Fast Error Recovery in CHORUS/OS:
The Hot-Restart Technology

Vadim Abrossimov, Frédéric Herrmann, Jean-Christophe Hugly,
Frédéric Ruget, Eric Pouyoul, Michel Tombroff
Chorus Systems, Inc.

August 30, 1996

1 Introduction

Building large fault-tolerant systems is a
very complex enterprise, and has led to
important developments in hardware and
software design, implementation and test-
ing methodologies. Until recently, very
few commercially available operating sys-
tems provided the appropriate level of sup-
port for building fault-tolerant software
systems, which is why these systems have
in general been implemented using ad-hoc
and proprietary solutions.
Telecommunication and inter-networking
manufacturers, in particular, are facing
extremely severe availability and reliabil-
ity requirements, often dictated by inter-
national standards and, of course, market
pressure.

The hot-restart technology
provided in CHORUS/ClassiX r3 has been
designed and implemented to address the
high-availability requirements of system
builders, telecommunication manufactur-
ers in particular. It complements the al-
ready available CHORUS fault-tolerance

enablers, like dynamic binding for recon-
figuration and migration of software com-
ponents, fault isolation and confinement,
and support for replicated services (see
[4]), by adding a mechanism allowing to
recover from errors in an efficient way.
It also allows to use existing, third-party
software packages which have not neces-
sarily be designed to be fault-tolerant, and
integrate them into a robust system.

In this paper we first describe the
motivations and requirements for high-
availability features in the context of a
modular, componentized(TM) operating
systems like CHORUS/ClassiX r3, and
how these requirements have been ad-
dressed with the hot-restart technology.
We then present in more details the core
mechanisms and policies implemented by
the kernel to support the hot-restart fea-
tures.

1.1 Availability and Reliability

In order to clearly describe and discuss any
fault-tolerant technology and avoid confu-

sion between often close although different
concepts, one has to adhere to a precise
terminology.

e Availability is the quality or state of
being available, i.e. present or ready
for immediate use ([6]).

e Reliability is the quality or state of
being reliable, i.e. suitable or fit to
be relied on ([6]).

In other words, a system is said to be
fully available if it provides uninterrupted
services. To approach full availability,
hardware and software redundancy, hot-
standby and lock-step techniques have
generally been used.

A system is fully reliable if it always pro-
vides accurate services (according to its
specification), when it is available.
other words, a system can be highly-
reliable, even though it is not highly-
available.

In

To build such systems, techniques involv-
ing hardware and software redundancy,
combined with voting mechanisms, have
generally been used.

The scope of fault-tolerance is to build re-
liable and available systems.

1.2 Faults, Errors and Failures

The following definitions are extracted
from [5].

e An error is a difference between the
actual system behavior and its speci-
fication.

e A failure is an event which corre-
sponds to the first occurrence of an
€rTor.

e A fault is a source which has the po-
tential of generating errors.

The goal of an error recovery procedure is
to bring the system to an error-free con-
sistent state. To illustrate these concepts,
let us look at the following code fragment:

char* ptr;

ptr = (char*)malloc(strlen("hello\n"));
sprintf(ptr, "hello\n");

In this code fragment, the fault is the fact
that the value returned by malloc() is not
checked for NULL value. The potential
error this fault may generate is that the
pointer ptr may, in some cases, be set to
NULL. The corresponding potential fail-
ure would be the actual occurrence of that
error, which would manifest itself as an ex-
ception.

A typical operat-
ing system like UNIX(TM) provides sev-
eral basic mechanisms to detect such error
and/or failures.

e Error detection via assertion mecha-
nisms:

char* ptr;

ptr = (char*)malloc(strlen("hello\n"));
assert(ptr);
sprintf(ptr, "hello\n");

e Failure detection via exceptions and
signaling mechanisms:

extern void func(int);
char* ptr;

signal (SIGSEGV, func);
ptr = (char*)malloc(strlen("hello\n"));
sprintf(ptr, "hello\n");

In these cases, the detection of an error
leads to the abnormal termination of the
faulty entity. Such detection mechanisms
are sufficient for building simple applica-
tions, but cannot be used to build highly-
available systems. This observation is the
basis for the requirements that led to the
design of the hot-restart technology, as
will be presented in the rest of this paper.

1.3 Generated and Propagated
Errors

In the previous examples, the failure of the
program was directly generated by a fault
in that program. However, a failure can
be caused by a fault that is not in the pro-
gram itself, but in another component of
the system. For instance, a fault in the
virtual memory module of the CHORUS
microkernel may cause a direct error in
that module, in turn causing an error in
the IPC module, itself causing a failure in
an application program. This type of er-
ror is said to have been propagated from
it originating fault.

Therefore, simplistic methods which only
assume that the cause of a failure is di-
rectly linked to the failing entity cannot
properly handle complex failure scenar-
ios which arise in critical, real-time, dis-
tributed systems.

The study of this complex “error model”,
combined with the fact that systems based

on the CHORUS/OS technology are often
made up of a large set of closely interact-
ing modules and actors, led us to design
and implement specific features associated
to the hot-restart technology, whose key
characteristics are:

e Extension of the notion of fault con-
finement, normally associated to the
CHORUS actor, to higher-level ab-
stractions called “restart groups”.

e Refinement of inter-actor invocation
mechanisms, so to associate strong
fault confinement semantics to them.

e Clear separation of the notions of
“restart mechanism” from the one of
“restart policy”.

All these concepts are discussed in the rest
of this paper.

2 Overview of The Hot-
Restart Mechanism

The primary goal of the hot-restart fea-
tures developed by Chorus Systems is
mainly to address the high-availability
problem (as opposed to the specific high-
reliability problem), by providing a set of
mechanisms allowing to:

e Capture failures and notify errors.
These mechanisms are called “excep-
tion handlers” and “panic” system
calls.

These mechanisms have actually been
provided by the CHORUS microker-
nel for a long time, but have been

extended in the scope of the hot-
restart framework to cope with the
additional requirements imposed by
the support of multiple, concurrent
subsystems in a system like CHO-
RUS/ClassiX r3.

e Recover from these failures and er-
rors, and bring the system in an
error-free state very rapidly, by “hot-
restarting” the whole or portions of
the system.

In CHORUS/ClassiX r3, the CHO-
RUS microkernel, as well as the Clas-
siX subsystems are ”hot-restartable”,
i.e. restartable to their initial entry
point without having to be reloaded
from stable storage’.

The same mechanism can be applied
to applications.

e Reconstruct the state of the hot-
restarted portions of the system using
a fine grain ”checkpointing” mecha-
nism, based on a new type of CHO-
RUS memory regions called “persis-
tent regions”.

e Analyze errors using “error logging”
and “core dumps” mechanisms, and
repair faulty modules using a “patch-

ing” mechanism?.

The combination of these features allows
to construct highly-available systems and

'"Which, by contrast is often referred to as a
“cold-restart”.

2The error logging, core dump and patching
features are not described further in this paper.
They will be the subject of a future companion

paper.

applications, by reducing dramatically the
time it takes for a failed system or compo-
nent to be back into service.

Before describing in more details the hot-
restart mechanism, it is useful to rapidly
recall some basic CHORUS concepts. The
basic building block of CHORUS appli-
cations is the “actor” ([1], [3]). The ac-
tor represents the basic unit of resource
allocation, and is the “shell” into which
“threads” can execute. The actor also rep-
resents the basic error detection (excep-
tion handlers are attached to actors) and
fault confinement (protected address space
and execution boundary are associated to
actors) abstraction. Quite naturally, the
hot-restart technology also rests its foun-
dations on the actor object.

2.1 Classification of Restart Ac-
tions

Failures can be caused by many types of
faults, and all failures do not necessarily
require the same recovery action. In or-
der to provide enough flexibility to the sys-
tem builder in choosing what best action is
required, three types of "restart actions”
which can be applied to a failed actor are
defined, listed below in decreasing order of
“severity”.

e Termination.
The failed actor is terminated. It is
the most severe action in the sense
that the actor is not given any ”sec-
ond chance”, at least not until an ex-
ternal agent decides to recreate that
actor. This simple action is similar

to the abnormal termination mecha-
nism described above for a traditional
UNIX system.

e Reload.

The failed actor is first stopped, its
current state cleaned up, and fi-
nally, its code and data segments are
reloaded from stable storage. The ac-
tor is therefore restarted again with a
" fresh” code and data, possibly a new
version of the program.

o Hot-restart.

The failed actor is hot-restarted: all
its non-persistent objects (threads,
ports, stacks, private data, and non-
persistent regions) are destroyed, its
text and data segments are reinitial-
ized to their original content without
accessing the stable storage, and fi-
nally, the actor resumes its execution
at its entry point.

The time it takes to hot-restart an actor
is much shorter, compared to the time it
takes to reload the same actor. Further-
more, the state of the actor is not entirely
reinitialized after a hot-restart: persistent
regions are kept intact, which is the basis
for performing checkpointing actions and
recreate the state of the failed actor to a
state prior to the failure. This checkpoint-
ing mechanism is described in more details
in Section 2.2 below.

In the case of a reload, obviously, the state
of the actor prior to the failure is en-
tirely lost. One may wonder what the dis-
tinction is between terminating and then

“manually” recreating an actor, as op-
posed to reloading it. The difference lies in
the fact that the reload action is performed
automatically by the system, while an ac-
tor that has been terminated will not re-
execute unless explicitly recreated by ei-
ther another actor or a user.

2.2 Checkpointing

The goal of error recovery, as defined in
the Introduction, is to bring the system
to an error-free consistent state. The ba-
sic hot-restart mechanism described in the
previous section defines this error-free con-
sistent state to be the state corresponding
to the initial loading of the failed compo-
nent.

Figure 1 shows the state of an actor at its
initialization, during execution, and after
having been hot-restarted as a result of an
error. In this first example, the data re-
gion of the actor is reinitialized to its ini-
tial content.

Initial Load During Execution After hot-restart

Execution

Il v ocified dara

Failureand hot-restart

Figure 1: Basic actor hot-restart

Clearly, this is a very conservative ap-
proach, in general not sufficient to build
usable fault-tolerant software. Therefore,

CHORUS/ClassiX r3 provides a fine-grain
”checkpointing” mechanism, based on the
notion of ”persistent memory region”. An
actor can allocate persistent memory re-
gions which will stay intact after a hot-
restart. These regions serve as check-
point containers to the application, which
can record into them the state informa-
tion which will be required to reconstruct
a consistent state in case the application is
hot-restarted. Note that in any case, the
code and non-persistent data regions are
automatically re-initialized to the content
corresponding to the initial load of the ap-
plication.

Figure 2 shows the same scenario as Fig-
ure 1, except that the actor had declared a
couple of persistent memory regions, and
is therefore capable of quickly reconstruct-
ing its state.

Initial Load

After hot-restart

Persistent Data
Declared

During Execution

Q
mino[7 | %
Declare Persistent Execution Error and Hot-Restart
Memory Regions
[] rassendaa [woditiedpersisentdata [Mocified non-persistent data

Figure 2: Persistent Actor Hot-Restart

These two characteristics (time to hot-
restart versus time to reload, and persis-
tence of designated memory regions) are
the foundation of the hot-restart technol-
ogy.

The attentive reader will probably ask the
following question: if the concept of hot-
restart is to quickly restart execution with

a restored version of its code and data,
with possibly some memory regions kept
intact, would it be possible to implement
this feature in library, using for instance
some kind of setjmp()/longjmp() mech-
anism?

The negative answer to this question is
justified as follows:

e CHORUS

actors are not simple, mono-threaded
execution objects. First, they can
be multithreaded, but, more impor-
tantly, their code can be executed
by “external” threads, which have in-
voked the actors via some invocation
mechanism. Allowing such invoca-
tions to take place while guaranteeing
sufficient fault confinement and isola-
tion required support from the micro-
kernel itself.

e CHORUS/ClassiX r3 supports, in ad-
dition to the concept of actor hot-
restart, the one of “site restart”. This
means that the entire system - the
site - can be hot-restarted, guar-
anteeing to each hot-restartable ac-
tor the same semantics as described
above. Clearly, this mechanism relies
on some low-level kernel primitives.

e Finally, the concept of actor it-
self is not rich enough to build
highly-available, cooperative, dis-
tributed applications, and the hot-
restart concept had to be extended
to higher-level abstractions called
restart groups.

These technical aspects are covered in the
following sections.

2.3 Restart Groups

Many applications are made up of not one
but several actors, which cooperate to pro-
vide certain type of services. As these ac-
tors cooperate closely together, any failure
in one of them can have repercussions to
the others.

For instance, let us assume that actors
A and B cooperate closely (via CHO-
RUS/IPC for instance), and that A fails.
Simply terminating, reloading or hot-
restarting A will probably not be suffi-
cient, and will most certainly cause B ei-
ther to fail itself, or to go through some
special recovery action.

Recovery actions themselves, like roll-
back, may in addition cause the well-
known “domino effect” ([5]).

Building cooperating applications which
can cope with the large number of po-
tential fault scenarios is a very complex
task, as the complexity grows exponen-
tially with the number of actors.
Therefore, we have introduced the notion
of “restart group”, which is an abstrac-
tion allowing to group actors together and
associate a common restart action to the
group. In other words, when one actor of
the group is submitted to a restart action
(for instance a hot-restart), all the other
actors of the group undergo the same ac-
tion.

In addition to the notion of restart group,
and in order to provide some form of
inter-group restart semantics, we have im-

plemented a “restart notification” mecha-
nism, which allows an actor to be notified
of the failure of a given restart group. This
notification mechanism is capable of per-
forming local and remote notification. It
is not described further in this paper.
Finally, restart groups identify clear “fail-
ure domains”, and extend therefore natu-
rally the error confinement model gener-
ally associated to individual actors.

2.4 Restart Groups Hierarchy

2.4.1 Restart Groups and Subsys-
tems

A system built on top of
CHORUS/ClassiX r3 is often made up of
a combination of multiple subsystems per-
sonalities running on the same CHORUS
microkernel. Clearly, there exists a very
close relationship between the notions of
restart group and subsystem, for the fol-
lowing reasons:

e The actors implementing a subsystem
cooperate closely together to provide
a well-defined set of services. It is
therefore natural to associate a com-
mon error recovery mechanism to all
the actors implementing a given sub-
system.

e The various subsystems do not have
the same criticality. As these subsys-
tems may be hosted on the same ma-
chine, it is important to isolate sub-
systems from each other, from the er-
ror confinement and recovery points
of view.

2.4.2 Restart Groups
cies

Dependen-

We have seen in the previous section that
there is a close relationship between the
notions of restart groups and subsystems.
There is clearly a dependency between
the various subsystems, and between the
subsystems and the applications. For in-
stance, if the ClassiX subsystem fails (e.g.
because of an exception in the Actor Man-
ager), and is subsequently hot-restarted,
all actors running at that time on top
of ClassiX must also be at least hot-
restarted. This dependency between one
layer to the ones above it can be illus-
trated using a tree-like structure, as shown
on Figure 3.

Legacy applications

UNIX Persisent ~ Non-persisent T TTTTTTooooo
Processes DRT processes

Non-persistent '
DRT processes
| Persistent
| c_actors

Non-persistent
c_actors

UNIX/MPRT
subsystem

POSIX/DRT

subsystem c_actors subsystem

Nucleus

Figure 3: Restart group dependencies

These dependencies must be managed at
the lowest level of the system. They repre-
sent the basic structure for analyzing error
propagations and for activating the appro-
priate error recovery actions.

2.5 Site Restart

The restart group model is quite general,
in the sense that the CHORUS microker-

nel itself, with the associated basic OS ser-
vice actors, are also members of a restart
group, the “kernel” restart group. This
restart group has the particularity that it
is the “root” of the restart group depen-
dency graph. The various restart actions
can also be applied to the kernel restart
group. Because of the particular nature of
that restart group, these actions are also
called “site restart” (for a hot-restart),
“site reboot” (for a reload).

2.6 Restart Mechanism and Pol-
icy

The three restart actions (termination,
reload and hot-restart), taken individu-
ally, are the basic toolkit for dealing with
a failed actor or more generally a failed
restart group. However, when faced with
a complex system like CHORUS/ClassiX
r3, we had to address the following design
issues:

e How do we categorize all the restart
groups in the system using the above
restart action severity paradigm? For
instance, do we consider that a failure
of a given actor is always more severe
than the one of another?

e How do we cope with different avail-
ability requirements (e.g. very high
for public switching equipment, less
critical for private switching, irrele-
vant for a toaster)?

e How do we cope with changing con-
ditions, such as variations in system

loads, occurrences of consecutive or
concurrent faults, etc.?

e And finally, how do we solve the
above issues and still build a generic,
multi-purpose operating system?

This problem is a classical problem of
system software design, which led to the
separation of two notions: “mechanism”
and “policy”. In the same way CHO-
RUS/ClassiX r3 separates the notion of
scheduling mechanism from the one of
scheduling policy, it makes the distinction
between the restart mechanism and the
restart policy.

The mechanism is represented by the
restart actions, while the policy is rep-
resented by algorithm that decides which
restart action to take under each failure
situation. The restart policy, a replace-
able module of CHORUS/ClassiX r3, is
the “umpire” of the system as far error
recovery is concerned; it drives all the
restart actions when failures occur. It can
be replaced by a customer specific policy,
adapted to the specific needs of the appli-
cations.

2.7 Restart Escalation and Prop-
agation

In addition to deciding which restart ac-
tion needs to be taken for a failure of
a given restart group, the restart policy
can take higher level decisions, using com-
plex state information and taking into ac-
count the dynamic nature of the system.
In particular, it can decide to “escalate”

or “propagate” the restart actions. These
terms are defined below.

e Escalation.

Let us suppose that an actor fails, and
that the restart policy decides to hot-
restart it. A short moment after, the
same actor fails again. The restart
policy, assuming that the fault was
therefore not transient, may decide to
reload the actor, hence causing a fresh
binary image to be reloaded, which
will, hopefully, repair the fault.

This is called “restart action escala-
tion”: the restart action has been es-
calated from a hot-restart (less se-
vere) to a reload (more severe). Fig-
ure 4 illustrates this case.

Execution First error Execution Second error
leading to hot-restart leading to reload

Figure 4: Restart escalation

e Propagation.
Let us suppose that the same actor
fails a third time, after having already
been hot-restarted and then reloaded.
The restart policy may in this case as-
sume that the error is actually caused
by a fault in another component of
the system, for instance the kernel.
It therefore decides to hot-restart the
kernel. This is called “restart action
propagation”. As a result of this ker-
nel hot-restart, the actor itself is of

course also hot-restarted. Figure 5 il-
lustrates this case.

Second error
leading to reload

A
e}
IS

First error

leading to hot-restart Execution

M

Third fault leading to hot-restart
of restart group below

Figure 5: Restart escalation

The default restart policy implemented in
CHORUS/ClassiX r3 contains several con-
figurable parameters, allowing to tune the
behavior of the restart policy in case of
complex failure scenarios (how long be-
fore escalating, after how many faults, by
which actor, etc.).

3 Advanced Topics

In Section 2 above, we have described the
basic principles of the hot-restart feature.
In order to implement these features, we
had to develop a set of supporting mod-
ules, actors and APIs (Application Pro-
gramming Interface). Three of the most
interesting of these concepts are described
in the Sections below.

3.1 Fault Isolation and Confine-
ment

As we described in Section 2, the actor
is the basic abstraction for fault isolation
and confinement.

An operating system like CHO-
RUS/ClassiX r3 consists of a set of actors
and threads, each interacting closely, via
various interaction mechanisms. The code
and data of an actor (in particular super-
visor actors) can be executed not only by
the own threads of that actor, but also
by external threads and other interrupt-
type execution flows. These invocations
are generally called “handlers”,
be categorized as follows:

and can

e Traps handlers.

Interrupt handlers.

Timeout handlers.

Timer and virtual timer handlers.

Exception handlers.

Abort handlers.

The features described in the following two
sections have been developed to make sure
these invocation mechanisms could still be
used in the context of hot-restart, without
affecting the system’s performance.

3.1.1 Local Access Points

Because of the above invocation mecha-
nisms (or handlers), an error occurring
while executing the code of an actor can
be caused not only by the actor’s own
threads, but by many other execution
flows.

In order to allow these interactions to be
permissible in the context of an highly-
available system, as well as providing the

10

required level of performance, we have de-
signed and developed a new invocation
mechanism called “Local Access Points”,
or LAPs.

LAPs are light-weight methods for access-
ing the services of an actor, while still
guaranteeing the proper restart seman-
tics when crossing inter actor boundaries.
They allow the system to keep track of the
"identity” of the various flows of control
which traverse an actor, and to guaran-
tee that an actor can be hot-restarted even
thought is may currently be executing sev-
eral ”foreign” threads.

Figure 6 illustrates how threads and inter-
rupts can execute the code of an actor by
invoking its LAPs. It shows that an ac-
tor can be invoked from other actors, or
from an interrupt level flow (the clock in
this case). Note that a thread is allowed
to block while executing a LAP.

:

| apl nvoke()

| apl nvoke()

Figure 6: Local Access Points (LAPs)

11

3.1.2 Freezing and Restarting

Hot-restarting an actor is a complex op-
eration. First, as we explained before, an
actor may be hosting concurrent threads,
not necessarily its own threads. If one
of these threads fails while executing the
code of that actor, the kernel may have to
hot-restart that actor, without destroying
threads which were temporarily executing
in the actor.

Second, as the hot-restart operation is
not atomic, and since we certainly do not
want to lock the system while an actor is
restarted so as to preserve the real-time
characteristics of the system, the micro-
kernel must make sure that no thread or
interrupt will try to invoke an actor’s code
while this actor is being hot-restarted.

To solve these two problems, we have de-
composed the operation of hot-restart of
an actor into two distinct “restart phases”:

e Freeze.

The freeze operation stops all current
execution flows in the target actor,
and guarantees that all subsequent
invocations will be forbidden. The
microkernel achieves this by decon-
necting any potential source of inter-
rupt in that actor, and by deflecting
any thread which may want to either
penetrate or resume execution in the
frozen actor.

The freeze operation is, as it names
indicate, the basic mechanism used
to confine an error in a faulty actor.
This is illustrated on Figure 7.

e Restart.

| apl nvoke()
I apl nvoke()

:::::::
AAAAA

Frozen thread, will automatically
resume execution in calling actor
when rescheduled, returning K_EFAIL

zzzzzz
AAAAA

Figure 7: Actor freeze

Once an actor has been frozen, it
can be restarted. This means that
all its non-persistent resources (ports,
threads, private data, non-persistent
regions) are destroyed, and the actor

reincarnates with a new name3.

The job of the microkernel is finished
at this point, and it is the responsi-
bility of the appropriate subsystem to
reactivate the actor by creating a new
thread into it.

3.2 The Hot-Restart Managers

3.2.1 The Site Personality Manager

In this paper, we have explained that ap-
plications, subsystems and the entire site
itself can be subject to several types of
restart actions. In particular, in CHO-
RUS/ClassiX 13, it is possible to capture

3Actor names are called “capabilities” in the
CHORUS terminology.

12

failures of individual subsystems, and to
terminate, reload or hot-restart them in-
dependently of each other.

In order to support these mechanisms,
subsystems themselves have to be consid-
ered as some kind of “application”, in the
sense that some entity must be responsible
for detecting their errors, capturing their
faults and, finally, apply the restart ac-
tions on these subsystems.

We have therefore implemented a new
module of the CHORUS Nucleus, called
the “Site Personality Manager”, or SPM.
The SPM is the module responsible for
loading subsystems, detecting errors and
capturing failures generated in these sub-
systems, and apply the recovery actions on
these subsystems.

3.2.2 The Restart Manager

As we said before, we separated the no-
tions of restart mechanism and restart pol-
icy. One module of the CHORUS Nu-
cleus, called the “Restart Manager” (or
RM), is responsible for decomposing the
various restart actions (for instance, a hot-
restart is composed of a freeze phase, fol-
lowed by a restart phase, and finally an
activate phase which actually reactivates
the hot-restarted actor).

It is also responsible for managing the
dependency relations between the various
restart groups, in the form of the restart
group tree discussed above.

Finally, it is the module into which re-
placeable restart policy modules can be
“plugged”.

4 Conclusion and Future
Work

The hot-restart feature is now imple-
mented and available as early access of the
CHORUS/ClassiX r3 product.

This work has raised a lot of extremely in-
teresting topics, which we did not envision
when we first embarked on this project.
First, after using the hot-restart features
for several months now, we have realized
that it is much more difficult to analyze
and debug a system that never stops, even
after it has failed. This will certainly lead
us to explore new methods of monitoring
and debugging.

Second, applying the hot-restart concept
to emerging markets, like multi-media and
inter-networking, will certainly allow us
to enrich the technology and analyze new
restart policies.

And finally, the prospect of apply-
ing these mechanisms to objects (CHO-
RUS/COOL) and richer invocations mech-
anism (COOL-ORB) is an open door to
many tempting projects.

13

References

1]

Cooperative Operating System Kernel
Architecture, M. Gien, Chorus Sys-
tems Technical Report, CSI/MR-94-
22, March 1994.

Evolution of
the CHORUS Open Microkernel Ar-
chitecture: The STREAM Project, M.
Gien, Proceedings of the 5th. IEEE
Workshop on Future Trends in Dis-
tributed Computing Systems, Cheju
Island, Korea, August 28-30, 1995.

The CHORUS Microkernel, Dick
Pountain, Byte Magazine, pp 131-
139, January 1995.

Fault Tolerance Enablers in the CHO-
RUS Microkernel, J. Lipkis, M.

Rozier, Chorus Systems Technical
Report, CS/TR-93-45, June 1993.

Fault-Tolerant System Design, S.
Levi, A.K. Agrawala, McGraw-Hill
Series on Computer Engineering,
1994.

Webtser’s Ninth New Collegiate Dic-
tionary, Merriam-Webster, 1995.

Restart Manager Requirement Speci-
fications and High-Level Design, Eric
Pouyoul, Chorus Systems Technical
Report, CSI/TR-95-7.

c_actors Restart Requirement Specifi-
cations and High-Level Design, Jean-
Christophe Hugly, Chorus Systems
Technical Report, CSI/TR-95-9.

14

[9]

[10]

Site Personality Manager
Requirement Specifications and High-
Level Design, Eric Pouyoul, Michel
Tombroff, Chorus Systems Technical
Report, CSI/TR-95-8.

CHORUS/Nucleus v3 6.1
Actor Restart Requirement Specifica-
tions and High-Level Design, Frederic
Ruget, Chorus Systems Technical Re-
port, CS/TR-95-167.

