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ABSTRACT
Currently, popular operating systems are unable to support the end-to-
end real-time requirements of distributed continuous media.
Furthermore, the integration of continuous media communications
software into such systems poses significant challenges. This paper
describes a design for distributed multimedia support in the Chorus
micro-kernel operating system environment which provides the
necessary soft real-time support while simultaneously running
conventional applications. Our approach is to extend existing Chorus
abstractions to include QoS configurability, connection oriented
communications and real-time threads. The design uses the following
key concepts: the notion of a flow to represent QoS controlled
communication between two application threads, a close integration of
communications and thread scheduling and the use of a split level
scheduling architecture with kernel and user level threads. The paper
shows how our design qualitatively improves performance over
existing micro-kernel facilities by reducing the number of protection
domain crossings and context switches incurred.



1 INTRODUCTION
A considerable amount of research has already been carried out in
communications support for continuous media over high speed
networks. However, much less work has been done in the area of
general purpose operating system support for continuous media.
Typically, end-system implementations have either been embedded in
non real-time operating systems such as UNIX and suffered from poor
performance, or have been implemented in specialised hardware/
software environments unable to support general purpose applications.

The SUMO Project at Lancaster [Coulson,93] is addressing this
deficiency in the state of the art by extending a commercial micro-kernel
(i.e. Chorus [Hermann,88]) to support continuous media applications
alongside standard UNIX applications (Chorus already supports UNIX
applications through the provision of a UNIX subsystem or
‘personality’). Chorus is a useful starting point for continuous media
support as it includes a number of desirable real-time features.
However, in common with other micro-kernels, it fails to adequately
support continuous media in a number of key areas. First,
communication in Chorus is message based whereas continuous media
requires stream-oriented communications. Second, Chorus offers no
quality of service (QoS) control over communications and only coarse
grained relative priority based scheduling to control the QoS of
processing activities. Finally, Chorus does not offer end-to-end real-
time support spanning both the communications and scheduling
components.

To overcome these deficiencies we introduce the concept of a
‘flow’. A flow characterises the production, transmission and eventual
consumption of a single media stream as an integrated activity governed
by a single statement of QoS. Realisation of the flow concept demands
tight integration between communications, thread scheduling and
device management components of the operating system. It also
requires careful optimisation of control and data transfer paths within
the system.

The rest of this paper is structured as follows. Section 2 provides
the background on the Chorus micro-kernel necessary to understand
the rest of the paper. Section 3 describes the programming interface to
our multimedia facilities and section 4 presents some examples of its
use. Following this, section 5 discusses the implementation of the
multimedia support, concentrating on communications and scheduling
issues. The examples of section 4 are revisited in section 6 to illustrate
the qualitative efficiency gains produced by our design over standard
micro-kernel facilities. Finally, section 7 discusses related work in the



field and section 8 presents our conclusions and indicates our plans for
future work.

2 BACKGROUND ON CHORUS
Chorus, conceived at INRIA, France, is a micro-kernel based operating
system which supports the implementation of conventional operating
system environments through the provision of ‘sub-systems’ or
‘personalities’ (for example a sub-system is available for UNIX
SVR4). The micro-kernel is implemented using modern techniques
such as multithreaded address spaces and inter-process communication
with copy-on-write semantics. The basic Chorus abstractions are
actors, threads and ports, all of which are named by globally unique
and globally accessible unique identifiers. Actors are address spaces
and containers of resources and may exist in either user or system
space. Threads are units of execution which run code in the context of
an actor. By default, they are scheduled according to either a pre-
emptive priority based scheme or round robin timeslicing. Ports are
message queues used to hold incoming and outgoing messages. They
can be aggregated into port groups to support multicast messaging and
may be migrated between actors. Inter-process communication is
datagram based and supports both request/reply messages (via the
ipcCall() and ipcReply() system calls and one shot messages (via
ipcSend() and ipcReceive()).

Chorus has several desirable real-time features and has been widely
used for embedded real-time applications. Its real-time features include
pre-emptive scheduling, page locking, system call timeouts, and
efficient interrupt handling. Chorus also incorporates a framework,
called scheduling classes, which allows system implementers to add
new scheduling policy modules to the system. These modules are
upcalled each time a scheduling event occurs. Modules impose their
scheduling decisions by manipulating a global table of thread priorities.

Unfortunately, Chorus’ real-time support is not sufficient for the
requirements of distributed multimedia applications, principally because
there is no support for QoS control and resource reservation:-

• although it is possible to specify thread scheduling constraints
relative to other threads, absolute statements of requirement for
individual threads cannot be made,

• the exclusive use of connectionless communications makes it
impossible to pre-specify communications resource allocation.



In addition, Chorus suffers from a lack of communications/
scheduling integration. This means that there is no way to provide
timely scheduling in concert with communications events as required
by end-to-end continuous media communications. Note, however, that
the above limitations are not unique to Chorus: they are shared by most
of the other micro-kernels in current use (e.g. [Accetta,86],
[Tanenbaum,88]).

3 PROGRAMMING INTERFACE AND
ABSTRACTIONS
To remedy its current deficiencies for real-time continuous media
support and real-time control, we have extended the Chorus API with
new low level calls and abstractions (provided in a user level library
called libflow).

3.1 Primitive Abstractions
The primitive abstractions are as follows:-

• r tpor ts - communication end points for real-time
communications,

• devices - hardware and/or software producers, consumers and
filters of real-time data,

• rthandlers - user defined procedures which manipulate real-time
data coming from or going to an rtport,

• QoS controlled connections - communication channels with a
specific QoS, and

• QoS handlers - user defined procedures which are upcalled
when QoS commitments degrade.

• threads - a set of real-time lightweight thread management and
synchronisation primitives.

These abstractions are described fully in the following sub-
sections.

Rtports and Devices

Rtports are an extension of standard Chorus ports and serve as end-
points for both continuous media communications and real-time



messages with bounded latency. As such, they participate in the
implementation of end-to-end flows (in conjunction with rthandlers and
QoS controlled connections). Like Chorus ports, rtports are named
globally and can be accessed in a location independent fashion from
anywhere in the distributed system.

There are, however, the following differences between Chorus
ports and rtports:-

• rtports have an associated QoS,
• the internal buffers of rtports can be directly accessed by the

application programmer,
• rtports may not migrate because the QoS commitments offered

by the rtport assume a fixed association between the underlying
device and the actor performing the create operation.

A device is a producer, consumer or filter of real-time data which
supports the creation of rtports. Devices may be either software drivers
for physical devices or independent software objects that generate,
process or consume continuous media data. One important type of
device is the null device. This ‘device’ enables pieces of user code to
act as data sources and sinks. An rtport associated with such a device is
similar to a conventional Chorus port except that ipcSend() and
ipcReceive() calls made on such a port may be latency bounded if the
rtport is the end-point of a QoS controlled connection.

Rtports are created with the following call:-

typedef enum {
s_message, s_stream

} flow_type; 
status rtportCreate(DEV *d; flow_type service; rtport *p);

The user specifies to the system a device on the local site with
which the new rtport should be associated, the required QoS of the
rtport and the type of service required: either a QoS controlled message
service or a stream service. The device argument is a standard Chorus
unique identifier which refers to a hardware or software device. Note
that rtportCreate() will only succeed when the referenced device resides
on the local site.

The QoS specification is used to denote the potential level of service
of the rtport and to deduce future resource allocation needs. However,
resources are not actually committed until the rtport is involved in a
connection (see later sub-section). QoS parameters are specified to the
system by means of a data structure called a QoSVector. Different
definitions of this data structure are used depending on the service type
required. QoSVector definitions for the QoS controlled message and
the stream service are given below :-



typedef enum {best_effort, guaranteed} com;
typedef enum {isochronous,workahead} del;

typedef struct {
typedef struct {     com commitment;

com commitment;         int buffsize;
int buffsize;         int priority
int priority;     int latency;

 int latency;     int error;
int error; } MessageQoS;

 int buffrate;
int jitter; typedef union {
del delivery;     MessageQoS mq;
int error_interval;     StreamQoS sq;
} StreamQoS; } QoSVector;

The first four parameters are common to both service types. The
commitment parameter allows the programmer to express a required
degree of certainty that the QoS levels requested will actually be
honoured. If the commitment is guaranteed, resources are permanently
dedicated to support the requested QoS levels. Otherwise, if the
commitment is best effort, resources are not permanently dedicated and
may be preempted for use by other activities. A later sub-section
describes special reporting facilities provided in the case that requested
QoS levels are violated. Buffsize specifies the required size of an
internal buffer to be associated with the rtport. Priority  is used to
control resource pre-emption for connections. All things being equal, a
connection with a low priority will have its resources pre-empted
before one with a higher priority. Latency refers to the maximum
tolerable end-to-end delay, where the interpretation of ‘end-to-end’ is
dependent on whether rthandlers are attached to the rtport (see later in
this section).

The error parameter has a different interpretation depending on the
type of service requested. For stream connections, error, which is used
in conjunction with error_interval, refers to the maximum permissible
number of buffer losses and corruptions over the given interval. In the
case of message connections, error simply represents the probability of
buffers being corrupted or lost (error_interval is not applicable to
message connections).

For the stream service, there are three additional parameters,
buffrate,jitter and delivery, which have no counterparts in message
conections. Buffrate refers to the required delivery rate fo buffers at the
sink end of the connection. Jitter, measured in milliseconds, refers to
the permissible tolerance in buffer delivery time from the periodic
delivery time implied by buffrate. The delivery parameter also refines
the meaning of buffrate. If delivery is isochronous, the stream service
delivers precisely at the rate specified by buffrate; otherwise, it attempts
to ‘work ahead’ (ignoring the jitter parameter) at rates temporarily faster



than buffrate. One use of the workahead delivery mode is to support
applications such as real-time file transfer. Its primary use, however, is
for pipelines of processing stages.

Rthandlers

Rthandlers are user supplied C functions which may (optionally) be
attached to rtports. They may be attached to both sending and receiving
rtports. Rthandlers are upcalled from their associated rtport whenever
data is required at a source rtport or has been delivered, by a
connection, to a sink rtport. The thread which upcalls the rthandler runs
in user mode and thus allows the user the freedom to provide arbitrary
code for rthandlers. The upcalling of an rthandler performs two
logically distinct functions:-

i) event notification - it is indicated that data is required or has
been delivered, and

ii) data transfer - it is made possible for the rthandler to access the
rtport’s buffer to insert or extract data as appropriate.

 Applications can use rthandlers either for the notification of events
alone, or for both event notification and data transfer. We feel that this
separation of notification and delivery is important for continuous
media applications. It permits applications to choose whether they want
to actively process continuous media data in user space, or merely to
track the passage of continuous media generated and consumed in
supervisor space. This latter case arises when the device under
consideration is, for example, a kernel managed video device with
associated frame buffer which is receiving data directly from the
network card. Here, efficiency can be maximised as continuous media
data need not cross protection domains.

The call to attach an rthandler to a rtport is as follows:-

typedef int(Rthandler)(Buffer **b; int *size; int *event;
                       time_t *send_timestamp, *recv_timestamp;
                       bool admission);
status rtportAttachRthandler(rtport *p; Rthandler f,
                             int eventmask; short priority);

The first two arguments to rthandler functions inform the
application’s code of the size and address of the rtport’s internal buffer.
In cases where the buffer is mapped into user space, this permits user
code to directly supply/extract data from the buffer while rthandlers are



executing1. Rthandlers can assume that they have exclusive access to
the buffer for as long as their call is extant. In the case of kernel
supported devices, direct user access to buffers may or may not be
possible depending on the protection attributes imposed by the device
and/or the kernel. If access to buffers is disallowed (as indicated by a
NULL value for the b parameter), the rthandler performs an event
notification but not a data transfer role.

The third parameter, event, allows application code to associate
multiple logical message types with a single rthandler. Source
rthandlers provide an integer event identifier and this is passed on,
unchanged and uninterpreted, with the corresponding buffer, to the
destination rthandler. The fourth and fifth arguments supply
timestamps for the benefit of the receiver. These relate to the times at
which the buffer was obtained at the source and delivered at the sink.
Finally, the admission parameter is used to allow the infrastructure to
perform a scheduling admission test by determining the execution time
of the rthandler(s). When it sees a true admission value, application
code in rthandlers is expected to direct the calling thread on a dummy
run through a ‘typical’ path so that the resource manager can derive an
estimate of the execution time of the (set of) rthandlers in normal
circumstances. This execution time is added to the a priori known time
for protocol processing to help derive the deadline of the rtport’s
associated thread2. Note that admission is only given as true under
these circumstances; at all other times it is given as false.

The first two parameters to the rtportAttachRthandler() call itself
specify the rtport to which the rthandler is to be attached and the
rthandler function. The third and fourth parameters are used to control
the behaviour of rthandlers when multiple rthandlers have been attached
to the same rtport. Eventmask is a bitmap used to determine for which
set of events (see above) this particular rthandler will be called, and
priority is used to determine the order in which multiple rthandlers are
called when more than one share a common event3. Finally, the
rtportAttachRthandler() call will fail if the given rtport was not created

1 The indirection of the buffer and size parameters allows application code to change
to a new buffer before returning control to the infrastructure. Note also that
rthandlers with overlapping events and the same priority are executed in non-
deterministic order.

2 The execution time of rthandlers may involve waiting for the completion of other
threads which run as a result of actions taken by rthandler code (see the section on
threads below). Note also that the execution time of the rthandler is monitored by
the system and dynamically refined at run-time over multiple calls. Details of our
scheduling scheme are given in section 5.1.

3 The only factor used to determine the ordering of rthandler calls at source rtports is
the priority parameter because, of course, event identifiers are not known until the
rthandler has returned.



in the current address space. This is because the virtual address of the
rthandler must have an interpretation in the rtport’s supporting address
space.

Rthandlers are central to our design for two major reasons:-
• programmability

Because rthandlers are executed under QoS constraints imposed
by their associated rtport, they provide a way to execute
application code without compromising the system provided
QoS support required for the realisation of flows. We also
contend that structuring the API with rthandlers is a natural and
effective model for real-time programming. Real-time
programming is considerably simplified when programmers can
structure applications to react to events and delegate to the
system the responsibility for initiating events. Of course the
programmer is still ultimately in control of event initiation but
this control is expressed declaratively through the provision of a
QoSVector parameter and need not be explicitly programmed in
a procedural style.

• efficiency
An efficiency gain results from the use of a single thread
(originating in the communication system) for both protocol and
application processing. In conventional systems, applications
interface with communications by performing system calls
which block and reschedule if the protocol is not ready to send
or if data has not yet arrived. With the rthandler implementation,
on the other hand, no context switch is incurred and it is not
necessary for the application and protocol to wait for each other
as the protocol always initiates the exchange and the application
code should always be ready to run.

Figure 1 illustrates devices, rtports and rthandlers. It also shows
incoming QoS controlled connections (shown as heavy black lines),
one for each of the two rtports, and rthandlers attached to the rtports
and upcalling into user space. One of the rtports is associated with a
null device (where the rtport is implemented in the libflow user level
library), and the other with a physical device (implying an rtport
implementation in supervisor address space4).

In the case of the actor rtport, the rthandler is performing the role of
both event notification and data transfer. In the case of the kernel device
rtport, the rthandler plays a similar event notification role (i.e. data is

4 As rtports can be implemented in either supervisor space or user libraries, the stubs
of the Chorus ipcSend() and ipcReceive() are modified to distinguish between the two
different implementations and perform either a trap or a library procedure call as
appropriate.



being sent/ received), but application code does not directly participate
in the data transfer. Instead, data is directly obtained from/ delivered to
the device by the connection associated with the device, and need not
cross into user space.

application 
programmer's 
interface (API)

rtport on device

user level
library

rtport 
on 
actor 

kernel 
device

 

handlers

kernel

application

'null' 
device

Figure 1 Devices, Rtports and Rthandlers

QoS Controlled Connections

All communication in standard Chorus is connectionless and datagram
based. However, as noted in section 2, flow services require resource
reservation commitments both in the end-system and in the network.
Because of this, we have added simplex connection oriented
communications called QoS controlled connections to abstract over the
necessary resource allocation. The call to set up such a connection is as
follows:-

status rtportConnect(rtport *source, *sink; QoSVector *qos;
rtport *ctl);

The rtportConnect() call takes two rtports, a source and a sink, as
its primary parameters. Notice that because of the location independent
nature of rtports, it is possible to call rtportConnect() from a site
entirely separate from the sites on which the source and sink rtports
reside. This is a convenient facility for distributed multimedia
applications which are often structured as a centralised master process
supervising and controlling a number of physically distributed sources
and sinks [Anderson,91a]. The internal protocol for this facility, which
we call remote connection, is fully described in [Campbell,92a].

The QoS parameters are the same as those used at rtport creation
time except that the values specified at connect time are actual rather



than potential. The values specified must be less than or equal to those
specified in the QoS of both rtports involved, or rtportConnect() will
fail. The two rtports must also have been created with the same flow
service type: either message or stream types. The latency QoS
parameter subsumes rthandler execution time if rthandlers are attached
and thus specifies the full latency of an application-to-application flow.
If rthandlers are not attached, latency is interpreted as rtport to rtport. In
the latter case, latency is measured from the time a thread calls
ipcSend() to the time the buffer is received (but not necessarily
delivered to the application) at the sink rtport.

There are two categories of connection corresponding to the two
types of flow supported by rtports:-

• message connections
Message connections wait passively until activated by ipcSend()
calls in the conventional manner. It is possible to attach
rthandlers at the sink end of message connections, but source
rthandlers are inapplicable because there is no active entity in the
connection to call them.

• stream connections
Each end of a stream connection tries to actively obtain/ deliver
data at the rate determined by buffrate. If rthandlers are
attached, this results in the calling of the rthandlers, otherwise
the connection blocks until the application calls ipcSend() or
ipcReceive().

The final argument to rtportConnect() is a result parameter which
returns a new rtport used to dynamically control the behaviour of
connections. The ‘operations’ available on the control rtport are the
following:-

• renegotiate - this allows the user to dynamically change the QoS
of the connection by supplying a new QoSVector argument,

• disconnect - to destroy a connection,
• start, stop - respectively activate and de-activate the connection,

and
• prime - ready the end-to-end connection by filling the receive

buffers so that a subsequent start will take immediate effect.
The last three operations are only applicable to stream connections.

Note that start, stop and prime can also be used for cross-stream
synchronisation purposes; their use in this context is described in
[Campbell,92a].

In implementation, connection establishment is provided by a per-
site connection manager which is realised as a user level actor. The
connection manager maintains a list of actors and their associated
rtports for that site. The manager accepts incoming connection requests



and dispatches them (via standard Chorus IPC) to a listening
lightweight thread in the appropriate rtport implementation.

QoS Handlers

QoS handlers are upcalled by the system in a similar way to the
rthandlers described above. However, whereas the above handlers
notify communication events and allow access to communication
buffers, QoS handlers are used to notify the application layer when the
QoS commitments provided by connections have been violated. The
intention is that QoS handlers will usually be attached and supported by
application level QoS manager objects. QoS managers embody a
particular policy for coping with QoS degradations. For example, they
may attempt to request renegotiation of QoS or choose a connection to
close down on the basis of application defined criteria. The call to
attach a QoS handler is:-

typedef int (QOSHandler)(QoSVector *current, *new);
status rtportAttachQOSHandler(rtport *p; QOSHandler f);

Threads

Although lightweight threads (see section 5.1) are implicitly created
on behalf of applications when they establish QoS controlled
connections, we also allow applications to explicitly create lightweight
threads, both real-time and non real-time. Our thread types and thread
creation primitives are similar to those described in [Tokuda,90] and
hence will not be described here. However, our thread synchronisation
primitives are novel in that they incorporate the concept of deadline
inheritance5.

The most important of our thread synchronisation calls, which are
based on eventcounters and sequencers [Reed,79], are as follows (note
that the boolean result of await() is used to distinguish whether the call
returned due to timeout expiry or the evencounter target being
reached):-

void advance(eventcounter *e, bool inherit);

5 Note that deadline inheritance solves a slightly different problem to the various
solutions to the well known priority inversion problem (e.g. see [Tokuda,90]). The
latter problem occurs when a thread with a late deadline holds a multual exclusion
lock for which a thread with an early deadline is waiting. Deadline inheritance as
described here is related to condition synchronisation rather than mutual exclusion.



bool await(eventcounter *e; u_long target; time_t timeout);

The semantics of deadline inheritance are as follows:-
• Each thread maintains a list of deadlines sorted earliest deadline

first. The entry at the front of the list is the effective deadline
used by the scheduler. When a thread starts to run it has only
one entry in its list.

• Whenever a thread T executes ecs_advance(e), any threads that
were blocked on an earlier call of ecs_await(e), and freed as a
result of the ecs_advance(e) call, inherit the effective deadline of
T iff  T has an earlier deadline than their current effective
deadline. The mechanism of inheritance is to place the inherited
deadline at the front of the deadline list of the inheriting thread.
When multiple threads share the same deadline value, the one
with the shortest deadline list takes preference.

• Whenever a thread which has passed on a deadline to other
threads decides to terminate, all inherited entries associated with
the terminating thread are removed from the deadline lists of all
the inheriting threads. This may cause a change in the effective
deadline of one or more of the inheriting threads.

• The programmer can explicitly enable or disable inheritance by
appropriately setting the second parameter of ecs_advance().

Deadline inheritance releases application programmers from the
need to structure their event handling code (expressed in rthandlers) in
a single sequential thread. With deadline inheritance, code can be
structured in terms of an arbitrarily complex system of concurrent
worker threads without compromising the predictable performance of
rthandlers. To do this, an rthandler thread would typically call
ecs_advance() to release one or more blocked worker threads (which
themselves could, of course, unblock further threads). Each time a
worker thread was released from a blocked ecs_await() call it would
inherit the deadline of the original rthandler thread and, in this way, the
original deadline would propagate through the system. Finally, before
returning, the original rthandler thread would perform an ecs_await()
call to wait for the system of worker threads to complete their task.

3.2 Compound Abstractions
The compound abstractions, described in the following sub-sections,
are as follows:-

• invocation - a request/ reply service composed of multiple
message flows,



• pipeline - concatenations of QoS controlled stream flows
containing intermediary processing stages.

Invocation

The invocation service is a compound service realised in terms of two
message connections arranged in a back to back, request/ reply,
configuration.

To provide a convenient interface to the programmer, the libflow
library exports abstractions which relieve the programmer of the
necessity of explicitly manipulating the two message connections.
These abstractions comprise an operation to create an invocation service
instance (invocationConnect()) and operations to send and receive data
on an invocation service instance (ipcCall() and ipcReply()). The
operation to establish an invocation service instance is as follows:-

status
invocationConnect(rtport *clientPrt, *serverPrt; 

InvocationQoS *qos; rtport *ctl);

InvocationConnect() uses the supplied rtports (clientPrt and
serverPrt) as the endpoints of the request connection. The underlying
implementation transparently allocates the two rtports required for the
reply connection. These two rtports do not need to be visible to the user
because of the semantics of the ipcCall() and ipcReply() calls (see
below). Note, however, that it is the programmer’s responsibility to
attach an rthandler to serverPrt before using the service. The
InvocationQoS parameter denotes the required end-to-end QoS of the
invocation and includes fields such as round-trip latency and an option
field which specifies at-most-once or at-least-once semantics. This
information is used to determine the QoSVector parameters in the two
underlying connections.

In use, a client thread at the initiating end calls ipcCall(). Then, at
the server end, the incoming call is executed on the sink rtport’s
rthandler. When the server wishes to reply, it calls ipcReply() without
explicitly specifying an rtport.

Pipelines

Our design supports the requirement for pipelines through the
concatenation of stream connections. Processing stages in pipelines are
realised as rthandlers attached to intermediate filter devices. Some filter



devices, e.g. compression functions, are implemented in hardware and
managed by the kernel. Other filtering requirements, however, can be
met by application level software processing. To permit application
writers to implement such processing, we provide a generic software
filter device known as a connector. Connectors are implemented in the
libflow user level library in a similar way to the invocation abstractions
described above. Figure 2 illustrates a three stage pipeline with two
intermediate connector devices.

 connector device connector device

Figure 2 Pipeline

The following call is used to create a connector:-

status rtconnectorCreate(DEV *d);

A connector device is an encapsulated bounded buffer on to which
programmers can create rtports. Programmers create a single rtport on
the connector to serve as both the sink of the upstream connection and
the source of the downstream connection. An rthandler is then attached
to the rtport to encapsulate the required application processing. The
rthandler is invoked from below when a buffer is available on the
upstream connection and the downstream connection waits until the
rthandler returns. As the connector’s buffer is shared between the two
connections, no buffer copy overhead is incurred between pipeline
stages.

To enable pipelines to be created with a single statement of end-to-
end QoS (and thus fall within the definition of flow), the following call
is used:-

status
pipelineConnect(rtportList rtports;

StreamQoS *qos;
rtport *ctl);

PipelineConnect() takes a list of rtports, all of which are assumed to
have an rthandler already attached. An ordinary StreamQoS structure
specifies the end-to-end QoS. If the delivery flag in the StreeamQoS
structure is set to isochronous, only the last connection in the pipeline
is actually set up as an isochronous binding. This is because it is
desirable to permit as much asynchronicity as possible so that the
pipeline can run with minimal constraints and maximal elasticity. As



long as the last pipeline stage runs with the required isochronicity the
users end-to-end QoS specification is sufficiently upheld.

In implementation, the end-to-end QoS specification supplied to
pipelineConnect() is partitioned across the various component
connections using a resource reservation protocol described in
[Campbell,93]. The result parameter ctl is exported by libflow as a
convenient handle to control the end-to-end pipeline flow. When
programmers invoke control operations on this rtport, libflow must
perform a (non trivial) mapping to the control rtports of the full set of
constituent connections.

4 EXAMPLES OF USE
Consider the two applications illustrated in figure 3. The first
application (left) is transferring real-time audio from a kernel managed
audio device on one machine to a kernel managed speaker device on
another machine. The second application is using the same source and
sink, but also pipes the data through a real-time software device
implemented in user space.
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Figure 3 Two Application Scenarios

The first application is implemented by creating rtports on the
source and sink devices and connecting them with a QoS controlled
connection. As both devices are in kernel space and no application
specific processing is required, data never crosses the kernel/ user
boundary at either the source or sink machines. Instead, all processing
and copying is performed in kernel space. Nevertheless, the
programmer can synchronise with the flow of data by attaching
rthandlers which are executed on a lightweight thread each time a buffer
is sent or received. The user cannot gain access to the rtport’s buffer
because of kernel protection constraints, but he/she knows the precise
instant at which data is sent or delivered.



The second application uses a two stage pipeline with the data piped
through user space via a connector device. The first pipeline stage
connects an rtport on the source device and an rtport on the connector.
The second stage connects a second rtport on the connector and an
rtport on the remote sink device. The user’s application specific code is
written into rthandler functions attached to the connector’s rtport(s).
This arrangement is simple and intuitive for the programmer and yet is
still susceptible to a highly efficient implementation as will be explained
in the following section.

5 IMPLEMENTATION
In this section, we discuss scheduling and communication
implementation issues arising from the abstractions already described.

5.1 Scheduling
The scheduling implementation exploits the concept of lightweight
threads to minimise the overhead due to context switches. However,
the design also uses kernel threads running in both user and supervisor
modes. To qualify the use of the term ‘thread’ in the following sub-
sections, we introduce the following definitions:-

• kernel threads - kernel supported threads which run in either
user or supervisor mode,

• lightweight threads - implemented in the libflow library and
multiplexed on top of kernel threads.

For real-time operation, both classes of thread are non time-sliced.
When used to implement stream connections, threads run periodically
at a rate determined by the QoS of the connection. In our current
scheme, threads belonging to connections with guaranteed commitment
and isochronous delivery are scheduled to run non-preemptively for
each period and have their execution periods pre-allocated along the
future time line [Robin,94] (an admission test is used at connect time to
ensure that sufficient resources are available). Threads with other
combinations of commitment and delivery use preemptible earliest
deadline first (EDF) scheduling [Liu,73] (with an appropriate
admission test).

Non real-time threads are scheduled according to standard Chorus
policies (e.g. round robin timesliced) and share whatever processor
time is left after real-time threads have taken their requirements. The



real-time thread extensions co-exist with the existing Chorus facilities
offered by the scheduling classes mechanism already described in
section␣2. More details of resource allocation issues in scheduling are
given in [Robin,94].

The implementation architecture for real-time thread scheduling is a
split level scheme [Govindan,91] consisting of a single kernel
scheduler (KLS) and multiple co-operating user level thread schedulers
(ULS), one in each actor. Each actor multiplexes lightweight threads on
a small number of kernel threads dedicated to the actor (ideally only one
kernel thread for uni-processors); this is depicted in figure 4.
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Figure 4 Split Level Scheduling Architecture

For EDF threads, the scheme maintains the following invariants
with respect to the two types of scheduler:-

i) each ULS runs the lightweight thread in its actor with the
earliest deadline,

ii) the KLS runs the virtual processor of the actor with the globally
earliest lightweight thread deadline.

The necessary information exchange between the kernel scheduler
and the user level schedulers is accomplished via a combination of
shared memory and upcalls from the kernel [Govindan,91]. In the
implementation of the shared memory area, each kernel thread (referred
to as a virtual processor) has an associated context structure [Marsh,91]
which contains information such as current lightweight thread context,
next runnable thread and earliest deadline of a lightweight thread
supported by this virtual processor. Each context is mapped into kernel
space and used to exchange/share information with the kernel, thus
avoiding unnecessary system calls. For example, the system clock is
mapped to each virtual processor (read only) avoiding the cost of a
system call to get the time value. The globally earliest deadline of each
virtual processor is read on each kernel level rescheduling operation by
the KLS to compute the next virtual processor to schedule.



The attraction of the split level scheme is that many context
switches at the user level can take place without the need for expensive
kernel level context switches. For example, in an intra-actor pipeline, if
a number of the rthandler threads have deadlines earlier than any
lightweight thread in any other actor, then these threads can be
switched freely at the user level while their supporting virtual processor
runs uninterrupted. This can result in considerable time savings as
context switches at the user level are an order of magnitude more
efficient than kernel context switches.

Each virtual processor must ensure that it responds in a timely
fashion, not only to the deadlines of its own lightweight threads, but
also to externally generated events which demand service from new
threads. The most important such events are:-

i) timer events used to implement pre-emption in user level
scheduling,

ii) buffer arrivals from local kernel devices,
iii) network packet arrivals from the network device, and
iv) indications that a buffer is being delivered to/ sent from a kernel

device where the connection is such that the buffer need not
pass into user space (see section 4).

It is essential that such events are notified to virtual processors in as
efficient a manner as possible. We have already rejected the standard
Chorus strategy of having a thread waiting on a port because of the
associated overhead of a synchronisation and context switch. Our
favoured solution is to employ software interrupts whereby the
occurrence of an event causes the virtual processor to jump to an entry
point in its user level scheduler. When this happens, the user level
scheduler saves the current lightweight thread context and schedules the
appropriate lightweight thread to perform the required action.

Other researchers have proposed the use of ‘scheduler activations’
[Anderson,91b] for event notification purposes; these are effectively
kernel threads which upcall into the scheduler when scheduling events
occur. The difference between scheduler activations and software
interrupts is that scheduler activations provide a new kernel supported
virtual processor in addition to an event notification. In contrast,
software interrupts handle the event on the stack of the actor’s single
virtual processor. In our environment, however, scheduler activations
suffer from the problem of increased kernel level concurrency (with the
associated overhead of kernel managed context switches). While this
increase in concurrency can be beneficial in a multiprocessor
architecture, its appeal in a uniprocessor design is less clear. The
advantage of the software interrupt mechanism is that it allows an
invariant to be maintained of only one virtual processor per actor. As
previously explained, it is optimal for the split level scheduling scheme



to have the same number of virtual processors per actor as there are real
CPUs. If the number of virtual processors exceed this number, the split
level scheduling scheme is compromised as it is not clear on what basis
to schedule multiple virtual processors per actor which are running on a
single CPU.

A further issue is the problem of ‘priority inversions’ where a
thread with a later deadline executes at the expense of a thread with an
earlier deadline. This situation can arise in our design when a
lightweight thread performs a blocking system call and thus blocks its
underlying virtual processor. As we prefer only one virtual processor
per actor, other lightweight threads in the same actor will be unable to
execute while the blocking call is extant - even if they have the globally
earliest deadline. Scheduler activations would solve this problem by
injecting a new execution context whenever the actor’s kernel thread
blocks (but at the expense of an undesirable increase in kernel level
concurrency as discussed above). Our favoured solution is to employ
non blocking system calls [Marsh,91]. These calls return immediately
and thus allow the calling kernel thread to resume acting as a virtual
processor for lightweight threads (the result of the call will eventually
be notified by a software interrupt as discussed above). This strategy
enables the scheduling invariants to be maintained whilst avoiding extra
kernel level threads per actor.

5.2 Communications

General Case

Connections between devices on different machines are implemented
via a connection oriented transport protocol specifically designed to
support QoS controlled communications. The protocol was designed
and implemented as part of an earlier project at Lancaster
[Shepherd,91]. It supports QoS parameterisation at connection set-up
time and also monitors QoS and reports on degradations. It is possible
to dynamically renegotiate QoS levels on the basis of these reports. The
protocol uses a rate based scheme [Clark,87] for flow control whereby
sources and sinks negotiate a mutually acceptable transfer rate at
connection set-up time. This allows data to flow at a smooth rate,
which is important for continuous media, and also permits responsive
back pressure to be applied when the sink runs out of buffers. Rate
based flow control has further advantages. First, is lightweight and
permits higher throughput than schemes based on windowing. Second,
it decouples flow control from error control so that connections which
do not require error control do not need to pay for it. Third, it fits in



nicely with the notion of periodically schedulable threads. A final point
is that, as recommended by researchers in the area (e.g.
[Tennenhouse,90]), our communications design uses no multiplexing
in the protocol stack above the link layer.

The transport protocol can run in either supervisor mode or user
mode. Supervisor mode is appropriate for connections involving kernel
supported physical devices as both data transfers and execution for
these connections are confined to supervisor memory space. User
mode is appropriate for connections terminated by user supplied
rthandlers attached to null devices. In the user mode implementation,
the transport protocol runs in the context of lightweight threads in the
address space of a user virtual processor, the network card is accessed
through kernel calls to a device driver which provides an interface at the
link-layer, and the protocol itself is implemented in the libflow user
level library. It is essential for efficiency that the user mode protocol
implementation minimises the number of kernel calls per user level
buffer. To achieve this, the implementation batches data to reduce the
number of transfers to the network card and also minimises memory
allocation calls by maintaining its own buffer cache. Experience will tell
if these techniques are sufficient but results reported in [Forin,90] and
[Thekkath,93] are encouraging.

Note that the user library transport implementation and rthandler
mechanism simplify the task of scheduling in two respects. Firstly, the
deadline and required CPU time for the processing of each continuous
media buffer is known in advance. The former is obtained implicitly
from the QoS specification of the connection; the latter is deduced by
adding the transport and rthandler execution times. Secondly, the
rthandler scheme eliminates any need for synchronisation between the
application and a distinct transport entity: a single seamless thread of
execution subsumes both these activities.

To realise the active semantics of stream connections, connections
have dedicated lightweight threads at each end (in the case of
connections whose end rtports are kernel managed, these lightweight
threads are supported by virtual processors running in supervisor mode
in supervisor actors). The source thread is responsible for continually
executing the user’s rthandler(s), obtaining data (either from the
rthandlers or directly from a physical device as appropriate), and
executing the transport protocol. The sink thread operates analogously;
it is awakened when the full set of link-layer packets making up a user
level buffer have been received, and then executes the transport



protocol and delivers the data either by calling the user’s rthandler(s) or
by delivering data directly to a device6.

Optimisations

A number of important optimisations are possible if communication is
between devices in the same address space. In this case, connections
between rtports in the same actor are simply implemented as a single
lightweight thread which repeatedly calls the source rthandler(s) with a
particular buffer address and then calls the sink rthandler(s) with the
same address. This single mechanism serves to implement both the data
transfer and the delivery notification aspects of the communication. It
also implicitly ensures mutual exclusion to the buffer by the source and
sink rthandlers. Connections between rtports in the same actor are often
used in the context of intra-actor pipelines. To minimise data copying in
such pipelines, the address of a single buffer is passed from stage to
stage as the various stages of the pipeline are executed. Finally, when
the last pipeline stage in the actor has disposed of the data, the buffer is
released. If new data arrives at the actor while the previous data is
being passed along the pipeline, processing of this data proceeds
concurrently using a separate buffer. In this way, it is possible to
efficiently implement arbitrarily long intra-actor pipelines without
incurring data copying overheads.

 Further optimisations are possible in communication between
kernel and user space. Chorus currently incurs (at best) one copy and
one virtual memory remap for a data transfer from the network driver to
user space. We can reduce this to zero overhead per transfer and one
single virtual memory remap incurred at connection establishment time.
Our strategy is to dedicate shared, per connection, physical memory

6 In our current,  ATM based, implementation we run AAL5 in software in the ATM
card’s device driver. On the send side, a per-connection thread in the driver is
responsible for fragmenting AAL5 packets into ATM cells and feeding them to the
network. On the receive side, another per-connection thread in the driver builds up
AAL5 packets from incoming cells. The destination virtual processor is informed of
the completion of each packet by a software interrupt. It then schedules the
connection’s lightweight thread to perform transport processing (e.g. transport
packet re-assembly and checksumming). The lightweight thread blocks after it has
processed each AAL5 packet and waits for the next. Then, having completed
processing of the last packet, it upcalls the user’s rthandler as described above. An
implementation that used on-board AAL processing would clearly be more efficient
than our current solution but the software interrupt, scheduling and transport
protocol processing design would be unaffected.



buffers between the network driver and user space which are mapped
in the address spaces of both. Note that, by a simple extension, this
scheme can also be applied to the case of actor to actor communications
on the same machine. The strategy here is for each actor to unmap a
buffer from its own address space, map it into the address space of the
next actor in the pipeline, and then pass a software interrupt to the next
actor to implement the event notification aspect of the connection. We
are currently looking into the possibility of combining these three
operations into a single optimised system call. This topic, together with
other issues concerning the allocation and preemption of physical
buffers to/ from user programs are discussed in [Robin,94].

6 EXAMPLE REVISITED
To illustrate how the communications and scheduling subsystems work
together, we now return to the second example of section 4. This
example involved a two stage pipeline with its intermediate device in
user space and its source and sink devices in the kernels of separate
machines.

On the source machine, the data and control flow pattern is as
follows. First, data is copied (or DMA transferred) by the first
connection from the audio device to the connector device’s user level
buffer. This connection is purely local and is implemented as a
lightweight thread running in supervisor mode in the supervisor actor
encapsulating the audio device driver. Having performed the copy (or
supervised the DMA), this thread delivers a software interrupt to the
sink actor’s user level scheduler. The ULS, on receiving the interrupt,
schedules a lightweight thread to execute the connector device’s
rthandler. When it runs (as determined by its deadline) this lightweight
thread executes the code in the user’s rthandler. When the rthandler
returns, a context switch takes place between the current thread and the
lightweight thread of the downstream connection (this thread will have
been previously blocked waiting for data on a user level
synchronisation primitive). Note that this context switch involves no
kernel overhead whatsoever (assuming that no other actor has a
globally earlier deadline); the original kernel thread simply changes
from executing the first lightweight thread to the second. Having
become unblocked, the new lightweight thread starts to run the send
side transport protocol for the second connection and eventually issues
a system call to the network device driver to ask it to copy data from the
connector’s buffer to the network card.



In total, the above processing on the source machine has cost two
domain crossings (for the system call), two kernel context switches and
two copies (or one copy and a DMA transfer). Note also that, if a
longer pipeline had been involved, with multiple connectors in the same
actor, these costs would have remained identical. If, however, the
equivalent processing had been carried out using conventional Chorus
mechanisms, the expense would have been four domain crossings (two
for a ‘read’ operation and two for a ‘write’), a context switch and four
copies (two in optimal conditions). Furthermore, if a pipeline had been
involved, a standard Chorus implementation would have incurred
considerable extra overhead in terms of domain crossings, context
switches and copies.

At the sink machine, data is received at the network interface card
and the protocol processing is performed by a lightweight thread in
supervisor space before the buffer is transferred to the sink device. The
data does not need to cross into user address space at the sink machine.
Thus the cost incurred is zero domain crossings, one context switch (to
allow the user’s rthandler to run) and two copies (or one copy and a
DMA). Using standard Chorus mechanisms, the cost here would be
same as at the source: i.e. four domain crossings, a context switch and
four copies.

7 RELATED WORK
The split level scheduling scheme which has significantly influenced
our design is described in [Govindan,91]. However, in Govindan’s
scheme, there is no end-to-end QoS control and, although threads are
correctly scheduled once an application level message has been
received, the scheduling of protocol processing is controlled by a
standard non real-time policy. Our scheme integrates the scheduling of
protocol and application processing through the mechanisms of
rthandlers and QoS controlled connections.

In Govindan’s scheme, real-time threads alternate between two
states: workahead (scheduled with a time sliced round robin policy) and
critical (scheduled with an earliest deadline first policy). There is also a
class of non real-time interactive threads which take precedence over
real-time threads in the workahead state but not the critical state. Users
explicitly notify the system, in anticipation of message arrivals, the
times at which workahead threads should become critical. Our scheme,
on the other hand, does not require an explicit, user visible, distinction
between workahead and critical threads as the deadlines of real-time
threads are implicitly derived from QoS statements supplied at connect



time. The computation performed in Govindan’s scheme by workahead
and interactive threads is, in our system, performed by non-real-time
threads scheduled according to the standard Chorus priority/ round
robin schemes.

Govindan also describes a framework for inter-address-space
communication known as memory mapped streams (MMS). MMSs are
integrated with the scheduling system and work with a range of data
transfer implementations such as copying, shared memory or re-
mapping. However, the abstraction is only applicable for intra-machine
communication. Our QoS controlled connection and connector
abstractions perform a similar role but are applicable to remote as well
as local communications. Furthermore, MMSs use a passive read/write
based I/O interface which results in more thread synchronisations than
our rthandler approach.

Work on real-time extensions to Mach consisting of real-time
threads, real-time synchronisation primitives and time driven
scheduling is described in [Tokuda,90]. These extensions are intended
for real-time computing in general rather than multimedia support in
particular. The thread model allows the creation of both periodic and
aperiodic threads. The scheduling mechanism is derived from the
ARTS kernel [Tokuda,89] and permits hard real-time scheduling based
on classic techniques [Liu,73]. Again, for end-to-end continuous media
support, the main limitation of this work is the lack of declarative QoS
and integration with the communications sub-system. As an example of
the latter, the API provides means to create periodically executable
threads, but there is no way to associate this periodicity with the arrival
of messages on a Mach port. More recent work by the same group
[Tokuda,92] in the ARTS kernel has addressed QoS issues and
continuous media but it is still not clear how scheduling and
communications interact.

8 CONCLUSIONS
We have presented a low level API and implementation scheme for
distributed multimedia support in a Chorus based micro-kernel
environment. As the basic abstractions of Chorus are comparable to
those of other current micro-kernels such as Mach and Amoeba we
expect that it should be possible to extend other micro-kernels in a
similar way.

At the present time, we have established an experimental
infrastructure consisting of two 80386 based PCs running Chorus. The
PCs are equipped with VideoLogic audio/ video/ JPEG compression



boards. The machines are now equipped with ATM interface cards and
connect to a local ATM network. This is enabling us to extend our
investigation of QoS issues and resource reservation to the network and
work on an overall architecture for QoS. Our plans for establishing an
ATM based infrastructure and end-to-end QoS architecture are detailed
in [Campbell,92b].

We are currently working on the implementation of both the
transport and scheduling aspects of the design presented in this paper.
The scheduling implementation is based around the Chorus scheduling
classes facility mentioned in section 2. This provides an ideal
implementation basis for our kernel level scheduler. The user level
scheduling and thread support aspects of the design are based on a
simple non-timesliced package which we are modifying to accept
software interrupts and a shared memory interface to the new kernel
scheduling class. As mentioned above, our transport implementation is
based on a pre-existing protocol. We are currently porting this to
Chorus from the transputer based platform for which it was initially
designed.

There remain a number of important issues which we have not yet
addressed. One relates to the provision of an admission algorithm for
flows. Another involves the extension of connections and rtports to
operate in the context of port groups as supported by standard Chorus.
This latter extension is non trivial due to the inherent problems of
connection oriented multicast [Cramer,92]. A third issue is the
provision of a higher level distributed programming platform which we
are currently investigating in co-operation with researchers at CNET,
France. The platform will be based on the ISO’s emerging standards
for Open Distributed Processing with extensions for real-time
synchronisation, continuous media and QoS [Coulson,94].

A final issue we intend to address is the applicability of our
extensions to hardware architectures beyond the standard uni-processor
bus-based systems we are currently using. This is an important issue as
it is well acknowledged that multimedia workstations require additional
hardware support and that bus-based interconnects do not scale well
[Scott,93]. The extension to a shared memory multiprocessor
architecture should be relatively straightforward. Chorus already
incorporates multiprocessor support and our lightweight threads
package can also take advantage of this. To investigate the applicability
of our scheme to message passing multiprocessors, we intend to port
our system to a star configured switch-based multimedia workstation
currently being built at Lancaster. The intention here is to retain our
programming abstractions but to extend the low level implementation to
accommodate non-local devices realised as specialised media specific
processing nodes connected via the system switch.
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