the upcall.

A related drawback of using an upcall
mechanism is that the client of the monitor-
ing service must be trusted. Indeed, the ker-
nel must have a guarantee that the client will
not crash in the context of the upcall, and
will only issue allowed system calls. Hence,
we have restricted access to the kernel notifi-
cation service to so called CHORUS supervisor
1. As a side effect, this has also en-
abled us to implement the upcall mechanism
very efficiently, because kernel and supervisor
actors share the same address space, so there
is no address space switch.

actors

! A supervisor actor is a special CHORUS actor that
shares its address space with the kernel. Supervisor
actors always run trusted code, and can be loaded only
by a user with super user privileges.

July 22, 1994

Chorus systémes

1.2 A C+-+ interface to the moni-
toring service

The interface to the monitoring service is
object-oriented (it is written in C+4 [Str86]).
It was designed the following way. We have
identified a number of events relevant in
the context of kernel monitoring (e.g. cre-
ation/deletion of CHORUS objects, thread
scheduling events, etc.).
we have associated a given CHORUS object,
called the object “primarily involved in the
event” [HR93] — for instance, the “preemp-
tion” event is associated to the “thread” ob-
ject.

To each event

For each CHORUS object (site, actor,
thread and port), we have defined a C++
class called the wvirtual monitoring class as-
sociated with the object. For each monitor-
ing event that primarily involves the CHORUS
object, this class exports a virtual member
function called the virtual monitoring handler
associated with the event. Table 1 describes
the virtual monitoring classes associated to
the “thread” object 2. The virtual monitor-
ing classes are made available to clients of the
monitoring service by the kernel.

Currently, the specified events are: events
of creation/deletion of CHORUS object, hard-
ware events (interrupts, time-outs, traps, ex-
ceptions), IPC events, and scheduling events.

The client of the monitoring service must
produce (i.e. derive in the C++ sense) an
implementation for the virtual monitoring
classes. For that purpose, it must provide an
implentation for the virtual monitoring han-
dlers. These implementation member func-
tions are called effective monitoring handlers.

2The table contains pseudo C++ code: for the sake
of clarity, in the function prototypes, we have replaced
actual types by symbolic parameter names.

Public/Approved

Matching operating systems

CS/TR-94-140

They are to be invoked in the client, on oc-
currence of the associated monitoring event.

The client must then establish a connec-
tion with the CHORUS objects that it wants to
monitor. This connection is done via a C++
object, called the interface object. The inter-
face object must be an instance of the C++
effective class associated with the CHORUS
object that is to be monitored. The interface
object has two purposes:

o It allows to establish the “kernel-client”
connection: via a specific system call,
the client provides the kernel with a
pointer to the C++ object. The kernel
stores this pointer in some internal data
structure that represents the CHORUS
object to be monitored.

o It is the right place for the client to store
state information about the monitored
CHORUS object.

Once the connection is established, then
the kernel will upcall the appropriate effective
monitoring function of the appropriate C++
object, each and every time an event occurs
on the connected CHORUS object.

This interface also allows for the implemen-
tation of flexible policies regarding the in-
heritance of the monitoring class. When a
new CHORUS object is created by a monitored
thread, the kernel invokes a special creation
monitoring handler. On invocation of the cre-
ation handler, the client of the monitoring ser-
vice must return either (1) a pointer to a new
C++ monitoring object that the kernel will
associate with the created CHORUS object, or
(2) a null pointer, thus indicating that the
newly created CHORUS object must not be
monitored.

July 22, 1994

Chorus systémes

Matching operating systems CS/TR-94-140

struct KnMonThread : KnMon {

KnMon s reserved for kernel use

virtual void deleted();

The thread has been deleted.

virtual void disConnected();

Monitoring of the thread has been switched off.

virtual KnMonActor* acCreated(
acUi, acKey);

The thread has created an actor.

virtual KnMonThread* thCreated(
acUi, acKey, thLi);

The thread has created a thread.

virtual KnMonPort* ptCreated(
acUi, acKey, ptLi, ptUi);

The thread has created a port.

virtual void userEvent(evtNo, addr,
size);

The thread has issued a user defined event.

virtual void preTrap(trapNo, thCtx);

The thread has made a trap (called before trap handling).

virtual void postTrap(trapNo, thCtx);

The thread has made a trap (called after trap handling).

virtual void preExc(excNo, thCtx);

The thread has made an exception (called before exc. handling).

virtual void postExc(excNo, thCtx);

The thread has made an exception (called after exc. handling).

virtual void run();

The thread has started running.

virtual void preempted(thCtx);

The thread has been preempted.

virtual void beReady(status);

A blocking condition has been removed from the thread’s status.

virtual void beUnReady(status);

A blocking condition has been added to the thread’s status.

virtual void msgSent(msgLi);

The thread has sent an IPC message.

};

Table 1: Thread monitoring class exported by the kernel

Note that the client of the monitoring ser-
vice is not obliged to provide an implemen-
tation for all the virtual handlers of a mon-
itoring class. Thus, the monitoring service
provides a two-level event filtering:

e First, the kernel notifies the client only
of those events that primarily involve a
monitored CHORUS object.

e Second, the kernel notifies the client
only if it (the client) has provided an ef-
fective implementation for the monitor-
ing function associated with the event.

There are benefits to using an object-
oriented interface. For instance, it enables to
derive enriched interfaces from the “raw” in-
terface. This has enabled us to design a con-
sistent multi-level monitoring architecture, as
described in the Sect. 1.3.

Public/Approved

1.3 A multi-level monitoring ser-
vice

The notification service exported by the ker-
nel provides only minimal support. This sup-
port does not directly match all clients’ re-
quirements. For instance:

e It does not provide for multiple simul-
taneous connections of differents clients
to the same CHORUS object. The kernel
keeps at most one pointer to an interface
C++ object per CHORUS object.

e It provides only for notifying of events
produced by the kernel, although in cer-
tain circumstances, it would be useful to
be notified of events produced by other
layers of the system 3.

3This is the case of the “naming” events: to meet
the needs of the PATOC and CDB monitors, we have

July 22, 1994

Chorus systémes

To compensate for these shortcomings, we
have defined an additional EXTMON * module,
which is capable of managing (1) the multi-
plexing of event notifications to several simul-
taneously connected clients and (2) the noti-
fication of events produced by other layers of
the system. This module interposes between
the micro-kernel and the clients of the notifi-
cation service. To the micro-kernel, it appears
as an ordinary client of the “raw” notification
service.

It was possible to derive (in the C++ sense)
the interface to the notification service ex-
ported by EXTMON from the raw interface ex-
ported by the kernel. This is illustrated by
Tab. 2 and 3, which describe the monitoring
classes exported by the micro-kernel and by
EXTMON for the “site” object.

Obviously, the functionalities provided by
EXTMON could have been directly imple-
mented at the micro-kernel level. However,
implementing it in a separate module implies
several advantages:

e The EXTMON module is optional. It is
possible to get rid of it when it is nec-
essary to a light weight configuration of
the kernel (Cf. Tab. 4), or to have the
most efficient notification service possi-

ble.

e It is possible to have several different
versions of the EXTMON module, each
implementing a specific policy, regard-
ing the multiplexing of event notifica-

developed a symbolic (ASCII) name server for CHORUS
objects. This service is implemented as a separated ac-
tor running on top of the micro-kernel. Thus the nam-
ing events cannot directly by reported by the micro-
However, the PATOC
monitor requires some kind of notification support,
even for naming events.
*gxTMON stands for EXTended MONitoring.

kernel’s notification service.

Public/Approved

Matching operating systems

CS/TR-94-140

tions (which client must be notified first
- should all clients be notified) or the
naming service (should symbolic names
be unique). Using an external mod-
ule allows not to make a choice at the
micro-kernel level.

Thus the general architecture of the noti-
fication service is that described by Fig. 1.
When an event occurs that primarily involves
a monitored CHORUS object, the event is first
reported to the EXTMON module °. In turn
the EXTMON module dispatches the notifica-
tion to all local (supervisor) monitors that are
connected to the CHORUS object. Finally, the
local monitor may use CHORUS IPC to com-
municate with central monitors in user space.

2 Evaluation

The impact of the notification service on the
size of the kernel is illustrated by Tab. 4. The
overhead on kernel code size is less than 1%.

We have run the GAEDE macro bench-
marks which show that the impact of the noti-
fication service on macroscopic computations
of the system is negligible (we do not have
enough space to show the results here).

The impact of the notification service
on microscopic performance is illustrated by
Tab. 5, which shows results obtained with the
CHORUS KBENCH micro benchmarks. The
overhead due to enabling the notification ser-
vice without actually using it is negligible.
The overhead due to monitoring CHORUS ob-
jects through the “raw” kernel or EXTMON
interfaces is approximately 20%. The cause
of this overhead is the fact that the kernel

®In fact, some events are directly created at the
BEXTMON level (e.g. naming events).

July 22, 1994

Chorus systémes

Matching operating systems

CS/TR-94-140

struct KnMonSite : KnMon { |KnMon is reserved for kernel use

virtual void disConnected(); | Monitoring of the site has been switched off.

virtual void An interrupt has occurred on the site (called before intr. handling)
intrBegin(intrNo); P) 8)-
virtual void intrEnd(intrNo); | An interrupt has occurred on the site (called after intr. handling).
b

Table 2: Site monitoring class exported by the kernel

struct MonSite : KnMonSite {

dlink monLink;

Reserved for kernel use (multiplezing).

virtual void siteNamed(name);

The site has been renamed.

virtual void acNamed(acUi, acKey, name);

An actor of the site has been renamed.

virtual void thNamed(acUi, acKey, thLi, name);

A thread of the site has been renamed.

virtual void ptNamed(acUi, acKey, ptLi, name);

A port of the site has been renamed.

1

Table 3: Site monitoring class exported by EXTMON

must prepare the parameters for the monitor-
ing handlers.

3 Conclusion

We have extended the CHORUS micro-kernel
with kernel support destined for tools that
monitor the actions occurring on kernel ob-
jects. The highlights of this support are its
modularity, the use an upcall mechanism for
the notification of events, and a flexible ex-
tendable object oriented interface. It should
meet the needs of a variety of applicative tools
while preserving the necessary efficiency and
generality of the micro-kernel. It has enabled
us to port the PATOC ® and CDB 7 monitor-
ing and debugging tools on top of the CHORUS
microkernel.

6 As of July 94, porting of PATOC is underway.
"A first prototype of CDB with the complete re-
execution facility has already been implemented.

Public/Approved

References

[Cho92] Chorus Team. Overview of the Cho-
rus distributed operating system. In
USENIX Workshop on Micro Kernels
and Other Kernel Architecthres, Seattle
(USA), 1992.

[Cla85] D. D. Clark. The structuring of systems
using upcalls. In SOSP10, pages 171-

180, Orcas Island, WA, December 1985.

M. Herdieckerhoff. Implementation of
PATOC on the EDS testbed. Techni-
cal Report EDS.DD.8F.0027, ESPRIT
I1, January 1991.

M. Herdieckerhoff and F. Ruget. CHO-
RUS monitoring hooks specifications
and manual pages. Technical Report
OU/TR-93-23, Chorus Systems, 1993.

T. Lehr and D. L. Black. Mach kernel
monitor (with applications using the pie
environment).

Available on host mach.cs.cmu.edu in
/usr/mach/public/doc/-
unpublished/monmanual.ps through
anonymous FTP, February 1990.

F. Ruget. A distributed execution re-
play facility for CHORUS. In Proc. of

[Her91]

[HR93]

[LB90]

[Rug94]

July 22, 1994

Chorus systémes

Matching operating systems

CS/TR-94-140

| text | data bss total
std 258516 78278 87242 424036
m 263876 79350 87242 430468
due to notification service +1612 +928 +0 +2540
due to misc. services +3748 +144 +0 +3892
EXTMON module 12156 2924 20292 35372

std: a standard, rather big configuration of the CHORUS v3 14 micro-kernel, including full
kernel debugger, full IPC support, full distributed virtual memory support.
m: a configuration derived from std by adding the monitoring support.

Table 4: Kernel sizes

© PATOC CDB

3 central monitor debugger

B

D IPC
[

PATOC CDB

° Local monitor Local monitor
&

g Local moniteur EXTMON

)

(%l N

MICRO KERNEL

Figure 1: Global architecture of the notification service

the 7th Int. Conf. on Parallel and Dis-
tributed Systems (PDCS’94), Las Vegas,
Nevada, October 1994.

B. Stroustrup. The C++ Programming
Language. Addison-Wesley, Reading,
Mass., 1986.

[Str86]

Public/Approved July 22, 1994

Chorus systémes

Matching operating systems

CS/TR-94-140

std | m md mdd |
threadSelf () system call 2.14+0.5 1.1+ 0.6 1.14+0.3 2.0+04
actorSelf () system call 3.1+0.6 2.240.6 3.4+0.6 3.2+0.6
context switch 248+08 | 279+0.7| 283+1.0| 33.2+1.3
interrupt handler entry 14.1+0.4 159+0.0 | 21.440.5 18.2+£ 0.8
interrupt handler return 11.6+ 0.4 12.3+0.5 15.3+ 0.6 15.5+0.3
trap handler entry 4.84+0.4 3.54+0.4 5.9+0.7 44403
trap handler return 2.0+0.3 1.8+0.3 2.0+0.3 2.0+£0.3
actor creation 76.1+ 0.7 82.74+ 0.6 88.0+ 0.6 | 164.3 £ 4.0
thread creation 91.0+0.5 | 91.6+0.6 | 101.44+0.4 | 119.6 £ 0.9
IPC send (body 4kb) 4433+ 1.3 | 448.24+1.0 | 462.7+ 1.1 | 466.7+ 1.0
IPC receive (body 4kb) 4555+ 1.7 | 453.34+1.0 | 493.6 £ 1.3 | 510.6 £ 1.0

std: a standard configuration of the micro-kernel.

m: monitoring support enabled. No kernel object is actually monitored.

md: all kernel objects are monitored via the “raw” interface.
mdd: all kernel objects are monitored via the EXTMON interface.

Table 5: Cost of the notification service (us)

Public/Approved

July 22, 1994

