
The following paper was originally published in the
Proceedings of the USENIX 1996 Annual Technical Conference

San Diego, California, January 1996

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Fault Tolerance in a
Distributed CHORUS/MiX System

Sunil Kittur, Online Media
Francois Armand, Chorus Systemes

Douglas Steel, ICL High Performance Systems
Jim Lipkis, Chorus Systemes



Fault Tolerance in a Distributed CHORUS/MiX System

Sunil Kittur†

Douglas Steel
ICL High Performance Systems, Manchester, UK

François Armand
Jim Lipkis

Chorus Systems,Saint-Quentin-En-Yvelines, France

ABSTRACT

Within a distributed system, resources may be shared
between nodes.The system should continue to oper-
ate even if individual nodes fail due to hardware or
software errors. This may result in the loss of re-
sources that were hosted on the failed node, but it
may be possible to continue to provide access to
some resources by hosting them on another node.

This paper describes mechanisms that allow the
failover of resources from failed nodes.Failover is
currently restricted to disk volumes and file systems.
The failover mechanisms maintain the correct seman-
tics at the UNIX system call level for operations from
surviving nodes that were in progress at the time of
the failure, including non-idempotent operations.

Minimal resource and performance overheads are im-
posed for the normal running case, and in contrast to
replication techniques, state is recovered and rebuilt
at the time of a failover.

1. Introduction

The GOLDRUSH system, developed at ICL, is a dis-
tributed memory multi-computer consisting of up to
64 nodes connected by a high-speed interconnect.
Each node contains up to 12 SCSI disks that are only
physically accessible by that node, and some nodes
contain FDDI couplers which provide external access
to the machine (Figure 1).

Each node is a self-contained UNIX system running a
version of the CHORUS/MiX V.4 operating system,
with some devices and file systems accessed from
remote nodes using CHORUS IPC protocols
[Rozier88, Batlivala92]. CHORUS/MiX CHO-
RUS/MiX implements SVR4 UNIX as a

† Author’s current affiliation is at Online Media,
Cambridge, UK.

‘‘ personality’’ on top of the CHORUS microkernel.
It consists of a set of independent actors (a process-
like abstraction) which run in supervisor mode.
These actors include, the Process Manager (PM)
which receives system calls from UNIX processes
and acts as a client on behalf of these processes; and
the Object Manager (OM) which provides file and
device access.

The main application of the machine is to provide a
parallel database server, and a number of commercial
databases such as Oracle, Ingres and Informix have
been ported to it.Administrative software is used to
provide a consistent view of shared operating system
resources across nodes.

To provide a highly available database service, the
system must continue to function in the event of the
failure of disks or nodes.

To provide resilience to individual disk failures, disk
volumes are mirrored, so that if one of the mirrors
fails, the volume is still available from the remaining
mirror. The mirror may be a remote device; this func-
tionality is provided by the Distributed Plex Manager
(DPM) as shown in Figure 2. As mirroring tech-
niques are fairly standard, the rest of this paper will
discuss the handling of node failures.

Node failure can cause the loss of applications and
disks/file systems that were hosted on that node.In
the case of software errors, such as a kernel panic, it
may be possible to reboot the node, and resume com-
munication with the node, possibly performing some
recovery actions. This is the approach used in Sprite
[Baker94], NFS [Sandberg85] and Spritely NFS
[Mogul92]. However, this can result in a consider-
able delay, since a reboot involves much more than
the recovery of just the shared devices and file sys-
tems. Thisapproach will also fail if the node cannot
be rebooted, for example, if there was some perma-
nent hardware failure.



Processing
Element

Processing
ElementElement

SCSI

Comms

FDDI

SCSI

Element

SCSI SCSISCSI

Processing

SCSI

Processing
Element

SCSISCSI SCSI SCSI

FDDI

Comms
Element

DeltaNet

Figure 1. GOLDRUSH system architecture

Instead, we make the device or file system available
from another node by a failover mechanism which
allows access to the resource as soon as the appropri-
ate recovery actions have been completed (Figure 3).
This is similar in some respects to the HA_NFS work
[Bhide91], but our approach covers more than just the
NFS protocol.

It is important that this failover be transparent to the
users of the resource, and in particular, the expected
semantics of any operations that were in progress at
the time of the failure must be preserved. Thisis not
a problem for idempotent operations, since they can
simply be retried once the failover has completed.
However, non-idempotent operations, such as
unlink(2) or write(2) on a file opened in
O_APPEND mode should be retried only if the oper-
ation had not completed before the failure occurred.

2. Goals and Tradeoffs

We identified a number of key goals for GOL-
DRUSH:

• There should be no single point of failure that
causes the entire system to be shut down.

• Applications not using resources on a failed node
should continue without disruption.

• Performance and resource overheads should be
minimised.

• The performance of normal operation is more
important than the speed of recovery.

• The semantics of all UNIX APIs should be pre-
served during and after recovery.

• If a resource cannot be recovered, it should be
cleanly removed, including cleaning up any state
on surviving nodes.

Whilst satisfying these goals, our initial implementa-
tion makes a number of tradeoffs:

• The system does not tolerate double failures; if a
second node fails before the first failure is recov-
ered, the entire system may be shut down.

• The mechanisms are intended to cover only operat-
ing system resources; applications are responsible
for handling the failure of application components
that were on failed nodes.

• There is no need for instantaneous recovery; some
short delay is acceptable.Providing instantaneous
failover would require some form of replication,
which would add considerable overheads to the
normal running situation.

• The initial implementation covers disk volumes
and file systems, but the mechanisms should be
flexible enough to accommodate other types of
resource.

• Data to remote file systems is written data-
synchronously. This avoids having to recover from
the loss of nodes containing dirty cached data.
Synchronous writes are ideal in any case for
database servers, which perform their own caching
and have no reason to incur the cost of disk block
copying required for buffered I/O. However, if
general time sharing had been a goal, there would
be a performance hit.



OMOM DPMDPM

Remote

Access
Remote

Plex

DB

PM

DB DB

PM PM

OM DPM

Figure 2. Access to a remote volume/filesystem

3. Architecture

The GOLDRUSH system can be viewed as a collec-
tion of homogeneous UNIX machines connected by a
high-speed private network. Thememory and disks
on each node are only physically accessible by that
node. Remoteaccess is provided by software using
CHORUS IPC. This is feasible because of the high
bandwidth available.

Resilience to disk failure is provided using the VERI-
TAS VxVM volume manager to provide mirrored
disk volumes [vxvm93a, vxvm93b], and these vol-
umes are made resilient to node failure by providing
remote mirrors, using a remote driver access mecha-
nism [Armand91]1. In the event of a node failure, the
volume is restarted on the node containing the remote
mirror.

In order to provide a uniform device name space for
volumes shared by nodes (global volumes), we have
implemented a global device numbering scheme
which allows a volume to be known by a globally
persistent device number. After recovery by the
backup node, the device is still accessible using the
same device number.

Each node contains its own root file system, and
hence its own independent file name space.By con-
vention, we mount shared file systems on the same
mount point name on each node, to present a shared
global file name space.Files outside this shared
name space are private to the node.

1. Although we provide this remote mirroring by software, the
architecture can accommodate the use of multi-ported disks.

File systems that are created on global volumes can
be accessed by all nodes by mounting the block
device on a directory in the standard manner. Remote
requests to the file system are forwarded to the server
node using CHORUS IPC protocols.

A remote file system is mounted using the same com-
mand line arguments as if it were on a local device,
and the kernel performs the appropriate internal
remote connection protocols.If we used a scheme
like NFS which specifies the host and pathname on
the host, we would have to update user visible data
such as/etc/mnttab to reflect the new host after
failover. With our scheme, the user visible state
remains the same, namely the block device name,
mount point name and mount options.

Failover of a file system from a failed node requires
the volume to be started on the backup node, and the
file system to be recovered. We use the VERITAS
VxFS file system [vxfs92] to provide fast recovery
using its intent log. The recovery required for
failover is slightly different to the normal recovery
that fsck performs, since it must preserve state held
by active requests that fsck could throw away, such as
unlinked files that are still open.

A number of components are used to provide these
mechanisms:

• A distributed failover manager (FOM), which
maintains the status of resources, whether they are
active, failed, or in the process of being recovered.
The FOM also maintains a list of clients who are
using the resource.



OMOM DPMDPM

DB

PM

DB DB

PM PM

OM DPM

Remote Access

Figure 3. Access to a remote volume/filesystem after a failure

• A l ibrary linked with clients which handles the
binding between clients and servers. Thelibrary is
used to monitor IPC requests and detects failures
using timeouts or by detecting link failures. After
a failover, the library transparently rebinds the
client to the new server.

• A state recovery protocol which allows servers to
reconstruct state from information provided by
clients.

• Modifications to server modules for server specific
recovery actions.

• A mechanism for handling non-idempotent opera-
tions, to allow a backup server to determine if the
operation was already completed before the failure.

4. Failure Detection and Handling

A set of resources and associated interfaces can be
described as aservice. At any giv en time a service is
hosted by a single server, running on a particular
node. Anexample of a service is a file system or raw
disk device.

In general the servers in our system are the file Object
Managers on each node, and clients are the Process
Managers on each node.Object Managers may also
be clients of a Process Manager, for example, to
obtain process credentials, or to handle the/proc

file system operations [Killian84].

A service can be fault-tolerant or not; a fault-tolerant
service is available (after some recovery action) even
if the server currently hosting it fails. A service is the
unit of failover, and if a particular server hosting mul-
tiple services fails, the individual services can be
failed over to different backup servers. Thiscan pro-
vide a better load balance between remaining nodes
which pick up only a part of the activity of the failed
node.

Services are identified by a unique identifier or name,
in our case, a CHORUS unique identifier (UI) that is
unambiguous across all nodes.This service UI is
persistent during the lifetime of the system, and is
persistent across a failover in the case of a fault-
tolerant service.

The FOM is responsible for tracking the status of ser-
vices, and maintains a list of clients using each ser-
vice. TheFOM is a global entity, distributed across
all nodes. It is informed by servers when they first
create a service, and by clients when they first access
a service.

We provide a library, linked with each client, that
monitors IPC requests.If these time out, or receive
an error indicating the destination has failed, the
FOM is notified.



The FOM determines whether the service has failed,
and if it has, it informs all clients of the service, who
then suspend all communication with the service.
This is handled within the client-side library, and
does not require any special action within the client.

It is important that a central agent determines the fail-
ure, as it is possible for conflicting error reports to be
generated. For example, two nodes may be unable to
communicate with each other, and each reports that
the other has failed.

If the service is fault-tolerant, the FOM elects a suit-
able node to host the service, and instructs a server on
that node to recover it. Oncethe recovery is com-
plete, the clients are notified, and resume communi-
cation with the new server, including any requests
that were blocked during the recovery.

If the service is not fault-tolerant, or the recovery
failed, the clients are informed, and they mark the
service as unavailable. This results in all requests
returning with an error until the service is removed,
for example, by unmounting a failed file system.

Servers are also prepared to handle the failure of their
clients, detected by the fault detection library, and if
necessary, clean up any state held on behalf of the
client, for example,vnode references.

5. The Failover Manager

The Failover Manager (FOM) is responsible for
detecting failures and initiating the failover proce-
dure. It needs to be available at the time of a failure
and hence needs to be resilient to node failure. The
FOM is implemented as a set of daemons and actors.
Some of these daemons run on an external host sys-
tem.

The main components of the FOM are:

• Error Recovery Manager The ERM is the main
interface for the kernel components and runs
on the nodes. It is resilient to failure by the use
of a number of hot backup ERM’s running on
other nodes. A master ERM is elected and
serves as the consensus point for determining
node failure and the coordinator of the failover
process.

• Disk Management DaemonThe DMD compo-
nent knows which disk is connected to which
node and where any second plex may be found.
The DMD runs on the host.

• Configuration ServerConserv knows what the
desired system should look like and what
resources are critical to the users of the system

(e.g. the system should not continue if it loses
both plexes of a specified volume). Conserv
runs on the host.

Failure reports are sent by kernel components to the
ERM, for example, a PM noticing an IPC timeout,
the communications mechanism noticing a communi-
cations failure. When a failure has been established
the ERM informs all clients of services on that node
that the services have temporarily failed. Next, the
ERM checks with Conserv if the system is still
viable, (e.g. it hasn’t lost any critical components). If
the system is viable failover can proceed, otherwise
the whole system needs to be shutdown and restarted.
The ERM then informs the DMD of the node failure
which launches the backup services on the site of the
second plexes.

The host is involved with startup, shutdown and fail-
ure and is hence a critical component of the GOL-
DRUSH system; if it fails, no other node failure will
not be recovered until the host has recovered. The
host is a standard SVR4 machine that does not run
any user services and can therefore be recovered by
rebooting it2.

6. Distributed State and Recovery

Each type of service imposes its own requirements
for recovery. In general, the service must be recover-
able to the state it was in before the failure occurred.
This means that all volatile state maintained by the
service must be identified, and somehow recreated in
the backup server. Cached information does not need
to be recovered, since this affects only the perfor-
mance of the service.

Our strategy is to move as much of this volatile state
as possible to the clients, and use some persistent
storage for the rest.In the case of file systems, this
includes such things as file andvnode reference
counts, file seek offsets and directory blocks and so
on. Apart from the file system specific data (incore
inodes and so on), much of this state can be moved to
the clients [Welch90].

During recovery, the file system can be recovered to a
consistent state using fsck, and the reference counts
and incore inodes can be recreated by recovering
using client information [Baker94]. Oncethe volatile
state has been reconstructed, the server can begin to
receive new requests and retries of requests that were
pending at the time of the failure.

2. The host is not a single point of failure. However permanent
loss leaves the system unable to recover from node failure.
A future goal is to fix this.



We use the VxFS file system, which uses transactions
in an intent log to record all updates to file system
structures. Thisprovides very fast recovery, since
completing the transactions recorded in the log will
bring the file system to a consistent state.However,
not all file system operations are atomic, and some
minor changes were required to fsck to support
failover. An example is unlinking an open file; the
directory entry is removed, but the freeing of the
inode is deferred until the last reference is released.
During failover, this inode removal must be per-
formed only once it has been determined that no
remaining clients are referencing the file.The
changes to fsck amounted to a new command line
option, about 30 lines of code, and a new super block
state that indicates that kernel level recovery is
required to check reference counts of unlinked
inodes.

Using a standard file system such as UFS [McKu-
sick84] would create a number of problems.Firstly,
without the atomicity of transaction-oriented disk
update, it would be much harder to manage non-
idempotent system calls.Secondly, the recovery
would be much slower, since the fsck must scan the
whole disk to repair the file system.In addition, the
actions required to repair the file system can often
result in the unpredictable loss of files, which compli-
cates recovery.

Once the file system on disk has been made consis-
tent, the kernel state must be recovered. Eachclient
of the file system is contacted, and replies with refer-
ence counts and inode numbers of files it is using
from the file system.These can be used to recreate
the incore inodes.

A number of changes were made to the VFS interface
[Kleiman86] to allow for file system specific actions
during this recovery:

• When the file system is re-mounted, a new flag is
passed indicating that this is for a failover. This
allows the file system specific code to perform any
special actions.

• A new VFS routine is used to recreate an incore
inode and vnode with the correct reference counts
and object capability.

• A new VFS routine is used to perform any file sys-
tem specific activity once all the incore vnodes
have been created.In the case of VxFS, this
checks for deferred removals.

7. Non-idempotent Operations

Failed calls from a client to a server are retried when
the failover service has resumed activity. Provision is
made to prevent the system from executing the same
non-idempotent requests twice.

Most existing systems use a server-side log which is
duplicated on the backup server site. Instead we use
a so-called ‘‘intent-message’’ mechanism with the
support of the client side library.

When a non-idempotent request is received for the
first time (ie. before a failure occurs), an upcall is
performed to the client before committing the VxFS
transaction on the inode. The ‘‘intent’’ message sent
in this upcall identifies the request being processed,
and contains a modification counter associated with
the inode, as well as the expected return value of the
request. Themodification counter is then incre-
mented, and the transaction is committed to disk,
which also records the new counter value. Theserver
then replies normally to the request.

If the transaction was completed before a failure, or if
recovery rolls forward the transaction, the modifica-
tion counter associated with the inode will have been
incremented. If the client had not received the reply
from the failed server, it will retransmit the request to
the backup server; this retry request will contain the
intent message sent by the failed server.

When the server receives this retry, it can determine
whether the operation has already been completed, by
comparing the modification counter of the inode with
that in the message3 ; if the counters are the same, the
operation had not completed, and is retried, otherwise
the return value saved in the intent message is
returned to the caller.

This simple mechanism has some interesting proper-
ties:

• Unlike log mechanisms, there is no log compres-
sion or cleanup issue, since the intent message
information is kept with the client’s current request
state. Noextra allocation, deallocation, or man-
agement for the ‘‘log’ ’ memory is required.

• Since retry requests are modified with the contents
of the intent message, there is no extra work for the
server to determine whether this request is a retry
of a non-idempotent request or not.There is no
need to scan a server side log. All the information

3. The value of the counter at recovery time is used, since it
may have evolved after recovery due to other intervening
non-idempotent requests.



needed is within the message.

8. Comparison With Related Work

A number of other systems address the issues of high
availability and fault tolerance in distributed environ-
ments. However, we believe our work differs from
existing experiences in the following areas:

• Our system maintains the full UNIX semantics
across distribution and recovery (stronger seman-
tics than NFS based implementations).

• Client side caching is under control of the applica-
tions, not under control of the system, since appli-
cations are database servers.

• Replication is done at the logical volume level, not
at the file level.

• We hav e based our implementation on commer-
cially available software and have completed this
mainly by introduction of a client side logging
mechanism. Thesystems referenced below use
mostly server side logging.

• We hav e introduced the notion of service and are
able to deal with recovery of an individual service,
using a generic failover manager which can be
extended to services that are not necessarily file
system based.None of the systems listed below
appear to have worked in that direction.

• Our system supports (today) disk devices as well
as filesystems.

• We do not rely on a new file system implementa-
tion (though VxFS was modified somewhat).

Sprite provides separates client and server state in a
similar manner to our system [Welch90]. During
recovery, each client must perform a re-open protocol
on a per-file basis to provide the server with reference
counts and so on, and to obtain a valid handle to the
server object [Baker94]. However, in our system, the
client handles are persistent, and the server only
requires the reference counts and so on.This allows
us to package the state for all files on the client into
one RPC message, which reduces the amount of
server congestion during recovery.

Spritely NFS [Mogul94] and Not Quite NFS
[Mack94] are mostly based on NFS even though they
extended NFS semantics.Anyhow, they do not make
use of data mirroring, thus clients have to wait for the
failed server to be up and running again before they
can resume their activity.

HA_NFS [Bhide91] is closer to what we do for the
failover mechanism. However it supports only NFS

requests, and requires some hardware so that the
backup machine appears with the same IP address as
the failed node.This also implies that all resources
of the failed node will be backed by the same node.

DECEIT [Siegel90] is mostly based on NFS and thus
has not had to deal with some of the issues we had to
face, such as non-idempotent requests. DECEIT is
also based on file replication rather than disk duplex-
ing.

HARP [Liskov91] is based on file replication with a 2
phase-commit protocol from the primary machine to
the secondary machine.A log is maintained in both
sites and requires a Uninterruptible Power Supply.
We hav enot found any detail on how clients detects
failures and how they switch from primary to backup.

ECHO [Birrell89] and FICUS [Guy90] fall in the
same category as the HARP file systems, being based
on replication of files with secondary servers being
synchronized with the primary one

CALYPSO[Devara94] is probably the closest system
to ours, although there are a few differences. They
use a three-phase recovery mechanism similar to our
FOM, except that in GOLDRUSH, the state recovery
is under the control of the backup server; the server
can use the most appropriate mechanism for its
recovery, for example, it can collect state from
clients, or it can recover from a log filled by the
crashed server. CALYPSO seems to be less flexible,
requiring that server state is rebuilt from client
caches. CALYPSO deals ithe site crashes, and the
activity of one site is taken over by another site; the
notion of service as used in GOLDRUSH is a major
improvement which allows the load of a crashed site
to be spread among several surviving nodes.

CODA [Satya91] is mainly oriented towards discon-
nected operations and does not maintain UNIX
semantics. Sincemost of the design is based on the
existence of cache local to the client, the approaches
are hardly comparable.

9. Performance Measurements

It has not been possible to completely isolate the
effects of the fault tolerance mechanism as a large
number of other changes have also been made over
our previous system. We hav ebeen tuning the system
with an emphasis on raw device access since this is
the most performance critical for our applications.
Our applications also mainly use read and write oper-
ations.



Call overhead for 512 byte raw device access

Call resilient standard overhead
access access
(ms) (ms) (%)

write 0.264 0.262 0.7

read 0.147 0.145 1.4

open 1.82 1.72 6.8

The overhead of using the fault detection library is
minimal for the most frequent raw device accesses
(around than 1% for read and write). However FOM
interaction involves a larger overhead for open and
mount (around 7%). This interaction involves com-
munication with the ERM to declare the clients and
services, and subscription to client and service fail-
ure. The ERM logs all operations to a file thus
adding to this overhead.

The recovery time for a single raw volume is on the
order of 2 seconds.The recovery time for VxFS is
around 3 seconds for a 1GByte volume, and is pro-
portional only to the size of the intent log. VxFS
recovery is performed only after the raw volume has
been sucessfully recovered.

The total recovery of a typical system (16 nodes, 10
user disks per node (duplexed), 10 volumes per
duplexed disk group) after a node failure with the
backup services being launched evenly across the
remaining nodes is on the order of 20 seconds for raw
volumes. VxFS recovery typically adds around
another 10 seconds to this (typically only a few vol-
umes have filesystems). This is single threaded on
each node, but in parallel across the nodes.

10. Experiences and Further Work

Although our work utilised the inherently distributed
nature of CHORUS/MiX we believe it can be adapted
to other systems including monolithic kernels.

Although we had to port VxFS to the CHORUS/MiX
environment, we found it had a number of useful
properties - its transactional nature allows most oper-
ations to be treated atomically, simplifying recovery,
and the intent log provides very fast recovery time, on
the order of a few seconds.

The current system has been implemented and is cur-
rently undergoing system test. We are tuning the sys-
tem with the empahsis on raw device access perfor-
mance since this is the most critical for our applica-
tions.

We hav eyet to fully measure the performance of the
system and are in the process of developing our mea-
surement techniques to isolate the overhead of non-

idempotent calls.

We found the performance of frequently used opera-
tions to be reasonable.It will be possible to further
improve performance by moving the ERM into kernel
space as a CHORUS supervisor actor, thus alleviating
a large number of context switches especially on
mounting a filesystem or the first open of a raw vol-
ume.

11. Acknowledgements

We would like to thank the efforts of the people who
contributed to the design and implementation of the
mechanisms described in this paper: Brian Anthony,
Richard Harry, Martin Hogg, Simon McKenna, David
Messham, Steve Noble and Iain Robertson at ICL,
and Jean-Marc Fe´nart, Ruby Krishnaswamy, Pierre
Lebée and Gilles Maigne´ at Chorus Syste`mes.

12. Biographies

Sunil Kittur received his BSc in Computer Science in
1988 from University College London. He spent the
next 4 years at the Santa Cruz Operation, working on
the SCO XENIX, UNIX and MPX kernels. In1992
he joined ICL High Performance Systems as a senior
engineer on the GOLDRUSH project. He has
recently joined Online Media as principal software
engineer working on the OS for a distributed interac-
tive multi-media system.His email address is skit-
tur@omi.co.uk.

François Armand received his Engineer diploma in
1977 from ENSEEIHT in Tolosa, France. He spent a
few years in a software house and joined the Sol
research project at INRIA, working on Unix V7, in
1980. Hethen moved to the Chorus research project
in 1985, and since 1987 has been at Chorus Systems
working on aspects of the Unix subsystem for the
CHORUS microkernel. He has been mostly involved
in the design of the distributed Unix and more
recently in failure resilience issues.His email
address is francois@chorus.fr.

Douglas Steel completed his BSc in Computing Sci-
ence in 1988 from Glasgow University. He spent 4
years as a research assistant at Queen Mary & West-
field College (University of London) investigating
operating system support for distributed object ori-
ented programming, and completed a part-time MSc.
He joined Unix Systems Laboratories Europe and
worked on the Esprit Ouverture project. He joined
ICL High Performance Systems in late 1993 as a
senior engineer on the GOLDRUSH project. His
email address is doug@wg.icl.co.uk.



Jim Lipkis has been involved in operating system
design for parallel, real time, and fault tolerant sys-
tems. AtNew York University he worked on OS and
language software for scalable shared-memory multi-
processors such as the NYU Ultracomputer. Since
1989 he has been a senior engineer and architect at
Chorus Systems, working on microkernel design and
on application of the microkernel to systems ranging
from embedded real time to supercomputing to
highly available parallel database servers. Hisemail
address is lipkis@chorus.fr.

REFERENCES

[Armand91] F. Armand, "Give a Process to
your Drivers!", Proc. of the
EurOpen Autumn 1991 Confer-
ence.

[Baker94] MaryBaker, "Fast Crash Recovery
in Distributed File Systems", PhD
Thesis, Univ. California at Berke-
ley, 1994.

[Batlivala92] NarimanBatlivala et al., "Experi-
ence with SVR4 Over Chorus",
Proc. of the USENIX Workshop
on Micro-Kernels and Other Ker-
nel Architectures, April 1992,
pp.223-242.

[Bhide91] AnupamBhide et al., "A Highly
Av ailable Network File Server",
Proc. of the Winter 1991 USENIX
Conference, pp.199-218.

[Birrell89] A. Birrell et al., "Availability and
Consistency Tradeoffs in the Echo
Distributed File System", Proc. of
Second Workshop on Workstation
Operating Systems, pp.49-54.

[Batlivala92] N. Batlivala et al., "Experience
with SVR4 over Chorus" Proc. of
1st Workshop on Microkernels and
Other Architectures, Usenix, Seat-
tle 1992.

[Devara94] M. Devarakonda , B. Kish, A.
Mohindra "Non-Disruptive Server
Recovery in Calypso File System"
IBM Researh report RC
19794(87665) 10/19/94

[Guy90] RichardG. Guy et al., "Implemen-
tation of the Ficus Replicated File
System", Proc. of Summer 1990
USENIX Conference, pp.63-72.

[Killian84] T.J. Killian, "Processes as Files",
Proc. of the Summer 1984
USENIX Conference.

[Kleiman86] S.R.Kleiman, "Vnodes: An Archi-
tecture for Multiple File System
Types in Sun UNIX", Proc. of the
Summer 1986 USENIX Confer-
ence, pp.238-247.

[Liskov91] BarbaraLiskov et al., "Replication
in the Harp File System", Proc. of
the 13th ACM Symposium on
Operating Systems Principles,
pp.226-238.

[McKusick84] M.K.McKusick et al., "A Fast File
System for UNIX", ACM Transac-
tions on Computer Systems Vol.2
No.3, August 1984, pp.181-197.

[Mack94] Rick Macklem, "Not Quite NFS,
Soft Cache Consistency for NFS",
Proc. of the Winter 1994 USENIX
Conference, pp.261-278.

[Mogul92] Jeffrey C Mogul, "A Recovery
Protocol for Spritely NFS", Proc.
of the USENIX File Systems
Workshop, May 1992, pp.93-110.

[Mogul94] Jeffrey C. Mogul, "Recovery in
Spritely NFS", Computing Sys-
tems, Spring 1994, pp.201-262.

[Rozier] M. Rozier et al., "Chorus Dis-
tributed Operating Systems" Com-
puting Systems 1(4), December
1988.

[Sandberg85] R. Sandberg et al., "The Design
and Implementation of the Sun
Network File System", Proc. of the
Summer 1985 USENIX Confer-
ence, June 1985, pp.119-130.

[Satya91] M.Satyanarayanan et al., "Discon-
nected Operation in the Coda File
System", Operating Systems
Review, vol. 5, pp.213-225.

[Siegel90] Alex Siegel, "Deceit: A Flexible
Distributed File System", Proc. of
Summer 1990 USENIX Confer-
ence, pp.51-62.

[vxfs92] Veritas Sofware Corporation,
"VERITAS File System (VxFS)
System Administrator’s Guide
Release 1.2.1", 1992.



[vxvm93a] Veritas Software Corporation,
"VERITAS Volume Manager
(VxVM) Basic User’s Guide
Release 1.2", 1993

[vxvm93b] Veritas Software Corporation,
"VERITAS Volume Manager
(VxVM) System Administrator’s
Guide Release 1.2", 1993

[Welch90] Brent B Welch, "Naming, State
Management, and User-Level
Extensions to the Sprite Dis-
tributed File System", PhD Thesis,
Univ. California at Berkeley, 1990.


