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Abstract

Matriz clocks have mice properties that can be used in the context of distributed database
protocols and fault tolerant protocols. Unfortunately, they are costly to implement, requiring
storage and communication overhead of size O(n?) for a system of n sites. They are often
considered a non feasible approach when the number of sites is large.

In this paper, we firstly describe an efficient incremental algorithm to compute the matriz
clock, which achieves storage and communication overhead of size O(n) when the sites of the
computation are “well synchronized”. Secondly, we introduce the k-matrix clock: an approz-
imation to the genuine matriz clock that can be computed with a storage and communication
overhead of size O(kn). k-matriz clocks can be useful to implement fault-tolerant protocols for
systems with crash failure semantics such that the mazimum number of stmultaneous faults
is bounded by k — 1.

Key words: distributed systems, causality, logical time, matriz time, fault tolerance.

1 Introduction

Matrix clocks have been introduced in the context of asynchronous distributed systems. They
have nice properties that can be used to design distributed database protocols and fault tol-
erant protocols [WB84, KB91]. Unfortunately, they are costly to implement: in a distributed
system that consists of n sites, the naive algorithm to compute the matrix clock on the fly
requires that an n X n matrix of integers be stored at each site and tagged onto each message:
if the number of sites is large, it is necessary to use an optimized algorithm.

[WB84] describes several such optimized algorithms. Usually, optimized algorithms do not
actually compute the genuine matrix clock, but an approximation thereto. The approximation
is less expensive to compute but provides less information than the genuine clock. However,
many applications will be happy with an approximated matrix clock, as long as it meets their
needs (for example, the approximated matrix clock of [WB84] meet the needs of a distributed
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dictionary and a distributed log protocols).

This paper brings (as far as we know) two contributions to the theory of matrix clocks.
Firstly, we derive an efficient incremental algorithm to compute the genuine matrix clock
from work done in the context of the MANETHO fault tolerance project [EZ92, EZ93]. The
algorithm achieves storage and communication overhead of size O(n) when the sites of the
computations are “well synchronized”.

Secondly, we introduce a new approximation to the matrix clock: the k-matrix clock. The
k-matrix clock can be useful to implement optimistic fault tolerance mechanisms for a system
with crash failure semantics [CASD85] such that the maximum number of simultaneous site
failures is bounded by k — 1. We propose an algorithm to compute the k-matrix clock on the
fly, with storage and communication overhead of size O(kn). This bound does not depend on
the relative synchronization between the sites of the computation.

The remainder of the paper is organized as follows. In Sect. 2 we recall the well known
matrix clock. We mention some of its properties and describe how it can be implemented. In
Sect. 3, we give a small taxonomy of known cheaper approximations to the matrix clock (this
part is based on [WB84]). Section 4 presents our efficient incremental algorithm to compute
the matrix clock. Section 5 presents our “k-matrix clock” approximation to the matrix clock,
describes its properties and gives possible examples of its use. We conclude in Sect. 6.

2 Logical clocks

Logical clocks have been introduced in the framework of asynchronous, distributed systems
[Lam78]. Let us quote the definition from [PT92]. The term distributed means that the system
is composed of a set of sites that can communicate only by sending messages along a fixed
set of channels. The term asynchronous means that there is no global clock in the system,
no assumptions about the relative speed of sites, no assumptions about the delivery time of
messages, and the sending and the receiving of a message are two distinct actions.

It is not possible to totally order the events that occur in a computation of an asynchronous
distributed system. It is however possible to causally order [Lam?78| the events of the com-
putation. We say that an event e; causally precedes event an ey (denoted e; < ey) if either
(1) e; and ez occur on the same site S; and e; occurs before ez (denoted e; <; ea, or (2) e;
is the emission of a message and ey is its receipt, or (3) there exists an event e3 such that
e1 < ez and e3 < e5. The causal order is a partial order of the events of the computation.

A logical clock § associates a date §(z) € D to each event z € E of the computation.

0:E—D
z— §(z)

The set D of clock values is partially ordered, and all logical clocks satisfy the following
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(CLK) condition:

e1 < ey = d(e1) < b(ez) (CLK)

that is, the clock never goes backwards. Most logical clocks actually satisfy the stronger
(S-CLK) condition:

e1 < ey <— 5(61) < 5(62) (S-CLK)

that is, the clock exactly represents the causal structure of the partial order of events.

For example, the linear clock introduced by Lamport [Lam78] only satisfies (CLK). Vector
clock (introduced independently by Fischer and Michael [FM82] and Liskov and Ladin [LL86],
then formalized by Fidge [Fid91] and Mattern [Mat89]) satisfies (S-CLK).

2.1 Matrix clock

Matrix clock (denoted é;,,¢) associates a square matrix of n X n integers to each event of the
computation. The definition of matrix clock is:

Smat 1 B — IN7X™
z— (Card(lEle,- {J:}))

where | g, {z} is the predecessor set of {} in E;, that is the set of elements of E; that are
lower than z ! and card(X) denotes the number of elements in the set X.

i,jE{l,...,n}

The definition of matrix clock is illustrated by Fig. 1.

Intuitively, if  is an event occurring on site S;, then component [j, k] of §;;,,¢() represents
S;’s view of S;’s view of the progress of Sj’s local time. The matrix clock satisfies the (S-CLK)
condition.

Matrix clocks have been introduced by Wuu and Bernstein [WB84| and Sarin and Lynch
[SL8T] as a means to discard obsolete information: since matrix clocks gives information about
the other sites views, it makes it possible for a site to stop diffusing an information as soon
as it knows that it is in all other sites’ views.

Let us recall the algorithm for computing the matrix clock on the fly. Each site S; maintains
its own view M; € IN"*" of the matrix clock and tags it onto all outgoing messages. M; is
initially set to zero. Rules (INT-M) and (MSG-M) are applied:

INT-M: Before S; performs an event:
M;[i i) « M;[i,i+1

'Formally, ¢ €lp (A) — 2 € BAIycA,z<y
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1000 2000 3020
0000 0000 0000
0000 0000 2020
0000 0000 0000
S, —a o .

1000 1000
1100 1200
0000 0000
0000 0000
82 .y
2000 2000 2000
0000 0000 0000
2010 2020 2030
0000 0000 0000
83 {
1000 2000
1200 1200
0000 2030
1201 2232
Sq

Figure 1: The matrix clock

MSG-M: Before S; receives message (m, M) from S;:

VI, My[i, 1) — max(M;[i, 1], M[j,1))
Vk, 1, M;[k, 1] — max(M;[k, 1], M[k,1])

3 Approximations to the matrix clock

Section 2.1 describes a “naive” algorithm to compute the matrix clock on the fly that generates
a storage overhead of size O(n?) per site and a communication overhead of size O(n?) per
message. This is very expensive. If the number of sites is large, it is necessary to use an
optimized algorithm.

In [WBB84|, Wuu and Bernstein describe several such optimized algorithms. These opti-
mized algorithms do not actually compute the genuine matrix clock, but an approximation
thereto. The approximation is less expensive to compute but provides less information than
the genuine clock. However, many applications (e.g. the distributed dictionary and the dis-
tributed log protocols of [WB84]) will be happy with an approximated matrix clock, as long
as it meets their needs.

In this section, we briefly recall the various optimization strategies proposed by Wuu and
Bernstein. For that purpose we have considered the sample computation of Fig. 2 and the
message represented by a dotted arrow in the figure. For each strategy, we have indicated the
part of the matrix clock that is stored at the sending site and the part that is tagged onto
the message.

NAIVE strategy

The strategy described in Sect. 2.1. Storage and communication overheads are O(n?).
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Figure 2: Sample computation

VECTOR strategy

Each site maintains a complete matrix, but outgoing messages are tagged only with the row
that corresponds to the sending site. Communication overhead is thus only O(n). Unfor-
tunately, VECTOR strategy does not guarantee progress. This is illustrated in Fig. 3: the
drift between the genuine matrix clock and the clock obtained with VECTOR strategy grows
without bound 2.

100 322 544 766

VECTOR @ w8
100 322 544 766

cENUNE B m

Figure 3: VECTOR does not guarantee progress

NEIGBH1 strategy

NEIGHBI1 strategy assumes a fixed topology of the communication network. Each site stores
only its row and a row for each of its neighbors 3. It sends only those rows which correspond
to neighbors of the target site. Storage and communication overhead is thus O(kn), where k
is a bound of the number of neighbors a site may have.

NEIGBH2 strategy

Each site stores only the components of the matrix clock which correspond to a channel that
belongs to the same network area * as the site (i.e., site S; stores component [j, k] of the

2To compensate for this drift, VECTOR strategy needs to be joined to a gossip mechanism [HHW89], so
that all sites can regularly update their views of the matrix clock.

3Two sites are called neighbors if they are directly connected by a communication channel.

*An area of the communication network is a maximum sub-network such that each site in the area is
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matrix clock if and only if sites S;, S; and Sj belong to the same area). It sends only those
components of the matrix clock which correspond to channels in the same area as the target
site. Communication overhead is O(k?) where k is a bound of the number of neighbors a site
may have. Storage overhead O(k?) for each area to which the site belongs.

Figure 4: Sample network topology

Figure 6 illustrates these various strategies (for NEIGHB1 and NEIGHB2, we have assumed
the network topology described in Fig. 4).

4 Incremental matrix clock

In this section, we describe an efficient incremental algorithm to compute the matrix clock
on the fly, based on Elnozahy and Zwaenepoel’s antecedence graph algorithm [EZ92, EZ93].
Let us first recall Elnozahy and Zwaepenoel’s work, which itself builds on [SY85], [JZ87] and
[SBY8S].

The framework is optimistic recovery from failures. Elnozahy and Zwaenepoel consider
system computations that consist of a number of recovery units (RU’s) [SY85] which com-
municate only by messages over an asynchronous network. The execution of an RU consists
of a sequence of piecewise deterministic state intervals, each started by a non deterministic
event (such as the receipt of a message). They denote by o? the ith state interval of RU p.
They define the antecedence graph (AG) of a state interval o7 as the set of all state intervals
that “happened before” o [Lam78|.

Elnozahy and Zwaenepoel propose an algorithm to compute the AG of the current state
interval of each RU on the fly. This algorithm is based on (conceptually) piggy-backing the
AG on outgoing messages: when an RU sends a message, it (conceptually) piggy-backs the
AG of its current state interval on the message. The receipt of the message starts a new sate

connected to every other site in the area. This is illustrated in Fig. 4.
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interval in the receiving RU, and the AG of that state interval is constructed from the AG of
the previous state interval and the AG piggy-backed on the message.

The algorithm is incremental because the whole AG is not actually piggy-backed on the
outgoing message: instead, the sending RU piggy-backs only those parts of the AG for which
it does not know if they have already been stored at the receiving RU.

We transform Elnozahy and Zwaenepoel’s algorithm in the following manner. Firstly, we
translate RU’s into a sites. Secondly, we translate states intervals into events °. With these
translations, we obtain an incremental algorithm to compute the AG of an event, i.e. the set
of all events that have “happened before” this event.

It is clear that the genuine matrix clock can be deduced from the AG, because the AG
contains all the events that could possibly be involved in the computation of the matrix clock.

The paradox is that it might be cheaper to maintain the AG than to directly maintain
the n x n-dimensional matrix clock. This is possible because (1) the AG can be maintained
incrementally as described in [EZ92, EZ93] and because (2) it is not necessary to store the
whole AG: a garbage collecting algorithm along the lines of [WB84]| or [SL87| can be used to
discard “obsolete” events from the AG.

4.1 The algorithm

We now describe the incremental algorithm for computing matrix clock on the fly. We assume
that every event is tagged with (1) the identifier of the site to which it belongs, and (2) its
sequence number on that site. We let eﬁ denote the [-th. event produced on site S;. We also
let €; denote the current event of site S; (i.e. the last event that was produced so far on S;).

Each site S; maintains a graph AG;. AG; is initially empty.

Throughout the execution of the algorithm, AG; will be a subgraph of the antecedence
graph AG(e;) of the current event of S;. The algorithm enforces an additional constraint on
AG;. For all j and k, consider the last event e of S that causally precedes the last event of
S; that causally precedes ¢;. Then, either e does not exist, or e belongs to AG;. Formally,
the algorithm enforces the (AG) constraint:

V]akamax(lEklE] {El}) € AG; (AG)

The (AG) constraint is necessary to guarantee that the matrix clock can be computed from
the events in AG;. Indeed, recall the definition of the matrix clock given in Sect. 2.1:

dmat(€:)J, k] = card(lg, lg; {€:})

®We identify a state interval with the event that has lead to that state interval
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assuming the (AG) constraint, this definition is equivalent to °:

bmat(€)lj, k] = seqnum (max | 5 2, {max 15 aq, {6}})

Thus, the matrix clock can indeed be computed from AG;.

The algorithm follows. Each site S; piggybacks its AG; on outgoing messages. Rules
(INT-I), (MSG-I) and (GC-I) are applied:

INT-I: Before S; performs an event ef:

AG; — AG;U {e}

MSG-I: Before S; receives message (m, AG) from S:

AG; — AG;UAG

GC-I: At any time, S; may remove “obsolete” events from its AG;:

Vi k, M;[j, k] «— seq—num(max lg,nAG; {max lEjnAGi {ez}}>
AG; — AG;—{¢] € AG| Vk, M;k, ] > I}

Rule (MSG-I) merges the local AG with the AG piggybacked on the received message, as
explained in [EZ92, EZ93]. Rule (GC-I) does the garbage collection along the lines of [WB84,
SL87]. It is possible to prove that these rules actually preserve the (AG) constraint (Cf.
appendix A). The algorithm is illustrated in Fig. 6, as strategy “INCR”.

4.2 Performance of the incremental algorithm

The algorithm achieves a small overhead if the sites of the computation are well synchronized.
Indeed, in that case, thanks to the garbage collection mechanism, the size of the stored and
piggybacked AG;’s will stay small: typically O(n) (see the example below). Thus both the
storage and communication overheads will be of size O(n). This compares favorably with
the overhead of size O(n?) required by the naive matrix clock algorithm. However, there is a
price to pay:

In the formula, seq-num returns the sequence number of the considered maximum event, or 0 if this event
does not exist.
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e Firstly, to achieve a storage overhead of size O(n), the incremental algorithm does not
maintain the matrix clock directly, instead it maintains the AG;. For that reason, some
computation is necessary to produce the actual components of the matrix clock. This
result in additional time overhead.

e Secondly, if the computation is not well synchronized, the size of AG; may increase
without bound. To overcome this problem, a practical solution is to synchronize the
computation by having gossip messages [HHW89] regularly visit all sites of the compu-
tation, in a ring or spanning tree fashion. This will keep the size of AG; small, but at
the expense of additional control messages.

We now give an example of a “well synchronized computation”. The computation consists
of n sites that communicate via a token ring network, as illustrated in Fig. 5. In the (somewhat
difficult to read) figure, we have indicated the AG;’s corresponding to each receipt event. We
can see that the AG;’s are of size 3n + 3 (2n + 2 nodes and n + 1 edges 7). In other words,

in this example, the storage and communication overheads of the incremental algorithm are
indeed of size O(n).

Figure 5: Size of AG;

5 Another approximation to the matrix clock

In this section, we introduce our k-matriz clock approximation to the genuine matrix clock.
We propose an algorithm to compute the k-matrix clock on the fly with storage and commu-
nication overhead of size O(kn). This bound does not depend on the relative synchronization
between the sites of the computation. We describe possible applications of the k-matrix clocks
in Sect. 5.4.

We first introduce the concept of k-approximation to a vector or a matrix.

"It is necessary to take the number of edges into account, because in general, a graph with n nodes may
have up to n® edges.
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5.1 k-approximation to a vector

Definition 1 Let IN denote the set of non negative integers and consider two n-dimensional
vectors of integers a,b € IN". Consider an integer k < n. We say that b is a k-approzimation
of a and we denote b <}, a, the fact that b contains the k greatest components in a. Formally:

card(I) =k
b=<pa & 3rc{1,. n}, Vig I,bi < a; (1<)
Vie b = a (I=)
Vig I,VjcI,a<a (1)

Intuitively, (I) says that I contains the indexes of the k greatest components of a. (I=)
says that for each index in I, the corresponding components in a and b are equal. (I<) says
that for each index not in I, the corresponding component in a is greater than the component
in b.

For example:

0 4 0 0 0 1
51 2[5 [5 =1 |6];]4]|4]|5
6 6 6 6 5 6

Whereas an n-dimensional vector is of size O(n), it is always possible to find a k-approximation
of the vector of size only O(k) (by keeping only the k greatest components and setting the
other components to 0).

Proposition 2 The set of n-dimensional vectors of integers is partially ordered by <}, (k <

The proof of the proposition is given in appendix B.

Proposition 3 Let max be the operator that takes the component-wise mazximum of two
vectors. max and <j, “commute”.

More precisely, let A and B be two n-dimensional vectors of integers. Let M be the
component-wise maximum of A and B. Consider a and b, two k-approximations of A and
B, and m, the component-wise maximum of ¢ and b. Then m is a k-approximation of M.
Formally:
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VA, B, M, a,bmeIN",
M = max(A4, B)
a=<p A
b=, B
m = max(a, b)

= m=<py M

The proposition is demonstrated in appendix B. It is illustrated by the following example.

0 2 2 0 4 4
5|, 7 e 7 5 7 e 7
6 3 6 6 2 6
1= 1= 1= 1= 1= 1=
4 4 4 4 4 4
5|, 7 e 7 5 7 e 7
6 3 6 6 3 6

5.2 k-approximation to a matrix

Definition 4 Let A and B be two n X n matrices of integers. We say that B is a k-
approzimation of A (denoted B < A) when the columns of B are k-approzimations of the
columns of A. Formally 8:

VA, B ¢ NV ™,

B jk A d:ef V1 S ] S Tl,B[*,j] jk A[*a]]

For example:

[2 0 0] [2 0 0]
02 0|=<,]120
(2 0 3| |2 0 3|
[5 3 3] [ 5 3 3]
05 0|<,|45 3
5 0 6 5 3 6

Whereas an n x n-dimensional matrix is of size O(n?), it is always possible to find a
k-approximation of the matrix of size only O(kn).

81n the formula, A[x,j] denotes the jth. column of matrix A.
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5.3 k-matrix clock

Definition 5 A ° k-matriz clock (denoted §;) is such that the values it returns are k-
approrimations of the genwine matriz times. Formally:

8, : E — IN"
Ve € E, 8k(e) <k bmat(e)

We now give an algorithm to efficiently compute a k-matrix clock on the fly.

Each site S; maintains its view A; € IN"*™ of the k-matrix clock. A; is initially set to zero.
A; is tagged onto all outgoing messages. Rules (INT-A) and (MSG-A) are applied:

INT-A: Before S; performs an event:
Aili, 1) — Ajfd, i+ 1

MSG-A: Before S; receives message (m, 4) 1°:

VI, As[3,1] — max(4;3,1], A[5,1))
Vk,1, A;lk,1] — max(4;[k, 1), Alk, 1))
A; «— apr(4;), such that apr(4;) <p 4;

Figure 6 gives an example of 2-matrix clock (strategy “2-MATRIX” in the figure).

Proposition 6 The k-matriz clock A produced by the algorithm above is indeed a k-
approzimation to the matriz clock M. Formally, let M(e) (resp. A(e)) denote the value
produced just after occurrence of event e by the genuine matriz clock algorithm (resp. by the
k-matriz clock algorithm above), then:

Ve € E, A(e) < M(e)

The proof is based on propositions 2 and 3. It is given in appendix B.

9We write “4 matrix clock” intentionally: there are many possible k-matrix clocks.
1O(m,A) is the received message, tagged with A, the sending site’s view of the approximated matrix clock
at sending time.
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5.4 Applications of the k-matrix clock

Recall that intuitively, the genuine matrix clock M; is such that component M;[j, k] represents
site S;’s view of S;’s view of Sj’s progress. The k-matrix clock A; contains the k greatest
components of M;. In other words, A; gives site S;’s view of the k most up-to-date views of
Sk’s progress.

A possible application of the k-matrix clock A; is in the field of optimistic fault-tolerance.
A typical optimistic fault-tolerant mechanism will for example guarantee that each recovery
unit [SY85] piggy-backs on outgoing messages the part of its antecedence graph [EZ92, EZ93]
for which it does not know whether it has already been stored by a quorum of other recovery
units. Let us assume that the system obeys a crash failure semantics [CASD85] such that the
maximum number of simultaneous site failures is bounded by k — 1. Then it is sufficient for
each recovery unit to piggy-back on outgoing messages the part of its antecedence graphs for
which it does not know whether it has already been stored by k processes (including itself).
For this purpose, the whole matrix clock is not necessary, the k-approximation suffices.

Another (similar) application is the implementation of a stable event log facility for a
system with crash failure semantics such that at most & — 1 faults may occur simultaneously.
For example, we plan to use k-matrix clocks to implement a crash resilient event logging
facility for the CDB distributed debugger [Rug94].

There is a similarity between k-matrix clocks and k-bounded ignorance [KB91]. However,
whereas k-bounded ignorance is a distributed database technique to guarantee that a given
transaction cannot be ignorant of more than k (causally) preceding transactions, k-matrix
clocks guarantee that no more than k computation sites can be ignorant of a (causally)
preceding event.

5.5 Clock condition for the approximated matrix clock

It is possible to define an order on IN"*"™ such that the k-matrix clock satisfies the strong
(S-CLK) condition. This is explained in appendix C.

6 Conclusion

In this paper, we have given an efficient incremental algorithm to compute the matrix clock of
an asynchronous distributed system on the fly. This algorithm is derived from MANETHO’s
antecedence graph algorithm [EZ92, EZ93]. In the optimal case where the sites are “well
synchronized”, our algorithm achieves storage and communication overhead of size O(n),
where n is the number of sites of the system. However, in the general case, the storage and
communication overheads are not bounded. It is thus necessary to join a gossip mechanism
to the algorithm, to make sure that the sites are kept relatively well synchronized.
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A second contribution of this paper is the definition of the k-matrix clock: an approximation
to the genuine matrix clock. The k-matrix clock is conceptually obtained by keeping only the
k greatest entries in each column of the genuine matrix clock. Like the genuine matrix clock,
it gives an exact representation of the causality order ((S-CLK) condition).

“Intuitively”, the k-matrix clock gives the local site’s view of the k& most up-to-date site
views of the progress of every site. It may thus be used to discard obsolete information in a
system where information known by at least k sites is obsolete. A possible application is in
the field of optimistic fault tolerance, to implement a stable event log for a system with crash
semantics such that the maximum number of simultaneous faults is bounded by k& — 1.

We have proposed an algorithm to compute the k-matrix clock on the fly with storage
and communication overheads of size O(kn). This bound does not depend on the relative
synchronization between the sites of the computation.

We plan to use either of the above algorithms to implement a crash resilient event logging
facility for CHORUS’s CDB distributed debugger.
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2-MATRIX 0l 0] Of O 0| 0] Of O
2002 0 200/ 20
o[ 0l 0] O 0/ 0/0 O

Figure 6: Approximation strategies
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Appendix

The appendix gives the mathematical proofs promised in the body of the paper.
A Incremental matrix clock algorithm

Proposition Rules (INT-I), (MSG-I) and (GC-I) preserve the (AG) constraint.

Proof: First recall the (AG) constraint on the subgraph AG; maintained by site S;:

Vja kvmax(lEklEj {El}) € AGl (AG)

where ¢; is the last event that occurred on S; and AG(e;) is the antecedence graph of ¢;.

It is easy to see that the (AG) constraint is preserved by rules (INT-I) and (MSG-I) defined
in Sect. 4.1. Let us show that it is also preserved by the (GC-I) rule. Let us denote by AG;
and AG; the values of the AG; before and after the garbage collection by rule (GC-I). We
have:

AG) = AG; — {ef € AG;| Yk, Milk,j] > 1}

We assume that AG; satisfies constraint (AG). We want to prove that AG; also does.
Consider any j and k, and event ef = max(lg,lEg; {&}) € AG;. ef is the Ith event of site Sy.
By definition of the matrix clock, M;[j, k] = card(lg,|E; {€}) = I. Thus, M;[j, k] # | and
as a consequence, the garbage collection mechanism does not remove ef from AG;. In other
words: ef = max(|p, |5, {&}) € AG]. O

B k-approximations

Recall the formal definition of the k-approximation operator <g:

card(I) =k
b<pa & 3rc{y,.,n} Vig I,b;i<a; (1<)
Viel,b;=a; (I=)
VigI,Vjel,a;<a; (1)

Proposition 2 The set of n-dimensional vectors of integers is partially ordered by <, (k < n).
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Proof: =< is obviously reflexive and antisymmetric. We prove that it is also transitive (this
is illustrated by Fig. 7). Consider ¢ <p b <p a. The definition of <} tells us that there exist
two subsets S,T C {1,..,n} with cardinal k such that:

Vig S,ei <¥b; (S<)
Vie S,ci=1b; (8=)
Vi ¢ S,Vj € S,b; <b; (S)
Vig T,b; < a; (T<)
VieT, b, =a; (T=)
Vi¢g T,VjeT,a; <a; (T)
Figure 7: <y is transitive.
From (S<), (T<) and (T=) it follows that
Vidg S,ci < a (U<)

Now consider 7 € S. We prove by contradiction that ¢; = a;. So assume that ¢; # a;. From
(S=), (T<) and (T=) it follows that ¢ ¢ T and b; < a;. Together with (T=) and (T), this
yields Vj € T, b; < b;. This contradicts (S). Hence

Vi€ S,¢; =b; = a; (U:)

Consider j € §. One of the following is true. Either S = T which implies J¢ € T',b; < b;,
or S # T which also implies 3¢ € T', b; < b; because of (S). With (U=) and (T=) this yields:

Vi€ S FieT,a<a; (1)

We now prove:
Vi¢ S,Vje S,a; <a; (U)
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Consider 7 ¢ S and j € S. Either (a) ¢ € T, then a; = b; (from (T=)), b; < b; (from (S)),
b; = a; (from (U=)). Or (b) ¢ ¢ T, then (1) gives us a j' € T’ such that a; < a;, and (from
(T)) a; < ajr. In both cases (U) is verified.

Finally (U<),(U=) and (U) prove that ¢ < a. ]

Proposition 3 Let max be the operator that takes the component-wise mazimum of two
vectors. max and <j, “commute”.

More precisely, let A and B be two n-dimensional vectors of integers. Let M be the
component-wise maximum of A and B. Consider a and b, two k-approximations of A and
B. Let m be the component-wise maximum of a and . Then m is a k-approximation of M.
Formally:

VA,B,M,a,b,mc IN",
M = max(A4, B)

a <k A
D) <k M
b=k B — M=k
m = max(a, b)
7 <k
8 . b
Vi VI
s xk =
A .......... _> """""""" | a
” | max ... : ...................... I max
o -
i & -
M é | m
M m

Figure 8: max and <j “commute”.

Proof: The proposition follows by induction on n (this is illustrated by Fig. 8 11). The
proposition is true for n = 1. Suppose the proposition is true for (n — 1). Let us prove it is
true for n. Consider k£ < n and A, B, M, a, b, m as defined in the proposition. The case
k = 0iseasy. If k # 0, let M+ = mt be a greatest component of M that is also in m. Remove
component T from vectors A, B, M, a, b and m to obtain (n — 1)-dimensional vectors A’

1Tn Fig. 8, we have assumed that At = Mt =a7 =m~
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B', M', d', b' and m’. These vectors satisfy the conditions of the proposition for (n — 1) and
(k — 1), thus m' <(;_q) M'. It follows that m <, M. O

Proposition 6 The approzimated matriz clock A is indeed a k-approzimation to the matriz
clock M :
Vec E, A(e) = M(e)

Proof: We do not consider the case £ = 0 which is obvious. So assume that & > 0. The
proof is by induction on the cardinal of | g {e} 2. If card(|g {e}) = 0, then both A(e) and
M (e) are filled with zeroes and the proposition is true. Assume that the proposition is true for
all e such that card(|g {e}) < . Consider an event e on site S;, such that card(|g {e}) = =.

(a) If e is not a message receipt, let p denote e’s immediate predecessor event (on site S;).
By induction hypothesis, A(p) <x M(p). Note that M(p)[z,?] is strictly greater than any
M(p)[h,i]. Since A(p) <r M(p) and k > 0, we must then have A(p)[Z,7] = M (p)[¢,7]. Hence
A(e) = M(e) (because A(e) and M(e) are computed by adding one to component [z, 7] of
A(p) and M(p) respectively).

(b) If e is the receipt of message m, let p denote e’s immediate predecessor event on site S;
and let event s be the sending of m, say by site S;. By induction hypothesis, A(p) < M(p)
and A(s) <r M(s). Let us denote A; the matrix obtained by adding one to component [z, 7]
of A(p), and A, the matrix obtained by taking the component wise maximum of 4; and A(s).
Let us define M7 and M; in the same way. Again, A(p)[s,¢] = M(p)[¢, 7] is strictly greater than
any M(p)[h,t], and consequently, A; <j M;. Successive applications of proposition 3 (=<
and max “commute”) guarantee that Ay <, M. Finally, A(e) <p M(e) because A(e) and
M (e) are obtained by replacing component % of each column of 43 and M, by the maximum
of components ¢ and j of the column.

To show this last point, consider two n-dimensional vectors a and b such that b < a.
Consider A and B obtained by replacing component i of each column of a and b by the
maximum of components ¢ and j of the column. We can assume without loss of generality
that ¢ = 1 and j = 2. There are four possible cases, depending on the position of the set S of
indexes of the k greatest components of a, relatively to ¢ and j. The four cases are illustrated
in Fig. 9 (in the figure, the set S is indicated with a hashed area). The reader may check that
in all cases: B < A. O

C k-approximations and strong clock condition

In this section, we assume that £ > 0. Let us first note that the component-wise order on

n X n-dimensional matrices is not adequate to compare approximated matrix clocks. Indeed,
the clock conditions (CLK) or (S-CLK) (see Sect. 2) are not satisfied with this order. To show

12| 5 {e} is the predecessor set of e in the set E of all events of the computation.
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A max>

Case 1 il 7 AV//" ﬁ/ 7
Fmax >

Case2 | j Z%V//ﬁy A

Case 3 ;é%%///ﬁ

Fmax
) %7
Case 4 %I ///f%

Figure 9: Relative position of 7, j, and S.

this, consider events e; and e3 and their 1-approximated matrix clocks M (ez) and M (e3) given
in Fig. 10. We can check that M(ez) £ M(e3), in contradiction with (CLK) and (S-CLK).
Thus the question is to know whether there exists an order on n X n-dimensional matrices

such that (CLK) or preferably (S-CLK) is satisfied. This is the purpose of the remainder of
this section.

11 21
01 00

Sy / € ‘93
S

2 e

Figure 10: Component-wise order is not adequate

Definition 7 Consider a,b € IN", two n-dimensional vectors of integers. We define the <y
relationship as follows.

> >
def . . . . .. B B
b <ka = EIZ17.717227.727 sy iny In, b[]l] > b[]z] > .2 b[]n]

Informally, b <j a if and only if the k greatest components of a are greater than the &

greatest components of b. We say that a is k-greater than b, or equivalently b is k-lower than
a.
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For example:

0 4 1 6 0 1
51 <2 |5 |; |5 a6 |;]|4|%]3
6 6 6 0 5 6

Of course, if a < b then a <; b

Definition 8 Consider A, B € IN™*", two nx n-dimensional matrices of integers. We denote
B < A the fact that each column in B is k-lower than the corresponding column in A.
Formally 13:

VA, B ¢ NV,

B Sk A d:ef V1 S ] S naB[*vj] Sk A[*a]]

For example:

<2

= N Ot
o O W
o O W
Ol = Ot
W ol W
D W W

Proposition 9 If the set of n x n-dimensional matrices is endowed with the <j, relationship,
then the k-matriz clock A satisfies the strong (S-CLK) condition:

Vei,ea € E e < ey <= A(e1) < A(ez)

Proof: — is easy, we now prove <—.

Consider two events of a computation of the system: e? € E;and ¢/, € E; such that
A(et) <j A(el,). We show that e} < e, .

The case ¢ = j is easy. So assume ¢ # j. First note that for any event e € E, the greatest
component of the cth column of the k-approximated matrix clock A(e) is exactly M(e)[c, ]
(this is because we assume that k£ > 0). Now only one of the following three cases is possible:
(a) e > el in that case, M(e!)[j,j] > M(e%,)[j,7]. This contradicts A(e}) <z A(e,)
(consider column j). (b) e} and e? are concurrent: in that case, M(€})[j, 7] < M(e2,)[4,7] and
M(ep)[i,7] > M(e},)[¢,4]. This contradicts A(e}) <p A(el,) twice (consider columns ¢ and j).
So it only remains case (c) e! < e{. m|

The reader can check that the computation of Fig. 10 actually satisfies (S-CLK) when
IN™*" is endowed with <j.

13In the formula, A[*,j] denotes the jth. column of matrix A.
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Of course, <y, is not a partial order on IN**". For example:

1 0 < 1 0 < 1 0
00 1 0 0 0
In fact, <z only satisfies reflexivity and transitivity, which makes it a pre-order. However,

since condition (S-CLK) is satisfied, < is actually a partial order on the subset of IN"*™ that
consists of the clock values obtained during an actual computation of the system.

To summary: if the set of clock values obtained during an actual computation of the system
is partially ordered by the < relationship, then the k-approximated matrix clock satisfies
the strong (S-CLK) condition.
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