authors :

project :

CS/TR-94-62

A Distributed Execution Replay Facility for CHORUS

Martin Herdieckerhoff and Frédéric Ruget

distribution :

keywords :

abstract :

CHO,MES

A debugger for distributed applications running on top of the CHORUS dis-
tributed operating system is described. The debugger provides a comprehensive
execution replay facility with a powerful user interface. The execution replay
facility is one of the most useful features a distributed debugger can provide.
The architecture of the debugger and its implementation are described, and a
comparison is drawn with other published work on distributed debugging. The
debugger itself has been implemented as a standard distributed application on
top of the CHORUS micro-kernel.

This paper was presented at the 7th international conference on parallel and
distributed computing systems, Las Vegas, Nevada, October 1994.

Copyright © Chorus systémes, 1994

Public/Approved -1-

July 22, 1994

A Distributed Execution Replay Facility for CHORUS*

Frédéric Ruget
Chorus Systemes — 6, av Gustave Eiffel
78182 Montigny le Bx - FRANCE

Abstract

A debugger for distributed applications running on
top of the CHORUS distributed operating system is
described. The debugger provides a comprehensive ex-
ecution replay facility with a powerful user interface.
The execution replay facility is one of the most useful
features a distributed debugger can provide. The ar-
chitecture of the debugger and its implementation are
described, and a comparison is drawn with other pub-
lished work on distributed debugging. The debugger
itself has been implemented as a standard distributed
application on top of the CHORUS micro-kernel.

1 Introduction

An important challenge in the area of system devel-
opment is to provide the user with a powerful devel-
opment environment. For instance, a good set of de-
bugging tools is essential. The CHORUS distributed
operating system [4] currently provides the user with
two specific debuggers: the KDB tool [3] for debugging
the kernel itself, and an enhanced version of GNU’s
GDB tool [30] for debugging multi-threaded programs
running on top of the kernel !. However, CHORUS
does not provide specific tools for debugging truly dis-
tributed applications. This paper describes the CDB
tool, a debugger for distributed applications running
on top of the CHORUS kernel, with a comprehensive
execution replay facility.

The execution replay facility is one of the most use-
ful features a debugger for distributed applications can
provide [15]. Indeed, it allows the user to apply the
traditional cyclic debugging approach for debugging

*This paper was presented at the 7th international con-
ference on parallel and distributed computing systems, Las
Vegas, Nevada, October 1994.

! Microtec’s XRay debugger [20] is also currently being
ported to CHORUS. It will enable advanced host-target
kernel debugging.

distributed applications that exhibit a non determinis-
tic behavior. Not surprisingly, the literature describes
many such a replay facility: [13, 14, 29, 6, 23, 32, 11,
10, 25].

CDB itself is a standard distributed application
running on top of CHORUS. However, we have had
to slightly enhance CHORUS because we were lack-
ing kernel support in two cases: (1) CHORUS did not
allow for dynamically interposing debugger’s code at
a debuggee’s system call interface, and (2) CHORUS
did not provide for reporting asynchronous monitoring
events to a debugger. The specification and implemen-
tation of the additional kernel support [8, 26] has been
done in the context of the OUVERTURE project 2, and
the additional support will be integrated with future
standard releases of the CHORUS micro-kernel.

The remainder of this paper is organized as fol-
lows. Section 2 introduces CDB’s user interface and
the abstractions that are provided to work with the ex-
ecution replay facility. Section 3 gives an overview of
CDB’s architecture. Section 4 is a detailed descrip-
tion of an important component of CDB: the global
knowledge manager. Section 5 is devoted to partic-
ularly interesting implementation points and gives a
few performance results. We draw a comparison with
other distributed debuggers in Sect. 6. We conclude
in Sect. 7.

2 User interface and debug sessions

Although CDB does not (yet) have a graphical user
interface, we have tried to make it as “user-friendly” as
possible. CDB provides the user with a shell similar
to GNU’s GDB’s shell 3. The shell provides history
browsing and intelligent completion on both command
name and command arguments.

2QUVERTURE is european ESPRIT project 6603.
3Indeed, CDB’s shell is currently implemented on top
of GNU’s readline library.

Chorus systémes

The debuggee applications that CDB handles con-
sist of a dynamic set of CHORUS actors distributed
over a fixed set of CHORUS sites. A CHORUS site is
a set of tightly coupled computing resources (usually
a machine). A CHORUS actor is similar to (though
simpler than) a UNIX process: it includes an address
space, sequential threads of execution, and communi-
cation ports. An actor is designated by a a Unique
Identifier (UI), which is unique in space and time
across the whole CHORUS network. A thread is des-
ignated by a local identifier (LI) that identifies the
thread within the actor to which it is tied. A commu-
nication port is designated both by a LI that identifies
the port within the actor to which it is attached, and
by a UI %. In the remainder of the paper we will call
debuggee objects (resp. CHORUS objects) the sites,
actors, thread and ports that do (resp. that do not)
belong to the debuggee application.

CDB assigns symbolic (i.e. ASCII) names to all
CHORUS objects. The names are specified explicitly
by the user, or automatically by the debuggee appli-
cation via a special system call. CDB organizes the
CHORUS objects in a hierarchy similar to a file sys-
tem. Actors are viewed as directories of threads and
ports. Sites are viewed as directories of actors. Thus
the user may designate any debuggee object with a
symbolic “pathname”, and CDB provides completion
on these pathnames. There is also a notion of current
working object and most commands usually refer to
the current working object (e.g. the 1o command in-
voked without argument lists the objects within the
current working object). The commands pwo and co
respectively print and change the current working ob-
ject.

Along the lines of emacs [31], CDB is internally
based on a micro-LISP interpretor. This should give
the user more flexibility for entering complex com-
mands or defining its own “macros”. However, CDB
normally hides the LISP syntax at the user interface
level, and CDB’s commands look like ordinary shell
commands.

CDB provides many of the common facilities of tra-
ditional debuggers. It can set breakpoints and query
the state of a debuggee actor. It can do symbolic dis-
assembling °, display back-traces of stack frames, read
and write an actor’s address space.

*The Ul is used as the port’s IPC address.
*However CDB does not yet provide source level de-
bugging. This will be implemented in a future version,

probably in the form of a cooperation between CDB and
GDB

Public/Approved

A Distributed Execution Replay for CHORUS

CS/TR-94-62

In addition, CDB provides a comprehensive execu-
tion replay facility. This facility applies to applica-
tions with the following characteristics: they consist
of a dynamic set of (debuggee) actors distributed over
a fixed set of mono-processor sites (multi-processors
are discussed in Sect. 6.1). Threads within the de-
buggee actors are scheduled preemptively. They may
communicate with themselves and with the applica-
tion’s environment via the CHORUS IPC (using reli-
able and/or non-reliable primitives). Threads residing
on the same site may also communicate via shared
memory. However, CDB puts the restriction that de-
buggee threads do not share memory with the applica-
tion’s environment or with debuggee threads residing
on other sites (virtual distributed shared memory is
discussed in Sect. 6.1).

The code of the debuggee actors needs not be re-
compiled or re-linked for the re-execution facility to
work 6.

The execution replay facility is based on the no-
tion of debug session. A debug session includes a
fixed set of sites and simulates a virtual CHORUS
network with special properties. When an application
executes within a record debug session, it’s behavior
is automatically recorded in a session log. When it
executes within a replay debug session, its behavior
is constrained to match a previously recorded session
log. The replay session also simulates the interactions
with the application’s environment that may possibly
have occurred at record time. It is possible to run sev-
eral replay sessions of the same session log simultane-
ously. These replay sessions won’t interfere, although
the several application’s “clones” all use the same Uls
and LIs.

Debug sessions are also part of the file-system-like
hierarchy of CHORUS objects: they are viewed as di-
rectories of sites. A special default debug session is
provided that includes all CHORUS objects known to
CDB (monitored or not). It enables the user to des-
ignate objects to be inserted in other regular debug
sessions. The default session itself does no recording
and no replaying.

To create a record session, the user must specify a
set of sites and a symbolic (i.e. ASCII) name which
is used to identify the session in the file-system-like
hierarchy of CHORUS objects. Once the session is
created, the user may load actors in the session’s site,
and their behavior will be recorded in the session’s

SWith a slight exception related to the implementation
of the instruction counter (see 5.2).

July 22, 1994

Chorus systémes

A\

Print current working object
> pwo
/default
> # List sites in the default session
1o
becarre
Create record session "mysession"
with sites "becarre" and '"bemol"
session mysession becarre bemol
List sites within created session
lo /mysession
/mysession/becarre /mysession/bemol
Load some actors in the session
load server site /mysession/becarre
load client site /mysession/bemol
Wait for termination of the session
then use the session’s log to replay
execution in session "mysessionreplay"
replay mysession mysessionreplay

the default session

A\

bemol diese

vV V.V V V

vV V V V V VYV

Figure 1: Creation of a session

log. To create a replay session, the user must specify
a previous session’s log and a symbolic name for the
replay session. This is illustrated in Fig. 1.

The actors inside the debug session represent the
debuggee application. The actors outside the debug
session represent the application’s environment. The
debug session may dynamically extend when new ac-
tors are “forked” by the application’s threads.

At record time a debug session produces one se-
quential event log per (mono-processor) site . Tools
are provided that analyze the log’s contents. The sim-
plest one produces an ASCII human readable listing
of a log’s events. The PARTAMOS tool & [28] uses the
logs to draw space-time diagrams showing the causal
relationships between events.

During execution replay, the user can still set break-
points and query the actors’ data. S/he can also con-
trol the pace of the re-execution: Execution is replayed
at normal speed, or context switch by context switch,
or step by step. In step by step mode, the user (or
CDB) chooses an appropriate thread ° and makes it
execute a single machine instruction. In context switch

"On multiprocessors, there would be one log per
processor.

8Still to be ported on CHORUS.

°There may be several appropriate threads, because
threads execute concurrently and the events in the ses-
sion’s log are only partially ordered.

Public/Approved

A Distributed Execution Replay for CHORUS

CS/TR-94-62

by context switch mode, the user (or CDB) chooses
an appropriate thread and makes it run for a whole
“schedule” (i.e. up to the point where the thread was
preempted or did block).

In a future version of CDB the debug session will
also be the unit of checkpointing, that is, the user
will have the possibility to take and develop consis-
tent snapshots of a whole debug session. CDB already
provides a way to determine a consistent snapshot of
a distributed debug session by using a marking algo-
rithm similar to the “colored” algorithm described in
[18] which is a generalization of Chandy and Lamport’s
well known algorithm [2]. However the difficulty lies
not so much in guaranteeing consistency as in saving
and restoring the application’s local states (at each
site). The problem is that the local states may include
complex kernel state [17, 21], such as the fact that a
given thread is blocked in an RPC transaction. We
are currently investigating ways to solve this problem
by combining the restoration of a local state without
kernel state and the re-execution of the events leading
to the recorded kernel state.

3 Architecture of CDB

CDB consists of one remote module per site under
control of the debugger. Each remote module monitors
and possibly modifies the behavior of the debuggee ac-
tors that execute on its local site. The remote modules
cooperate to maintain global knowledge about the de-
buggee application. For example, they compute the
(dynamic) set of unique identifiers (Uls) assigned to
debuggee objects. They also cooperate with storage
modules to write the sessions’ logs to stable storage.
The storage modules may or may not reside on the
same sites as the control modules. Finally, a user in-
terface module provides a shell for the user and orga-
nizes the work of the remote modules.

The most interesting part of CDB is the remote
modules. Each remote module consists of a number of
managers:

e The global knowledge manager (KM). The KMs
cooperate to replicate debug information con-
cerning the debuggee application at each de-
buggee site. They implement a kind of repli-
cated database. For instance, they replicate the
set of all Uls assigned to debuggee objects. This
enables CDB to make the difference between in-
side objects (i.e. the debuggee application it-

July 22, 1994

Chorus systémes

self) and outside object (i.e. the application’s

environment).

In a future version of CDB, the KMs will also
replicate the set of sessions’ logs °. This
will make CDB’s log recording tolerant to site
crashes.

o The logical time manager (TM) is part of the
global knowledge manager. It implements a ma-
trix clock [33] that represents the knowledge the
remote modules have about each other. This
aspect of CDB will be optimized in future ver-
sions, for the sake of scalability.

e The scheduling manager (SM) is responsible for
precisely recording and reproducing the schedul-
ing of the debuggee threads. It is based on an
instruction counter.

o The debuggee manager (DM) interposes its code
at the system call interface of the debuggee ac-
tors [12]. The DM provides the debuggee ac-
tors with the illusion of an independent virtual
CHORUS network. It makes it possible to run
several execution replays of the same debug ses-
sion simultaneously, by translating identical vir-
tual Uls and LIs (as seen by the application’s
clones) into real different Uls and LIs (as seen
by the kernel).

o The log manager (LM) is responsible for writing
the sessions’ logs to stable storage. It cooperates
with a storage module.

This architecture is illustrated by Fig. 2.

4 The global knowledge manager

During the execution of a debuggee application, the
CHORUS kernel assigns Unique Identifiers (Uls) to
various debuggee objects (actors, ports and groups).
Since Uls are unique in time and space the kernel
will assign different Uls to the debuggee objects at
replay time. However, the replayed application “be-
lieves” that the Uls are still the same. A translation
is thus needed between Uls as seen by the application
and Uls as seen by the system.

®More precisely, only the portion of the sessions’ logs
that has not yet been written to stable storage will be
replicated.

Public/Approved

A Distributed Execution Replay for CHORUS

CS/TR-94-62
D) 8

REMOTE STORAGE
MODULE | | MODULE

CHORUSKERNEL (SITEC)

@ REMOTE
MODULE

LA R ACTOR
REMOTE
MODULE

Ordinary
ACTOR

CHORUSKERNEL (SITEA) CHORUSKERNEL (SITE B)

Figure 2: Architecture of CDB

An important role of the global knowledge man-
agers (KMs) is to perform this translation in a efficient
way. For that purpose, the KMs maintain a replicated
set of all Uls assigned to debuggee objects. This set
also enables CDB to know if an outgoing message is
destined for a debuggee port (then it is tagged with de-
bug information) or for the application’s environment
(then it is not tagged).

In a future version, the KMs will also replicate the
session logs until they are put to stable storage. Thus
if a site crashes, the remaining remote modules will be
able to retrieve a consistent view of the session logs,
and execution replay will be enabled up to crash.!!

These two roles of the KMs are in fact pure in-
stances of two theoretical distributed database prob-
lems known as the replicated dictionary and the repli-
cated log problems [7, 33]. Indeed, the KMs are based
on algorithms similar to those described in [33].

For example, in order to maintain the replicated
set of session logs, each debuggee message is tagged
with the view the remote module on the sending site
has of the session logs. This enables the diffusion of
the logs to all sites. To avoid diffusing information
already known to other sites, the remote modules use
a matrix clock that is a conservative approximation of
the knowledge the remote modules have of each other.

However this strategy is not applicable when a de-
buggee message is sent outside the debuggee applica-
tion, because then it is not possible to tag the message
with debug information. To handle that case, we per-
form an operation similar to a “commit”: the remote

More precisely up to the minimal global state of the
application [1] associated with the crash.

July 22, 1994

Chorus systémes

module on the sending site first broadcasts its view of
the session logs and waits for acknowledgments from
all other modules, before it actually allows the message
to be sent.

The algorithm for the replicated set of Uls is sim-
ilar. These distributed algorithms tolerate arbitrary
delayed or lost messages, or even site crash failures. At
the same time they are not very intrusive: they do not
request additional control messages to be sent. Their
potential weakness resides in the size of the message
tags. In the current implementation, each tagincludes
a matrix clock which size is the square of the number
of sites in the debug session. This is not really a prob-
lem since a debug session will hardly ever include more
than three or four sites. However, the algorithms can
be optimized to become more scalable as is suggested
in [33] or done in [5]. The protocols described in [33, 5]
trade tag size for additional control/acknowledgement
messages. We plan to implement one of them in a
future version of CDB(as described in [27]).

5 Some Implementation points

In this section, we detail the implementation of
CDB’s remote modules, and we show how we have
benefited from our new CHORUS kernel support for
monitoring and debugging [8].

5.1 Garbage collection

The remote modules are written in C++ and do a
lot of dynamic object allocation. In order to free the
memory that is no longer needed, we use a garbage
collection (GC) mechanism based on reference counts.
A debugger thread must increment the reference count
of an object before it can access the object, thus “lock-
ing” the object in memory. It must decrement the ref-
erence count after it has accessed the object (in fact,
this is done automatically by a clean C++ interface
based on constructors/destructors).

A special case must be handled separately, when a
debugger thread is deleted while it is currently locking
objects. The reader may wonder why in the first place,
a debugger thread would be deleted. The reason is
that there are two kinds of threads that execute the
debugger’s code: true debugger threads, and debuggee
threads that have been intercepted by the debuggee
manager. While the former threads are never deleted,
the latter may a priori be deleted.

Public/Approved

A Distributed Execution Replay for CHORUS

CS/TR-94-62

To solve this problem, a possible solution is to mask
thread deletion while a debuggee thread is running
debugger code. In that case however, if the thread
invokes a potentially blocking call, it must first re-
lease all the locks it holds and unmask thread dele-
tion. This practice leads to a rather complicated pro-
gramming model. In CDB we have chosen another
way: thanks to the CHORUS kernel monitoring upcall
mechanism, we can connect a deletion handler to all
debuggee threads. When a debuggee thread is deleted,
the handler automatically releases the locks held by
the thread. The advantage of this method is that it is
completely transparent to the CDB’s programer.

5.2 Software instruction counter

In CHORUS threads are scheduled preemptively.
To be able to record and replay the scheduling,
CDB wuses an instruction counter: at record time,
CDB’s scheduling manager (SM) counts the number
of (atomic machine level) instructions executed by a
debuggee thread until it is preempted. This informa-
tion is used at replay time to reproduce the scheduling.
Since appropriate hardware support was not available
on our target machines (486DX PCs), we have imple-
mented a software instruction counter along the lines
of [19]: the debuggee code is instrumented so that a
branch counter is incremented before each branch at
the machine instruction level. The value of the branch
counter is stored at a fixed address in memory pri-
vate to the processor.!? The pair (branch_counter,
program_counter) gives information equivalent to a
true instruction counter. It is important to realize
that the instrumentation implementing the software
instruction counter must be applied to the whole de-
buggee code, including libraries.

We have implemented the instruction counter on
top of our kernel monitoring upcall mechanism [8]: a
run, a preempt and a sleep handlers are connected to all
debuggee threads. At record time, the run handler sets
the value of the branch counter to zero, and the pre-
empt and sleep handlers store the value of the branch
and program counters in the session’s log. At replay

121 [19], Mellor-Crummey and LeBlanc investigate the
possibility of optimizing the implementation of the instruc-
tion counter by making the compiler dedicate a processor
register for storing the counter. We have not implemented
this kind optimization, because we want our instruction
counter technique to apply to any piece of code, including
pieces written in assembly language that already use all
processor registers.

July 22, 1994

Chorus systémes

time, the run handler sets the value of the branch
counter to minus the logged branch count. Then the
thread runs until the branch counter reaches zero. At
this point, an exception is raised that gives control to
the SM. Then the SM sets a breakpoint at the address
corresponding to the logged program counter. When
the thread finally reaches the breakpoint, it has re-
executed exactly the same number of instructions as
during the record phase.

5.3 Identifying a debuggee thread

CDB’s debuggee manager transparently interposes
its own code at the debuggee system call interface
[12]. When a system call is intercepted, the associated
thread is “migrated” in CDB’s remote module and be-
gins executing the code of the DM [26]. However, the
identity of the intercepted thread is not explicitly given
to the DM.

Instead of invoking a system call to get the identity
of the intercepted thread, we use the following (more
efficient) way. A run handler is connected to each
debuggee thread (see Sect. 5.2). When a debuggee
thread is run by the CHORUS scheduler, the run han-
dler is invoked with a parameter that is a pointer to the
object that represents the debuggee thread within the
remote module. The run handler stores this pointer
in memory private to the processor. If the debuggee
thread is later intercepted by the DM, the DM may
retrieve the pointer by directly reading at the appro-
priate memory location.

5.4 Log manager

At each remote module, the log manager (LM) re-
ceives requests from its local clients (DM, SM, ...)
to write event records onto stable storage. The LM
cannot process the write requests synchronously, be-
cause it may be invoked while hardware interrupts are
masked, or in the context of a monitoring upcall, at
a time when it is allowed to re-enter the kernel only
via a restricted set of system calls. Also, synchronous
writing may not even be desirable because it might
impact performance. Instead, event records are first
put in a circular memory buffer 12 and later written to
stable storage by an asynchronous thread (as in [25]).

13 Thanks to CHORUS virtual memory, we could imple-
ment a truly circular buffer by mapping twice the same
memory region consecutively !

Public/Approved

A Distributed Execution Replay for CHORUS

CS/TR-94-62

The interface to the LM is the following. First the
client of the LM requests the allocation of a chunk
of the circular buffer of a given size. The LM always
allocates chunks consecutively. Then the client may
write the event record into the allocated chunk. Fi-
nally the client reports write completion to the LM,
and eventually, the LM will wake up the asynchronous
thread that flushes the circular buffer onto stable stor-
age. The LM is capable of handling “simultaneous”
requests (i.e. more than one write request before the
first completion report 14).

5.5 Performance

We have run some performance measurements on a
network of PCs/AT with 486DX33 processors. These
include micro- and macro-benchmarks to measure the
overhead introduced by the new kernel support for
monitoring and debugging, and an evaluation of the
re-execution facility itself. The overhead associated
with the new kernel support was found to be negligible
(less than the standard deviation for the benchmark
results).

The performance of the re-execution facility was
found to depend only on the number of monitoring
events recorded/reproduced. Average event size is 14
bytes (on the session’s log). Average time to record
an event is 300us (including the actual writing onto
stable storage). Average time to reproduce an event is
3ms. Let us give examples of what this yields in prac-
tice. For an application that issues only deterministic
system calls, the only recorded events correspond to
thread preemptions/runs, i.e. around 30 events per
second on our target machines. This yields an over-
head of 1% for the recording phase and of 10% for the
replay phase. For the average distributed application
producing around 100 events per second, the overhead
is 3% for the recording phase and 30% for the replay
phase.

6 Related work

The literature describes quite a few debug tools that
provide execution replay. In this section we compare

14This case may happen when a processor interruption
generates an event or when a thread is preempted (gener-
ating a preempt event), while an event is currently being
written to the circular buffer.

July 22, 1994

Chorus systémes

these tools and relate them to CDB. The tools differ
in several aspects.

6.1 Targeted systems

Instant replay’s re-execution facility [14] applies to
a tightly coupled system where debuggee processes
communicate via shared memory only *°. On the other
hand, Bugnet [13], Amoeba’s debugger [6], EREBUS
[10] or the CAC’s debugger [25] apply to systems with
distributed memory where debuggee processes com-
municate only via messages passing They assume a
reliable network with FIFO channels [6, 10, 25].

CDB and Recap [23] handle both shared memory
and message passing (CDB even assumes a non reliable
network). Recap handles shared memory by detecting
accesses to shared variables at compile time and by
instrumenting the debuggee code to save/restore the
values read. CDB handles shared memory by assum-
ing momno-processor sites and precisely monitoring the
threads’ scheduling. This technique would generalize
to multi-processor sites by having the processors share
memory through MMU management only, and by pre-
cisely monitoring the page fault traffic [24]. By doing
so, one effectively serializes all accesses to the same
shared page, which might lead to serious performance
degradation. In some cases however, an efficient im-
plementation is possible, by piggy-backing on the over-
head already paid by the underlying cache coherence
protocol [22].

6.2 Targeted programs

Some replay tools assume programs written in a
specific language : ADA programs in [29], Estelle pro-
grams for EREBUS [9], Guide programs for THESEE
[11] or concurrent ML programs in [32]. The benefit
of working at the language level is that it is possible
to record execution on one kind of machine and replay
it on another. Also, the replay tools that work at the
language level can usually do with a coarser grain of
monitoring [9] which results in execution replay being
easier to implement. Distributed checkpointing may
also benefit from a coarser grain of monitoring because
intermediate program states associated with complex
kernel state may be avoided [17].

!5However the technique on which Instant replay is based
generalizes to systems with distributed memory and mes-
sage passing [16].

Public/Approved

A Distributed Execution Replay for CHORUS

CS/TR-94-62

On the other hand, Amoeba’s debugger or CDB
take a lower level approach, and handle applications
written in any language, as long as they run on a spe-
cific system (e.g. CHORUS or Amoeba).

6.3 Debuggee instrumentation

Amoeba’s debugger or Recap rely on linking the de-
buggee program with special system call libraries. The
drawback is that part of the debugger’s code and data
thus resides in the same address space as the debuggee
and may be corrupted [6]. CDB avoids this drawback
by not instrumenting the debuggee program ¢ and
using an interposition technique.

6.4 Interactions with the environment

The concurrent ML debugger or EREBUS handle
debuggee programs that do a computation on their
own without any reference to an environment. On the
other hand, THESEE handles debuggee programs that
access shared persistent GUIDE objects. The objects
are part of the debuggee’s environment, and their state
must be reseted before each execution replay. For that
purpose, THESEE automatically creates special copies
of the objects that were accessed at record time, and
replays the debuggee in a special island mode so as
to prevent any interferences with the external world
through these shared objects. An important restric-
tion is that thus it is not possible to replay an ap-
plication that communicates with the external world
through shared object [11].

On the other hand, Bugnet, the CAC’s debugger or
CDB manage the interactions between the debuggee
application and its environment by simulating the en-
vironment at replay time. For example, CDB records
the contents of the messages received from the envi-
ronment so that they can be recreated at replay time.
This technique is called daie driven. Usually, exe-
cution replay of interactions with the environment is
data driven, while execution replay of events internal
to the debuggee are control driven, so as to reduce the
amount of logged information. This is the approach
taken in [14, 6, 16, 11, 10, 25] 17. However, some older

16With the exception of the software instruction counter.

"The EREBUS debugger even goes to using compres-
sion algorithms to make the logs smaller, as it needs to
keep them in main memory and does not have the ability
to store them onto disk.

July 22, 1994

Chorus systémes

tools are solely based on data driven execution replay
[13, 23].

7 Conclusion

A debugger for distributed applications running on
top of the CHORUS operating system has been pre-
sented. A first version of the debugger has been fully
implemented. It provides a comprehensive execution
replay facility with a powerful user interface. A fu-
ture enhanced version will provide a distributed check-
point facility. The performance of the debugger is ac-
ceptable, with an average 3% overhead for the record
phase and a 30% overhead for the replay phase. CHO-
RUS itself has proven to be an adequate platform for
implementing the distributed execution replay mecha-
nism, and we were able to implement the debugger as
a standard CHORUS distributed application on top of
a slightly modified kernel.

References

[1] M. Adam, M. Hurfin, N. Plouzeau, and M. Raynal.
Distributed debugging techniques. Technical note,
IRISA, 1991.

[2] K. M. Chandy and L. Lamport. Distributed snap-
shots: Determining global states of distributed sys-
tems. ACM Trans. Comput. Syst., 3(1):63-75, Feb
1985.

[3] Chorus Team. CHORUS kernel v3 14.0 — debugger
user’s manual for COMPAQ deskpro386. Technical
Report CS/TR-91-72, Chorus Systémes, 1991.

[4] Chorus Team. Overview of the Chorus distributed op-
erating system. In USENIX Workshop on Micro Ker-
nels and Other Kernel Architecthres, Seattle (USA),
1992.

[5] E. N. Elnozahy and W. Zwaenepoel. Manetho: Trans-
parent rollback-recovery with low overhead, limited
rollback and fast ouput commit. IFEE Transactions
on Computers, Special Issue on Fault-Tolerant Com-
puting, 41(5):526-531, May 1992.

[6] I. J. P. Elshoff. A distributed debugger for amoeba.
In Proceedings of the Workshop on Parallel and Dis-
tributed Debugging, pages 1-10. ACM, 1988.

[7] M. J. Fischer and A. Michael. Sacrifying serializabil-
ity to attain high availability of data in an unreliable
network. In Proc. ACM SIGACT-SIGMOD Symp. on
principles of database systems, pages 70-75, Los An-
geles, March 1982.

Public/Approved

A Distributed Execution Replay for CHORUS

CS/TR-94-62

[8] M. Herdieckerhoff and F. Ruget. Matching operating
systems to application needs — a case study. In local

Proc. of SIGOPS’94, 1994.
[9] M. Hurfin, N. Plouzeau, and M. Raynal. Implemen-

tation of a distributed debugger for estelle programs.

In ERCIM workshop, 1991.
M. Hurfin, N. Plouzeau, and M. Raynal. Erebus: A

debugger for asynchronous distributed computing sys-
tems. In Proc. of 3rd IEEE Work. on Future Trends in
Distribued Computing Systems, Taipei, Taiwan, April
1992.

H. J. Jamrozik, C. Roisin, and M. Santana. A graphi-
cal debugger for object-oriented distributed programs.

In Technology of Object-Oriented Languages and Sys-
tems (TOOLS), pages 117-128, July, 1991.

[10]

[11]

[12] M. B. Jones. Transparently interposing user code at
the system interface. In Proc. of the 2nd Work. on

Workstation Operating Systems, April 1992.

S. H. Jones, R. H. Barkan, and L. D. Wittie. Bugnet:
a real time distribued debugging system. In Proc. of
the 6th Symp. on Reliability in Distributed Software
and Database Systems, pages 56—65, March 1987.

T.J. LeBlanc and J. M. Mellor-Crummey. Debugging
parallel programs with instant replay. IEEE Trans.
Computers, C-36(4):471-481, April 1987.

[13]

[14]

[15] E. Leu and A. Schiper. Techniques de déverminage
pour programmes paralleles. Technique et Science In-

formatiques, 10(1):5-21, 1991.

[16] E. Leu, A. Schiper, and A. Zramdini. Execution re-

play on distributed memory architectures. In Proc. of
2nd IEEE Symp. on Parallel and Distributed Process-
ing, Dallas, December 1990.

W. Lux, W. E. Kuhnhauser, and H. Hartig. The
birlix migration mechanism. In Workshop on Dy-
namic Object Placement and Load Balancing in Par-
allel and Distributed Systems Programs, pages 83-90,
June 1992.

F. Mattern. Efficient algorithms for distributed snap-
shots and global virtual time approximation. Journal
of Parallel and Distributed Computing, 1993.

J. M. Mellor-Crummey and T. J. LeBlanc. A soft-
ware instruction counter. In John L. Hennessy, edi-
tor, Proc. of Third Int. Conf. on Architectural Support
for Programming Languages and Operating Systems,

Boston, MA, pages 78-86. ACM/IEEE, 1989.

NewBits: A quarterly newsletter from microtec re-
search, inc., 10(3), 1993.

D. S. Milojicic, W. Zint, A. Dangel, and P. Giese.
Task migration on the top of the mach microkernel.
In Mach III Symposium, pages 273-289. Usenix asso-
ciation, 1993.

(17]

18]

[19]

(20]

(21]

July 22, 1994

Chorus systémes

(22]

(23]

(24]

(28]

26]

(27]

(28]

(29]

(30]

31]

(32]

33]

S. L. Min and J.-D. Choi. An efficient cache-based
access anomaly detection scheme. In Proceedings of
the Fourth International Conference on Architectural
Support for Programming Languages and Operating
Systems, pages 235—244, Santa Clara, CA, April 1991.

D. Pan and M. Linton. Supporting reverse execution
for parallel programs. SIGPLAN NOTICES, 24, Jan-
uary 1989.

J. Riotto. Software checkpointing. Part of UNISYS

architecture task force monograph series.

J. F. Roos, L. Courtrai, and J. F. Mehaut. Execution
replay of parallel programs. In Proc. of the Euromicro
Work. on Parallel and Distributed Processing, pages
429-434, 1993.

F. Ruget. Actor-wide trap tables for CHORUS. Tech-
nical note, Chorus Systems, 1994.

F. Ruget. Cheaper matrix clocks. In Proc. of the 8th
Int. Workshop on Distributed Algorithms (WDAG-8),
Terschelling, the Netherlands, September 1994.

M. Schiefert. PARTAMOS: Parallel real-time ap-
plication monitoring system. Product sheet, Alca-
tel Austria—-ELIN Research Center, Ruthnergasse 1-7,
A1210 Vienna, 1991.

D. Snowden and A. Wellings. Debugging distributed
real-time applications in ada. Technical report, Uni-
versity of York, UK, April 1987.

R. Stallman. The gnu debugger. Technical report,
Free Software Foundation, Inc, 675 Mass. Avenue,
Cambridge, MA, 02139, USA, 1986.

R. Stallman. GNU Emacs Manual. Free Software
Foundation, 1987.

A. P. Tolmach and A. W. Appel. Debuggable con-
currency extensions for standard ML. In Proc.
ACM/ONR workshop on parallel and distributed de-
bugging, pages 120-131, 1991.

G. T. J. Wuu and A. J. Bernstein. Efficient solutions
to the replicated log and dictionary problems. In Proc.
3rd ACM Symp. on PODC, pages 232-242, 1984.

Public/Approved

A Distributed Execution Replay for CHORUS

-10-

CS/TR-94-62

July 22, 1994

