i

The following paper was originally published in the
Proceedings of the USENIX 1996 Annual Technical Conference
San Diego, California, January 1996

Fault Tolerance in a
Distributed CHORUS/MiX System

Sunil Kittur, Online Media
Francois Armand, Chorus Systemes
Douglas Steel, ICL High Performance Systems
Jim Lipkis, Chorus Systemes

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL: http://www.usenix.org

Fault Tolerancein a Distributed CHORUS/MiX System

Sunil Kittur

Douglas Steel
ICL High Rerformance Systems, Mdrastey UK

Fran®is Armand

Jim Lipkis

Chorus SystemsSaint-Quentin-En-Yvelinesrdnhce

ABSTRACT

Within a distriluted system, resources may be shared
between nodesThe system should continue to oper
ate @en if individual nodes dil due to hardare or
software errors. This may result in the loss of re-
sources that were hosted on tleid node, bt it
may be possible to continue to pide access to
some resources by hosting them on another node.

This paper describes mechanisms thatwalline
failover of resources fromdiled nodes.Falover is
currently restricted to diskalumes and file systems.
The failover mechanisms maintain the correct seman-
tics at the UNIX system callVel for operations from
surviving nodes that were in progress at the time of
the failure, including non-idempotent operations.

Minimal resource and performanceetheads are im-
posed for the normal running case, and in contrast to
replication techniques, state is ree@d and redbilt

at the time of adilover.

1. Introduction

The GOLDRJSH system, desloped at ICL, is a dis-
tributed memory multi-computer consisting of up to
64 nodes connected by a high-speed interconnect.
Each node contains up to 12 SCSI disks that are only
physically accessible by that node, and some nodes
contain FDDI couplers which pvie external access

to the machine (Figure 1).

Each node is a self-contained UNIX system running a
version of the GIORUS/MiX V.4 operating system,
with some deices and file systems accessed from

remote nodes using HORUS IPC protocols
[Rozier88, BatWala92]. HORUS/MiIX CHO-
RUS/MiX implements SVR4 UNIX as a

T Author’s aurrent afiliation is at Online Media,
Cambridge, UK.

“ personality” on top of the CHORIS microlernel.

It consists of a set of independent actors (a process-
like ébstraction) which run in supervisor mode.
These actors include, the Process Manager (PM)
which recefes g/stem calls from UNIX processes
and acts as a client on behalf of these processes; and
the Object Manager (OM) which prides file and
device access.

The main application of the machine is to\pde a
parallel database s@&myand a number of commercial
databases such as Oracle, Ingres and Informme ha
been ported to itAdministratve ftware is used to
provide a consistent we of shared operating system
resources across nodes.

To provide a highly mailable database service, the
system must continue to function in theeat of the
failure of disks or nodes.

To provide resilience to indidual disk filures, disk
volumes are mirrored, so that if one of the mirrors
fails, the wlume is still aailable from the remaining
mirror. The mirror may be a remotewdee; this func-
tionality is pravided by the Distribted Ple Manager
(DPM) as shwn in Figure 2. As mirroring tech-
nigues aredirly standard, the rest of this paper will
discuss the handling of nodailfires.

Node filure can cause the loss of applications and
disks/file systems that were hosted on that ndde.
the case of softare errors, such as &rkel panic, it
may be possible to reboot the node, and resume com-
munication with the node, possibly performing some
recovery actions. This is the approach used in Sprite
[Baker94], NFS [SandbgB5] and Spritely NFS
[Mogul92]. However, this can result in a consider
able delaysince a reboot wolves much more than
the recoery of just the shared dizes and file sys-
tems. Thisapproach will alsodil if the node cannot
be rebooted, forxample, if there s some perma-
nent hardware filure.

SCSI SCSI SCSI SCSI SCSI SCSI SCSI SCsSI SCSI SCSI
FDDI FDDI
Processing Processing Processing Processing Y e o Comms Comms
Element Element Element Element Element Element
DeltaNet

Figurel. GOLDRUSH system architecture

Instead, we makthe deice or file system\ailable
from another node by aifover mechanism which

allows access to the resource as soon as the appropri-

ate recwery actions hae keen completed (Figure 3).
This is similar in some respects to the HA_NF&kv
[Bhide91], ut our approach a@rs more than just the
NFS protocol.

It is important that thisdilover be ransparent to the
users of the resource, and in particutae epected
semantics of anoperations that were in progress at
the time of thedilure must be presesd. Thisis not

a problem for idempotent operations, sinceyttwan
simply be retried once theifover has completed.
However, non-idempotent operations, such as
unlink(2) or wite(2) on a file opened in
O_APPEND mode should be retried only if the eper
ation had not completed before tladdre occurred.

2. Goals and Tradeoffs

We identified a number of dy gals for GOL-
DRUSH:

« There should be no single point ddiléire that
causes the entire system to be shwirdo

» Applications not using resources onalldd node
should continue without disruption.

- Performance and resourcevetheads should be
minimised.

« The performance of normal operation is more
important than the speed of reepy.

« The semantics of all UNIX APIs should be pre-
sened during and after reery.

- If a resource cannot be re®ped, it should be
cleanly remwed, including cleaning up gnstate
on survying nodes.

Whilst satisfying these goals, our initial implementa-
tion males a number of traddef

« The system does not tolerate doulddures; if a
second nodeafls before the firstaflure is recw-
ered, the entire system may be shuwtlo

« The mechanisms are intended te@mnly operat-
ing system resources; applications are responsible
for handling the dilure of application components
that were ondiled nodes.

« There is no need for instantaneous vecgi some
short delay is acceptablé€roviding instantaneous
failover would require some form of replication,
which would add considerableverheads to the
normal running situation.

The initial implementation a@rs disk wlumes
and file systems, ut the mechanisms should be
flexible enough to accommodate other types of
resource.

- Data to remote file systems is written data-
synchronously This avoids hasing to rec@er from
the loss of nodes containing dirty cached data.
Synchronous writes are ideal in yarcase for
database seevs, which perform theirven caching
and ha&e o reason to incur the cost of disk block
copying required for bffered 1/0. However, if
general time sharing had been a goal, thevaldv
be a performance hit.

Remote
Access

\
é

Remote
Plex

Figure 2. Access to a remoteolume/filesystem

3. Architecture

The GOLDRJSH system can be vied as a collec-
tion of homogeneous UNIX machines connected by a
high-speed pviate network. Thememory and disks
on each node are only y#ically accessible by that
node. Remoteaccess is pnaded by softvare using
CHORUS IPC. Thisis feasible because of the high
bandwidth sailable.

Resilience to diskdilure is preided using the VERI-
TAS VXVM volume manager to pvale mirrored
disk wlumes [vxvm93a, vxvm93b], and thesel-v
umes are made resilient to no@ddudre by preiding
remote mirrors, using a remote\a access mecha-
nism [Armand91}. In the e/ent of a nodedilure, the
volume is restarted on the node containing the remote
mirror.

In order to pruide a uniform deice name space for
volumes shared by nodes (globalumes), we hae
implemented a global dize numbering scheme
which allovs a wlume to be knan by a globally
persistent dace number After recoery by the
backup node, the diee is still accessible using the
same deice number

Each node contains itswa root file system, and
hence its wn independent file name spadgy con-
vention, we mount shared file systems on the same
mount point name on each node, to present a shared
global file name spaceFiles outside this shared
name space are pate to the node.

1. Although we preide this remote mirroring by sofawe, the
architecture can accommodate the use of multi-ported disks.

File systems that are created on globallmes can

be accessed by all nodes by mounting the block
device on a directory in the standard manrieemote
requests to the file system are farded to the seer
node using @BORUS IPC protocols.

A remote file system is mounted using the same com-
mand line aguments as if it were on a localvilze,

and the krnel performs the appropriate internal
remote connection protocoldf we used a scheme
like NFS which specifies the host and pathname on
the host, we wuld have © update user visible data
such ad et ¢/ Mt t ab to reflect the ne host after
failover. With our scheme, the user visible state
remains the same, namely the block/ide name,
mount point name and mount options.

Falover of a file system from adiled node requires
the wlume to be started on the backup node, and the
file system to be resered. W& wse the VERIAS
VXFS file system [vxfs92] to pwide fast recoery
using its intent log. The recwoery required for
failover is dightly different to the normal regery

that fsck performs, since it must preegate held

by actve requests that fsck could thwaway, such as
unlinked files that are still open.

A number of components are used tovile these
mechanisms:

- A distributed filover manager (FOM), which
maintains the status of resources, whethey the
active, failed, or in the process of being reeed.
The FOM also maintains a list of clients who are
using the resource.

Remote Access

Figure 3. Access to a remoteolumef/filesystem after ailure

« A library linked with clients which handles the file system operations [Killian84].
binding between clients and sers. Thdibrary is
used to monitor IPC requests and deteatlures
using timeouts or by detecting linkifures. After
a failover, the library transparently rebinds the
client to the ner server.

A service can bedult-tolerant or not; aallt-tolerant

service is wailable (after some reeery action) &en

if the serer currently hosting itdils. Aservice is the

unit of failover, and if a particular seler hosting mul-

tiple services dils, the indvidual services can be

« A state recwery protocol which allas serers to failed over to different backup seers. Thiscan pro-
reconstruct state from information pided by vide a better load balance between remaining nodes
clients. which pick up only a part of the adgty of the failed

node.

Modifications to serer modules for seer specific

reco/ery actions. Services are identified by a unique identifier or name,
in our case, a @ORUS unique identifier (Ul) that is
unambiguous across all nodeghis service Ul is
persistent during the lifetime of the system, and is
persistent across aifover in the case of aallt-
tolerant service.

« A mechanism for handling non-idempotent opera-
tions, to allev a backup sergr to determine if the
operation vas already completed before tladdre.

4. Failure Detection and Handling

A set of resources and associated irtess can be
described as service At any gven time a service is
hosted by a single seswy running on a particular
node. Anexample of a service is a file system ovra
disk device.

The FOM is responsible for tracking the status of ser
vices, and maintains a list of clients using each ser
vice. TheFOM is a global entitydistributed across
all nodes. It is informed by serers when the first
create a service, and by clients wherytfiest access

a ervice.

In general the seers in our system are the file Object
Managers on each node, and clients are the Process
Managers on each nod@bject Managers may also

be clients of a Process Managérr example, to
obtain process credentials, or to handle /tipe oc

We povide a library linked with each client, that
monitors IPC requestdlf these time out, or reces
an error indicating the destination haailéd, the
FOM is notified.

The FOM determines whether the service fzied,
and if it has, it informs all clients of the service, who
then suspend all communication with the service.
This is handled within the client-side librargnd
does not require grspecial action within the client.

It is important that a central agent determines &lile f
ure, as it is possible for conflicting error reports to be
generated. &r example, tvo nodes may be unable to
communicate with each otheand each reports that
the other hasdiled.

If the service isdult-tolerant, the FOM elects a suit-
able node to host the service, and instructs a&serv
that node to rea@r it. Oncethe recwery is com-
plete, the clients are notified, and resume communi-
cation with the ne& sener, including ay requests
that were bloc&d during the rea@ry.

If the service is notadult-tolerant, or the rewery
failed, the clients are informed, and yhmark the
service as unailable. Thisresults in all requests
returning with an error until the service is rered,
for example, by unmounting ailed file system.

Seners are also prepared to handle #ikife of their
clients, detected by theudlt detection libraryand if
necessaryclean up ap state held on behalf of the
client, for xample,vnode references.

5. TheFailover Manager

The FRailover Manager (FOM) is responsible for
detecting &ilures and initiating theaflover proce-
dure. It needs to bevalable at the time of aaflure
and hence needs to be resilient to naakife. The

FOM is implemented as a set of daemons and actors.

Some of these daemons run on atemnal host sys-
tem.

The main components of the FOM are:

« Error Recoery Manger The ERM is the main
interface for the &rnel components and runs
on the nodes. It is resilient taifure by the use
of a number of hot backup ERMiunning on
other nodes. A master ERM is elected and
senes as the consensus point for determining
node &ilure and the coordinator of thailbver
process.

« Disk Mangiement DaemomThe DMD compo-
nent knavs which disk is connected to which
node and where grsecond pl& may be found.
The DMD runs on the host.

.

Configuation ServerConserv knws what the
desired system should look dikand what
resources are critical to the users of the system

(e.g. the system should not continue if it loses
both plexes o a gecified wlume). Conserv
runs on the host.

Falure reports are sent byeknel components to the
ERM, for example, a PM noticing an IPC timeout,
the communications mechanism noticing a communi-
cations &ilure. When adilure has been established
the ERM informs all clients of services on that node
that the services ke tmporarily filed. Net, the
ERM checks with Conserv if the system is still
viable, (e.g. it hashlost aty critical components). If
the system is viableaflover can proceed, otherwise
the whole system needs to be shutd@nd restarted.
The ERM then informs the DMD of the nodsld@ire
which launches the backup services on the site of the
second plres.

The host is ivolved with startup, shutdm and &il-

ure and is hence a critical component of the GOL-
DRUSH system; if it &ils, no other nodeaflure will

not be receered until the host has resmed. The
host is a standard SVR4 machine that does not run
ary user services and can therefore be vee by
rebooting if.

6. Distributed State and Recovery

Each type of service imposes it&/ro requirements
for recovery. In general, the service must be reee
able to the state itas in before theaflure occurred.
This means that allolatile state maintained by the
service must be identified, and somehecreated in
the backup seer. Cached information does not need
to be recwered, since this &cts only the perfer
mance of the service.

Our stratgy is to mwe a much of this wlatile state

as possible to the clients, and use some persistent
storage for the restln the case of file systems, this
includes such things as file andhode reference
counts, file seek tfets and directory blocks and so
on. Apartfrom the file system specific data (incore
inodes and so on), much of this state can beethto

the clients [Vélch90].

During recwery, the file system can be ra@med to a
consistent state using fsck, and the reference counts
and incore inodes can be recreated by wertng
using client information [Bakr94]. Oncehe \olatile
state has been reconstructed, theesecan bgin to
receve rew requests and retries of requests that were
pending at the time of thaifure.

2. The host is not a single point dilure. Havever permanent
loss leaes the system unable to rea@ from node &ilure.
A future goal is to fix this.

We wse the VXFS file system, which uses transactions
in an intent log to record all updates to file system
structures. Thisprovides \ery fast recwery, since
completing the transactions recorded in the log will
bring the file system to a consistent statiwever,

not all file system operations are atomic, and some
minor changes were required to fsck to support
failover. An example is unlinking an open file; the
directory entry is remaed, hut the freeing of the
inode is deferred until the last reference is released.
During failover, this inode remeal must be per
formed only once it has been determined that no
remaining clients are referencing the filelThe
changes to fsck amounted to avmneommand line
option, about 30 lines of code, and avrsaiper block
state that indicates thatetnel level recovery is
required to check reference counts of urdithk
inodes.

Using a standard file system such as UFS [McK
sick84] would create a number of problemBirstly,
without the atomicity of transaction-oriented disk
update, it wuld be much harder to manage non-
idempotent system callsSecondly the recoery
would be much shwer, since the fsck must scan the
whole disk to repair the file systenn addition, the
actions required to repair the file system can often
result in the unpredictable loss of files, which compli-
cates receery.

Once the file system on disk has been made consis-
tent, the krnel state must be reewed. Eachclient

of the file system is contacted, and replies with refer
ence counts and inode numbers of files it is using
from the file system.These can be used to recreate
the incore inodes.

A number of changes were made to the VFS iaterf
[Kleiman86] to allav for file system specific actions
during this recwery:

« When the file system is re-mounted, avritag is
passed indicating that this is for ailéver. This
allows the file system specific code to perforng an
special actions.

- A new VFS routine is used to recreate an incore
inode and vnode with the correct reference counts
and object capability

« A new VFS routine is used to performyafile sys-
tem specific actity once all the incore vnodes
have keen created.In the case of VXFS, this
checks for deferred remads.

7. Non-idempotent Operations

Faled calls from a client to a sexware retried when
the failover service has resumed agty. Provision is
made to preent the system fromxecuting the same
non-idempotent requests twice.

Most eisting systems use a senside log which is
duplicated on the backup servsite. Instead we use
a o-called ‘intent-messagé’mechanism with the
support of the client side library

When a non-idempotent request is reegifor the
first time (ie. before a #&ilure occurs), an upcall is
performed to the client before committing the VXFS
transaction on the inode. Thntent” message sent

in this upcall identifies the request being processed,
and contains a modification counter associated with
the inode, as well as thepected return alue of the
request. Themodification counter is then incre-
mented, and the transaction is committed to disk,
which also records the wecounter \alue. Thesener
then replies normally to the request.

If the transaction &s completed before ailure, or if
recovery rolls forward the transaction, the modifica-
tion counter associated with the inode will/eédeen
incremented. If the client had not recsl the reply
from the filed serer, it will retransmit the request to
the backup seesr; this retry request will contain the
intent message sent by tlagléd serer.

When the semr receves this retry it can determine
whether the operation has already been completed, by
comparing the modification counter of the inode with
that in the messadeif the counters are the same, the
operation had not completed, and is retried, otherwise
the return alue saed in the intent message is
returned to the caller

This simple mechanism has some interesting proper
ties:

« Unlike log mechanisms, there is no log compres-
sion or cleanup issue, since the intent message
information is lept with the cliens aurrent request
state. Noextra allocation, deallocation, or man-
agement for thelbg’’ memory is required.

« Since retry requests are modified with the contents
of the intent message, there is x&r& work for the
sener to determine whether this request is a retry
of a non-idempotent request or ndthere is no
need to scan a sawside log. All the information

3. The \alue of the counter at ready time is used, since it
may hae evolved after receery due to other inteening
non-idempotent requests.

needed is within the message.

8. Comparison With Related Work

A number of other systems address the issues of high
awailability and fwlt tolerance in distrited ewiron-
ments. Hwever, we lelieve aur work differs from
existing experiences in the folleing areas:

« Our system maintains the full UNIX semantics
across distribtion and receery (stronger seman-
tics than NFS based implementations).

Client side caching is under control of the applica-
tions, not under control of the system, since appli-
cations are database senr.

Replication is done at the logicablume level, not
at the file leel.

- We have based our implementation on commer
cially available softnare and hae cmpleted this
mainly by introduction of a client side logging
mechanism. Thesystems referenced bwlouse
mostly serer side logging.

- We haveintroduced the notion of service and are
able to deal with rea@ry of an indvidual service,
using a genericaflover manager which can be
extended to services that are not necessarily file
system basedNone of the systems listed belo
appear to hae worked in that direction.

« Our system supports (today) diskviaes as well
as filesystems.

« We o not rely on a n& file system implementa-
tion (though VXFS vas modified sonvehat).

Sprite prowides separates client and sarstate in a
similar manner to our system BIh90]. During
recovery, each client must perform a re-open protocol
on a peffile basis to preide the serer with reference
counts and so on, and to obtainaid/ handle to the
sener object [Bakr94]. Havever, in our system, the
client handles are persistent, and the eeronly
requires the reference counts and so Bhis allovs

us to package the state for all files on the client into
one RPC message, which reduces the amount of
sener congestion during recery.

Spritely NFS [Mogul94] and Not Quite NFS
[Mack94] are mostly based on NF&ea though thg
extended NFS semanticg&nyhow, they do not male
use of data mirroring, thus clientsvieao wait for the
failed serer to be up and running aig before the
can resume their autty.

HA_NFS [Bhide91] is closer to what we do for the
failover mechanism. Hwever it supports only NFS

requests, and requires some hadkwso that the
backup machine appears with the same IP address as
the filed node. This also implies that all resources

of the filed node will be badd by the same node.

DECEIT [Siegel90] is mostly based on NFS and thus
has not had to deal with some of the issues we had to
face, such as non-idempotent requests. DECEIT is
also based on file replication rather than disk duple

ing.

HARP [Liskov91] is based on file replication with a 2
phase-commit protocol from the primary machine to
the secondary machin& log is maintained in both
sites and requires a Uninterruptiblewo Supply
We havenot found ag detail on hav clients detects
failures and ha they switch from primary to backup.

ECHO [Birrell89] and FICUS [Guy90]all in the
same catgory as the HARP file systems, being based
on replication of files with secondary sers being
synchronized with the primary one

CALYPSO|[Devara94] is probably the closest system
to ours, although there are anfelifferences. The
use a three-phase reeoy mechanism similar to our
FOM, except that in GOLDRSH, the state revery

is under the control of the backup sEmvthe sergr
can use the most appropriate mechanism for its
recovery, for example, it can collect state from
clients, or it can res@ from a log filled by the
crashed semr. CALYPSO seems to be lessxilele,
requiring that semr state is ralilt from client
caches. CAYPSO deals ithe site crashes, and the
actiity of one site is taén oer by another site; the
notion of service as used in GOLDRBH is a major
improvement which allavs the load of a crashed site
to be spread amongweeal surviving nodes.

CODA [Satya91] is mainly orientedwards discon-
nected operations and does not maintain UNIX
semantics. Sincenost of the design is based on the
existence of cache local to the client, the approaches
are hardly comparable.

9. Performance M easurements

It has not been possible to completely isolate the
effects of the &ult tolerance mechanism as aghar
number of other changesveadso been madever

our previous system. \& havebeen tuning the system
with an emphasis on wadevice access since this is
the most performance critical for our applications.
Our applications also mainly use read and write -oper
ations.

Call overhead for 512 byte vadevice access
Call resilient standard verhead
access access

(ms) (ms) (%)
write 0.264 0.262 0.7
read 0.147 0.145 1.4
open 1.82 1.72 6.8

The orerhead of using theafilt detection library is
minimal for the most frequent wadevice accesses
(around than 1% for read and write). wiyer FOM
interaction iwolves a lager overhead for open and
mount (around 7%). This interactionvatves com-
munication with the ERM to declare the clients and
services, and subscription to client and servaie f
ure. TheERM logs all operations to a file thus
adding to this werhead.

The receoery time for a single n& volume is on the
order of 2 secondsThe recwery time for VXFS is
around 3 seconds for a 1GBytelume, and is pro-
portional only to the size of the intent log. VXFS
recovery is performed only after the wavolume has
been sucessfully regered.

The total recweery of a typical system (16 nodes, 10
user disks per node (dupkel), 10 wlumes per
duplexed disk group) after a nodeailure with the
backup services being launchededy across the
remaining nodes is on the order of 20 seconds for ra
volumes. VXFS recovery typically adds around
another 10 seconds to this (typically only e feol-
umes hae filesystems). This is single threaded on
each node, Ut in parallel across the nodes.

10. Experiencesand Further Work

Although our vork utilised the inherently distnilted
nature of GIORUS/MiX we believe it can be adapted
to other systems including monolithierkels.

Although we had to port VxXFS to theHORUS/MiX
ervironment, we found it had a number of useful
properties - its transactional nature aomost oper
ations to be treated atomicallymplifying recovery,
and the intent log pxades \ery fast recgery time, on
the order of a f& seconds.

The current system has been implemented and dis cur
rently undegoing system test. &/ae tuning the sys-
tem with the empahsis onwadevice access perfor
mance since this is the most critical for our applica-
tions.

We haveyet to fully measure the performance of the
system and are in the process ofdlgping our mea-
surement techniques to isolate theerbead of non-

idempotent calls.

We found the performance of frequently used opera-
tions to be reasonabldt will be possible to further
improve performance by mang the ERM into krnel
space as a CHQRS supervisor actpthus alleiating

a lage number of conk switches especially on
mounting a filesystem or the first open of @& ral-
ume.

11. Acknowledgements

We would like to thank the dbrts of the people who
contrituted to the design and implementation of the
mechanisms described in this paper: Brian Anghon
Richard HarryMartin Hogg, Simon Mcknna, D&id
Messham, Siee Noble and lain Robertson at ICL,
and Jean-Marc Fart, Ruby Krishnasamy Pierre
Lebee and Gilles Maigneat Chorus Systaes.

12. Biographies

Sunil Kittur receved his BSc in Computer Science in
1988 from Unversity College London. He spent the
next 4 years at the Santa Cruz Operatioorking on

the SCO XENIX, UNIX and MPX &rnels. In1992

he joined ICL High Performance Systems as a senior
engineer on the GOLDBSH project. He has
recently joined Online Media as principal sodie
engineer wrking on the OS for a distnited interac-
tive multi-media system.His email address is skit-
tur@omi.co.uk.

Franmis Armand receied his Engineer diploma in
1977 from ENSEEIHT in dlosa, France. He spent a
few years in a softare house and joined the Sol
research project at INRIA, avking on Unix V7, in
1980. Hethen maed to the Chorus research project
in 1985, and since 1987 has been at Chorus Systems
working on aspects of the Unix subsystem for the
CHORUS microlernel. He has been mostlywotved

in the design of the distuited Unix and more
recently in &ilure resilience issues.His email
address is francois@chorus.fr

Douglas Steel completed his BSc in Computing Sci-
ence in 1988 from GlasgoUniversity. He ent 4
years as a research assistant at Queen Maryest-W
field Collegge (Uniersity of London) iwestigating
operating system support for distrtbd object ori-
ented programming, and completed a part-time MSc.
He joined Unix Systems Laboratories Europe and
worked on the Esprit Owrture project. He joined
ICL High Performance Systems in late 1993 as a
senior engineer on the GOLMISH project. His
email address is doug@wg.icl.co.uk.

Jim Lipkis has been wolved in operating system [Killian84]
design for parallel, real time, anduft tolerant sys-
tems. AtNew York University he worked on OS and
language softare for scalable shared-memory multi- [Kleimang6]
processors such as the NYU Ultracomput8ince
1989 he has been a senior engineer and architect at
Chorus Systems, avking on microlernel design and
on application of the micr@tnel to systems ranging
from embedded real time to supercomputing to
highly available parallel database serg. Hisemail [Liskov91]
address is lipkis@chorus.fr
REFERENCES
[Armand91] F Armand, "Gve a PRocess to
your Drivers!", Proc. of the [McKusick84]
EurOpen Autumn 1991 Confer
ence.
[Baker94] MaryBaker, "Fast Crash Reogry
in Distributed File Systems", PhD [Mack94]
Thesis, Uni. California at Berle-
ley, 1994.
[Batlivala92] NarimanBatlivala et al., "Experi-
ence with SVR4 Osr Chorus", [Mogul92]
Proc. of the USENIX Wfrkshop
on Micro-Kernels and Other é¢
nel Architectures, April 1992,
pp.223-242. [Mogul94]
[Bhide91] AnupamBhide et al., "A Highly
Available Network File Serer”,
Proc. of the Whter 1991 USENIX [Rozier]
Conference, pp.199-218.
[Birrell89] A. Birrell et al., "Availability and
Consisteng Tradeofs in the Echo
Distributed File System", Proc. of
Second Wrkshop on \Wirkstation [Sandbeg85]
Operating Systems, pp.49-54.
[Batlivala92] N. Batlivala et al., "Experience
with SVR4 oer Chorus" Proc. of
1st Workshop on Microkrnels and
Other Architectures, Usenix, Seat- [Satya91]
tle 1992.
[Devara94] M. Devarakonda , B. Kish, A.
Mohindra "Non-Disruptie Server .
Recwery in Calypso File System" [Siegel90]
IBM Researh report RC
19794(87665) 10/19/94
[Guy90] RichardG. Guy et al., "Implemen- [vxfs92]

tation of the Ficus Replicated File
System”, Proc. of Summer 1990
USENIX Conference, pp.63-72.

T.J. Killian, "Processes as Files",
Proc. of the Summer 1984
USENIX Conference.

S.RKleiman, "Vnodes: An Archi-
tecture for Multiple File System
Types in Sun UNIX", Proc. of the
Summer 1986 USENIX Confer
ence, pp.238-247.

Barbaral.iskov ¢ al., "Replication
in the Harp File System", Proc. of
the 13th ACM Symposium on
Operating Systems Principles,
pp.226-238.

M.K.McKusick et al., "A st File
System for UNIX", ACM Transac-
tions on Computer Systemo\2
No.3, August 1984, pp.181-197.

Rick Macklem, "Not Quite NFS,
Soft Cache Consistepdor NFS",
Proc. of the Whter 1994 USENIX
Conference, pp.261-278.

Jefrey C Mogul, "A Recwoery

Protocol for Spritely NFS", Proc.
of the USENIX File Systems
Workshop, May 1992, pp.93-110.

Jefrey C. Mogul, "Receery in
Spritely NFS", Computing Sys-
tems, Spring 1994, pp.201-262.

M. Rozier et al., "Chorus Dis-
tributed Operating Systems" Com-
puting Systems 1(4), December
1988.

R. Sandbeay et a., "The Design

and Implementation of the Sun
Network File System", Proc. of the
Summer 1985 USENIX Confer
ence, June 1985, pp.119-130.

M.Satyanarayanan et al., "Discon-

nected Operation in the Coda File
System”, Operating Systems
Review, vol. 5, pp.213-225.

Alex Siegel, "Deceit: A Flaible
Distributed File System", Proc. of
Summer 1990 USENIX Confer
ence, pp.51-62.

Veritas Sofware Corporation,
"VERITAS File System (VXFS)
System Administratos’ CGuide
Release 1.2.1", 1992.

[vxvm93a]

[vxvm93b]

[Welch90]

\eritas Softvare Corporation,
"VERITAS \Wlume Manager
(VxVM) Basic Users Cuide
Release 1.2", 1993

\eritas Softvare Corporation,
"VERITAS \Wlume Manager
(VXVM) System Administratos
Guide Release 1.2", 1993

BrentB Welch, "Naming, State
Management, and Uskevel
Extensions to the Sprite Dis-
tributed File System”, PhD Thesis,
Univ. California at Berleley, 1990.

