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Natural microbial communities typically contain a wide diversity of 
organisms, viruses, and other chromosomal and extra-chromosomal 
genetic elements. The microbiome of the human distal gut is among 
the most complex communities ever studied, with an estimated 1,000 
different microbial species across human populations1 and millions 
of different genes2. Current computational analysis strategies for 

Most current approaches for analyzing metagenomic data rely on comparisons to reference genomes, but the microbial  
diversity of many environments extends far beyond what is covered by reference databases. De novo segregation of complex 
metagenomic data into specific biological entities, such as particular bacterial strains or viruses, remains a largely unsolved 
problem. Here we present a method, based on binning co-abundant genes across a series of metagenomic samples, that enables 
comprehensive discovery of new microbial organisms, viruses and co-inherited genetic entities and aids assembly of microbial 
genomes without the need for reference sequences. We demonstrate the method on data from 396 human gut microbiome 
samples and identify 7,381 co-abundance gene groups (CAGs), including 741 metagenomic species (MGS). We use these  
to assemble 238 high-quality microbial genomes and identify affiliations between MGS and hundreds of viruses or genetic 
entities. Our method provides the means for comprehensive profiling of the diversity within complex metagenomic samples.
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metagenomic data rely largely on comparisons to reference genomes  
from cultivated microbes. However, these reference genomes  
represent only a fraction of the species and viruses present. Moreover, 
bacterial genomes from different isolates of the same species usually  
show considerable genetic heterogeneity when compared3,4. This 
variation may be the result of clonal differences, environmental  
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adaptation or possibly artifacts from the cultivation process. 
Therefore, reference genomes represent only a small proportion of the 
biological diversity of microbial systems, and thus methods relying 
on them place limitations on structuring and analyzing metagenomic 
data. In particular, they limit our ability to segregate metagenomic 
data into coherent biological entities and fail to describe previously 
unknown species, phages and modules of genetic variation within 
microbial species.

De novo assembly of genomes from complex metagenomic data is 
inherently difficult due to the many sequence ambiguities that confuse 
the assembly process5. Hence, a typical metagenomic assembly will 
result in a large set of independent contigs that are not easily aggregated 
into biological entities6. Previous methods have addressed the assembly  
problem from different angles. Iverson et al.7 used tetranucleotide- 
based binning to assist the assembly of species with a distinct and 
consistent skew in base composition. In complex communities this 
approach works only for a few organisms with extreme base compo-
sitions. Moreover, some known genomes have inconsistent tetranu-
cleotide distributions, which would compromise any assembly using 
this approach. An alternative is to use differences in the abundance 
of genetic sequences measured in a single biological sample to sepa-
rate organisms8,9. Such methods rely on the notion that abundance 
is constant across genetic entities (i.e., each gene on a specific bacte-
rial chromosome will be found in a sample in the same abundance 
as any other gene on that chromosome). These abundance-based 
methods have been used to segregate the most abundant species in 
waste water9, which is a community with limited complexity, or to 
further segregate a subset of sequence reads with similarity to known 
reference genomes8. However, both Albertsen et al.9 and Wang et al.8  
acknowledge that their methods cannot segregate taxonomically 
related species or genera, respectively; also these methods cannot 
give comprehensive segregation of all entities in complex samples.

Proper structuring of the complete metagenomic composition is 
important not only for understanding the microbial communities10, 
but also for making statistical associations between the metagenomic 
data and descriptors of the system. In the case of the human microbi-
ome such descriptors include clinical parameters of the human host. 
For example, we have previously used co-abundance profiles to bin the 
2% of a gene catalog with strongest correlation to the human type 2  
diabetes phenotype11. This was manageable with 2% of the genes but 
such clustering using distance matrices is not possible for an entire 
microbiome (as calculating a 3.9 million × 3.9 million gene distance 
matrix is impractical even for large supercomputers).

The method we present here is based on segregating biological enti-
ties by co-abundance but overcomes the limited resolution of previous 
methods (e.g., not being able to segregate related organisms) and 
enables the complete segregation of complex metagenomic samples. 
The increased resolution is achieved by using co-abundance profiles 
across many samples. Here we use 396 samples, but we also show that 
species can be segregated accurately using as few as 18 samples. The 
computational problem of generating a distance matrix for a complete 
metagenome is overcome by using a method that extracts groups of 
genes that correlate (in terms of abundance) to randomly picked seed 
genes. This clustering approach can be done in hours on a powerful 
desktop computer.

Segregating a metagenome into groups of genes that have similar 
abundance (CAGs) allows identification of biological entities like 
species and phages, as well as small genetic entities representing 
co-inherited clonal heterogeneity. Phage sequences have previously 
been identified in complex communities by sequence similarity or 
size separation before sequencing12,13, but a general method that can 

identify novel species, phages and genetic heterogeneity from generic 
metagenomics data has been lacking. In addition, small biological 
entities have, with a few exceptions14,15, not been affiliated to specific 
microbial species within the community.

Here we assign genes from 396 human gut microbiome samples 
into 7,381 CAGs, and define subsets of these as MGS and phage-like 
CAGs. From the MGS, we assembled 238 unique genomes that meet 
the high-quality draft genome standard of the Human Microbiome 
Project16. We found that a large set of smaller CAGs could be affili-
ated to the MGS by dependency associations, and that the persistence  
of some MGS is related to the occurrence of specific dependency-
associated CAGs.

RESULTS
Comprehensive co-abundance gene segregation
Our method for co-abundance segregation uses a metagenomic data 
set consisting of a number of samples of the same type. In this study 
we use a deeply sequenced data set of 396 human stool samples from 
Spanish and Danish individuals, including 124 samples from a pre-
vious study2 (see Online Methods and Supplementary Data 1 for 
details). Seventy-seven of the Spanish individuals were sampled twice, 
with an average of 6 months between the samplings. The first step is 
the assembly of the sequencing reads from each sample into genes, 
which are then pooled into a nonredundant gene catalog (Fig. 1). 
Our gene catalog contained 3,871,657 genes (Supplementary Fig. 1); 
only 10% of this gene catalog could be assigned to a taxonomic group 
at the species level (Supplementary Note 1 and Online Methods). 
We picked a gene at random as a ‘seed’ and defined this and other 
genes with similar abundance profiles as a ‘canopy’, which was defined 
as those genes with Pearson correlation coefficient (PCC) > 0.9 to 
the seed gene profile. A canopy profile was then determined as the 
median abundance profile of the gene group and was used itera-
tively for recapturing the canopy until the canopy profile stabilizes 
(Supplementary Fig. 2). New random seed genes were picked until all 
genes were assigned to a canopy. Canopies that passed a canopy rejec-
tion criteria—canopies must contain more than two genes and 90% of 
the canopy profile signal must originate from more than three sam-
ples—were identified as CAGs. It should be noted that large canopies 
tend to be determined quickly, thereby reducing the computational 
cost of subsequent canopies. The method depends on two parameters: 
the gene inclusion criterion and the canopy rejection criteria.

Clustering of our data set binned 1.53 million genes (represent-
ing 68% of the mapped sequence reads; the remaining genes were 
in canopies that did not pass the rejection criteria) into 7,381 CAGs, 
which ranged in size from 3 to 6,319 genes. The size distribution of 
the groups, in terms of numbers of genes, was bimodal with peaks at 
~50 genes and ~1,700 genes, respectively (Fig. 2a).

Most complete genomes of bacteria or archaea contain >700 genes 
and the 741 largest CAGs had >700 genes (Supplementary Fig. 3 and 
Supplementary Note 2). The genes in these 741 CAGs were highly 
consistent in base composition, had highly correlated abundance pro-
files in an independent set of 115 samples17 (Supplementary Note 3) 
and had consistent taxonomical annotation. For 115 of these CAGs, 
>95% of the taxonomically annotated genes were annotated to the 
same species (Supplementary Figs. 4–6 and Supplementary Data 2) 
and most were similar to a reference sequence from a specific strain 
within a species. We refer to these CAGs with >700 genes as MGS. In 
nine cases we identified several distinct MGS from the same species 
(e.g., three from Fecalibacterium prausnitzii).

The individual gene-abundance profiles of all MGS were highly 
coherent and most were distinct from genes not included in the MGS. 
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Consequently, changing the gene inclusion criterion to PCC > 0.8 
or PCC > 0.95 increased or reduced the size of the average MGS 
by only 5% and 17%, respectively (Supplementary Figs. 7 and 8a 
and Supplementary Note 4). In contrast, when we defined gene sets 
by sequence similarity to reference genomes, the abundance profiles 
were inconsistent (Supplementary Fig. 8b). Importantly, clustering 
of randomly permuted abundance profiles only resulted in very few 
canopies that pass the canopy rejection criterion and all of these were 
small (Supplementary Fig. 9).

Nineteen of the individuals sampled consumed a defined fermented 
milk product containing the previously sequenced Bifidobacterium 
animalis subsp. lactis CNCM I-2494 (ref. 18), and we used this spe-
cies as a benchmark to assess the ability of our method to identify 
and segregate a particular species. Although on average only 0.3% 
of the sequence reads in the 19 samples originated from B. animalis,  

we were able to capture 95% of the B. animalis reference genes into 
one MGS (MGS:337). Subsampling of the data showed that the  
B. animalis MGS can be segregated using as little as 700 K sequence 
reads per sample or from a much smaller sample set consisting of 
only 18 samples (Fig. 3).

Together the MGS and CAGs provide a detailed overview of the 
microbial community and precise estimates of the species richness 
that are in strong agreement with the observed gene richness (PCC = 
0.96; Supplementary Note 5 and Supplementary Fig. 10).

Genome assembly
Grouping genes into an MGS using our co-abundance method also 
assists de novo genome assembly by providing the basis for segregating 
sequence reads into those that derive from a distinct biological entity 
(Fig. 1). That is, for an individual sample, reads can be selected that 
map to a particular MGS; these are species-specific subsets of the full 
set of reads from that metagenomic sample. We used standard genome  
assembly tools to assemble these subsets of reads for all MGS. Of  
these 238 unique MGS genomes—including 181 new genomes from 
previously unsequenced species—met the Human Microbiome 
Project high-quality draft genome standard (Supplementary Figs. 11  
and 12 and Supplementary Data 3). We refer to this strategy as  
MGS-augmented assembly. The MGS-augmented assembly of 
MGS:337 covered 95% of the reference genome of the benchmark 
species B. animalis subsp. lactis CNCM I-2494 with 99.9% identity 
(Fig. 4). In addition, 44 of the MGS-augmented assemblies were 
closely related to known reference genomes and covered an average 
of 78% of these genomes with an average sequence identity of 98.4% 
(Supplementary Data 4).

To reduce the possibility of making chimeric assemblies of closely 
related strains, we used only sequence reads from a single sample 
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Figure 1 Overview of co-abundance clustering and the MGS-augmented 
assembly. DNA from a series of independent biological samples from 
microbial communities, here originating from the human gut microbiome, 
is extracted and shotgun sequenced. Genes assembled and identified 
in individual samples are then integrated to form a cross-sample, 
nonredundant gene catalog. The abundance profile of each gene in the 
catalog is assessed by counting the matching sequence reads in each 
sample. To facilitate co-abundance clustering of large gene catalogs, we 
used random seed genes as ‘baits’ for identifying groups of genes that 
correlate (PCC > 0.9, gray dashed circle) to the abundance profile of the 
bait genes. The fixed PCC distance threshold is called a canopy (dashed 
circles). To center the canopy on a co-abundance gene group (CAG), the 
median gene abundance profile of the genes within the original seed 
canopy (or subsequent canopies, symbolized as +) is used iteratively 
to recapture a new canopy until it settles on a particular profile (off-set 
circles). The gene content of a settled canopy (black dashed circles) is 
named a metagenomic species (MGS) if it contains 700 or more genes. 
The smaller groups remain referred to as CAGs. Sequence reads from 
individual samples that map to the MGS genes and their contigs are then 
extracted and used to assembly a draft genome sequence for an MGS; 
we refer to this process as MGS-augmented genome assembly. The use 
of sample-specific sequence reads in the assemblies helps discriminate 
between closely related strains.
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Figure 2 Size distributions of co-abundance gene groups (CAGs).  
(a) Histogram showing the CAG size distribution in terms of gene content. 
The scale is logarithmic as indicated by the bar widths. (b) Bee swarm 
plot showing CAGs that are significantly enriched (Fishers exact test,  
P < 0.001) for the indicated gene annotation, as well as phage-like CAGs 
and dependency-associated CAGs, plotted against the number of genes 
contained in the CAGs. Here every point represents an enriched CAG or 
MGS and the width of the swarms shows the distribution. The dashed line 
marks the 700-gene threshold separating small CAGs from MGS.
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for every such assembly. However, >100 MGS could be assembled 
from multiple samples, hence, the total number of high-quality draft 
genome assemblies was 360.

Functional characterization of small CAGs
The 6,640 CAGs with <700 genes (an average of 44 genes) showed 
abundance correlations similar to those of the MGS and several lines 
of evidence suggest that many of these CAGs represent biological 
entities or clonal differences within species. Of the small CAGs,  
848 were enriched for proteins characteristic of phages13 or for genes 
with similarity to specific known phage taxa (Supplementary Data 5).  
These phage-like CAGs have a median coding sequence length of 28kb, 
which is substantially longer than previous phage assemblies from 
complex communities (in which ~60% are <1 kb)13. An average of 
113 (±37, s.d.) phage-like CAGs were identified per sample. Although 
bacteriophage taxonomy is fairly limited, we observed consistent  
species- or family-level taxonomical annotation in 35 and 172 phage-
like CAGs, respectively. As expected from the presence of phage-like 
CAGs, transposase, integrase and recombinase encoding genes were 
enriched in the smaller CAGs (Fig. 2b).

Another class of functions that were enriched in smaller CAGs are 
functions that are important for biotic interactions. These include 
clustered, regularly interspaced, short palindromic repeats (CRISPR)-
associated genes, which function in bacteria and archaea as a sequence-
dependent adaptive immune system against foreign nucleic acids19. 
In addition to core CRISPR-associated genes, several CAGs were 
enriched for specific subtypes of these genes (Supplementary Fig. 13).  

Similarly, restriction endonucleases and DNA methylases, which are 
part of the nonadaptive defense system, were enriched in 120 small 
CAGs. Also, genes involved in modification of bacterial exterior 
surfaces, which are important for bacterial identification and mask-
ing, were enriched in more than 400 small CAGs. These included 
genes involved in modifications of the cell wall and, in particular,  
glycosyltransferases.

Dependency associations affiliate small CAGs to MGS
The existence of small CAGs that represent phages and clonal  
differences implies that such CAGs depend on cellular organisms 
for their proliferation. In relationships that are nonpromiscuous,  
a dependent CAG should therefore never occur independently of  
the hosting microorganism. Indeed, we identified significant depend-
ency associations by comparing the absence-presence profiles 
throughout all samples for all pairs of CAGs (including the MGS) 
using Fisher’s exact test and excluding relationships where a potential 
dependent CAG was observed independently of the potential hosting 
CAG (Fig. 5a). In this way the network becomes directional from 
the dependency-associated CAG to the hosting CAG (which may be 
observed independently).
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augmented assembly (y axis) to the B. animalis subsp. lactis CNCM 
I-2494 reference genome (x axis). The dot-blot shows the relative 
chromosomal positions of matching sequence on the MGS-augmented 
assembly and the B. animalis reference genome. The MGS-augmented 
assembly covers 95% of the reference genome with 99.9% identity.  
The plot shows an inversion in the assembly relative to the reference 
genome around position 1,300 K.
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Figure 3 Benchmarking sensitivity and specificity of the co-abundance 
clustering across a range of sequencing depths or sample numbers.  
B. animalis subsp. lactis CNCM I-2494 was used as a benchmark  
species because 19 samples originated from individuals who had 
consumed a defined fermented milk product containing this strain.  
(For each clustering, the size (number of genes captured) is shown  
as bars (left axis); and the specificity (percentage of genes matching  
the B. animalis reference genome with > 95% sequence identity over 
100 bp or better captured in the MGS that is most similar to  
B. animalis) is shown as a line (right axis).) (a) Co-abundance  
clustering using reduced data sets to simulate the sequencing  
depths indicated (x axis). At a sequence depth of 700 K reads,  
97% of the B. animalis genes were captured, and at a depth of  
200 K reads 98.6% of the captured genes were from B. animalis.  
(b) Co-abundance clustering of random sample subsets containing the 
indicated number of samples (x-axis) from individuals that consumed  
the DFMP. Here the total sample size was kept constant at 375 samples.  
(c) Co-abundance clusterings on a series of random sample subsets of  
the indicated size (x axis). These sample subsets included 19 samples 
from individuals who had consumed the DFMP, except when they 
contained <19 samples (i.e., 19-8 DFMP individuals per subset).  
In b and c, samples were downsized to 11 million sequence reads per 
sample. Error bars, ±1 s.d. from the mean (n = 5).
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The resulting network of the most significant (Fishers exact test:  
P < 10−10, corrected) dependency associations is shown in 
Supplementary Figure 14 and contains 882 relationships between 1,205 
CAGs (Supplementary Data 6). As expected, the network is signifi-
cantly over-represented for small CAGs that associate to an MGS (odds  
ratio 12.7, Fisher’s exact test: P < < 1 × 10−100) and many of the sub-
networks are centered on an MGS, but there are also nine small CAGs 
that connect MGS pairs of the same genus. Biologically these may be 
genetic elements or phages that are shared between related species.

For 413 of the associations, sequence contigs were found in  
individual samples that bridged the dependent and hosting CAGs 
(enrichment relative to all CAGs pairs: odds ratio 2,513, Fisher’s  
exact test P < < 1 × 10−100). This indicates that many dependency-
associated CAGs are genomically integrated in the hosting CAG  
in some samples.

The dependency associations connect CAGs into subnetworks, 
which can be used to guide further study of the components. For 

example, the subnetwork centered on Sutterella wadsworthensis 
(MGS:135, Fig. 5b) contains eight dependency associations including 
the phage-like CAG:3731 and a CAG containing CRISPR-associated 
genes and a repeat region (CAG:4011). The sample-wise detection of 
the CRISPR and phage-like CAGs were anti-correlated (Matthew’s 
correlation coefficient −0.7) and one of the CRISPR spacers had a  
15-bp sequence match to the phage, suggesting that the CRISPR  
prevents the phage from infecting the bacterium19.

Sample-specific, MGS-augmented assemblies of the Escherichia 
coli MGS:4 and its dependency-associated CAGs (Supplementary 
Fig. 15 and Supplementary Data 7) demonstrated strong sequence 
similarities throughout the majority of the chromosome, but had 
some differences. In particular the largest of the E. coli–associated 
CAGs (CAG:427, containing 345 genes) was absent in some sample-
specific assemblies (Fig. 5c). In the MGS:4 genome the integration of  
CAG:427 was spread across several locations, suggesting that it repre-
sents several independent insertion and/or rearrangement events.
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Figure 5 Dependency associations among  
MGS and CAGs. (a) A typical example of 
a significant dependency association. The 
abundance of the MGS:135 (S. wadsworthensis) 
and the small CAG:2350 across 318 fecal 
samples are shown as blue and red curves, 
respectively (upper panel, logarithmic scale). 
Below the sample-wise presence of the 
two CAGs is shown as bars. CAG:2350 is 
significantly co-occurring with MGS:135 and 
never detected independently (Fishers exact 
test, P = 9 × 10−74). The samples were sorted 
according to the abundance of MGS:135.  
(b) The dependency-association subnetwork 
of CAGs associated to S. wadsworthensis 
(MGS:135). Arrows show dependency 
associations and solid arrows indicate that  
co-assembly of the MGS and the CAG in one or more samples supported the association. Blue coloring indicates CAGs dominated by genes with  
species level similarity to S. wadsworthensis. CAG:2543 and CAG:3731 are enriched for phage genes, and CAG:4011 contains a series of CRISPR-
associated genes and a CRISPR cluster. The CRISPR complex containing CAG:4011 and one of the phages-like CAG:3731 anti-correlate (Matthews 
correlation coefficient = −0.7) and spacers of the CRISPR show sequence complementarity to the phage. (c) The E. coli (MGS:4) and its nine 
dependency-associated CAGs were co-assembled to high-quality draft genomes in each of 11 samples. The outer black circle represents the  
consensus assembly of the E. coli–centered agglomerate and each of the gray circles represents alignment of the assembly from a particular sample. 
The positions and sequence coverage of CAG:427 are marked in red, across the assemblies.

Figure 6 Gut persistence probability for B. adolescentis. The gut 
persistence of B. adolescentis (MGS:119) populations stratified by the 
presence (red curves) or absence (black curves) of the dependency-
associated CAG:2298 observed across 54 human individuals who had 
the bacterium in the first of two fecal samples. B. adolescentis had 
substantially higher persistence probability with CAG:2298 present. 
(a) Interval-censored Kaplan-Meier curves showing the cumulative loss 
of populations of B. adolescentis over time across the cohort of human 
individuals. Points (+) indicate time (in days) of the second of two 
samplings from a human individual. The curve shows the “losses” when 
they are registered at the second time point and not when the loss actually 
happened (i.e., the data are interval-censored). (b) Model-based estimates 
of annual gut persistence probability for B. adolescentis with or without 
the dependency-associated CAG. Note that annual persistence probability 
with the CAG (mean estimate = 88%) is much larger than without (mean 
estimate = 18%). In the Bayesian logistic regression framework used 
here, estimates are expressed as probability distributions over the possible 
values for parameters of interest. We therefore obtain both an estimate of 
a parameter, and quantification of how certain we are of the estimate. This 
figure shows the posterior probability distribution over possible values for 
the annual persistence probabilities; with the shaded areas indicating the 
95% highest-density intervals (i.e., the parameter values with the most 
support).
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MGS persistence is influenced by associated CAGs
To investigate the effect that dependency-associated CAGs may have 
on their host MGS, we analyzed 73 of the individuals that were sam-
pled at two different time points (four of the original 77 sample pairs 
were discarded). From each of these sample pairs we assessed if a 
given MGS was present at the first time point and whether it was still 
present at the second time point. Based on this information, it was 
possible to estimate the persistence of an MGS across the cohort of 
human individuals, and whether this persistence was influenced by 
dependency-associated CAGs.

We found that there was a greater probability of B. adolescentis 
(MGS:119) persisting at the second time point when its dependency-
associated CAG:2298 was also present (Fig. 6a). To further analyze this 
phenomenon, we used logistic regression to infer the annual persistence 
probabilities for MGS with or without their dependency-associated 
CAGs (Supplementary Data 6). The credibility of these estimates was 
quantified using Bayesian statistical methods20, which, in brief, output 
a posterior probability distribution over the possible annual persistence 
probabilities. From this analysis we identified 26 cases in which the 
presence of a specific dependency-associated CAG correlated with a 
substantially altered annual persistence probability of its host MGS. For 
example, the annual persistence probability of B. adolescentis (MGS:119) 
was estimated to be 88% in individuals where it was observed in asso-
ciation with CAG:2298, but 18% in individuals where CAG:2298 was 
absent (Fig. 6b; posterior probability that the CAG:2298 effect is larger 
than zero = 99.94%). We observed similar, positive effects for CAGs 
dependency-associated with Prevotella copri, E. coli, F. prausnitzii and 
12 other MGS (Supplementary Fig. 15 and Supplementary Data 6). In 
addition, ten dependency-associated CAGs had a substantial negative 
effect on the persistence probability of their hosting MGS.

The dependency-associated CAGs that increased the MGS persistence  
probability contained a range of gene sets, including CRISPR-associated  
genes (CAG:2720), collagen adhesion protein and gram-positive 
anchor proteins (CAG:2888), and thioredoxin family proteins that 
might be important for the tolerance of reactive oxygen species (ROS). 
This is in line with our observation that the most common species in 
the human gut microbiome have genes that mediate ROS tolerance 
(Supplementary Note 6 and Supplementary Data 8). Among the 
dependency-associated CAGs that contributed negatively to the MGS 
persistence probability, we observed three phage-like CAGs.

DISCUSSION
The method presented here allows complete co-abundance cluster-
ing of microbiomes. The resulting CAGs provide insight into the 
microbial species present in metagenomic samples and their genetic 
makeup, and thereby provide details important for understanding 
the content of a microbial community. Clustering is purely data 
driven and therefore circumvents the need for reference genomes, 
presequencing filtering and cultivation of microbial species. The 
ability of our method to discriminate between strains of the same 
species indicates the power of co-abundance to segregate closely 
related biological entities, in contrast to the findings from gene sets 
that are defined by sequence similarity to known reference genomes 
(Supplementary Fig. 8). Inaccurate discrimination among closely 
related species potentially leads to false associations between clinical 
conditions and putative species. Although we identify a few cases of 
chimeric assemblies (Supplementary Note 7), we have no indication 
of CAGs constituting multiple species; however, such entities could 
in principle exist in very close co-abundance.

The method should be generally applicable to sets of deep-
sequenced shotgun metagenomics samples. The exact number of 

samples and sequencing depth needed depends on the complexity 
of the microbial community and the abundance of the microbes. 
However, our benchmarking using B. animalis suggests that the 
number of samples used is critical (here 18 samples), whereas the 
necessary sequencing depth (here 0.7 M reads) is easily reached with 
current sequencing technologies (Fig. 3). This emphasis on sample 
number over sequencing depth is likely to hold across different types 
of microbial communities.

Interestingly, we found that most genes involved in resistance to 
antibiotics, except vancomycin resistance genes, were not found as 
members of any CAG. This is in line with the fact that most antibiotic 
genes, except vancomycin resistance genes, are known to act alone to 
provide antibiotic resistance (Supplementary Note 8).

Although, many of the CAGs and their dependency association are 
not understood at present, our findings suggest that even small CAGs 
represent biologically meaningful entities, either in the form of phages 
or clonal differences of microbial species. This is consistent with pre-
vious findings that the genetic differences that make the E. coli O104:
H4 strain a cause of severe food poisoning are just a few virulence 
factors, including a Shiga toxin 2–encoding prophage21. Therefore, 
thorough descriptions of genetic heterogeneity, which are enabled 
by our co-abundance method, are likely to be important for disease 
association studies. Moreover, although the relationships we observed 
between specific smaller CAGs and their host MGS are only associa-
tions, they do suggest functionally and/or evolutionarily important 
relationships that may prove critical for future understanding and 
engineering of microbial communities. Furthermore the approach 
that allowed us to determine conditional persistence probabilities for 
microbial species in a community is likely to be important for reveal-
ing relationships or conditions that are critical for the persistence or 
elimination of specific microbes in future studies. Here the func-
tions of genes within the CAGs associated with differential persistence 
suggest that tolerating ROS and anchoring to the intestinal epithelia 
are important for microbial persistence in the gut. Our findings also 
suggest specific phage-microbe relationships that reduce persist-
ence. Therefore, our co-abundance–based method should facilitate 
advances in understanding microbial biology as well as enabling  
de novo genome assembly and comprehensive characterization of 
complex metagenomic samples.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Sequence data were deposited at EBI with the  
accession code ERP002061; and MGS-augmented assemblies  
were deposited at EBI under (PRJEB674 to PRJEB1046). 454 
sequencing reads were added to the NCBI BioProjectID 32811.  
The 3.9 M gene catalog and the CAGs are available for download 
from https://www.cbs.dtu.dk/projects/CAG/. Source code for the 
MGS canopy algorithm is available as Supplementary Software and 
from: http://git.dworzynski.eu/mgs-canopy-algorithm.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Sample description. 396 stool samples from 177 Danish and 141 Spanish 
human individuals were collected (Supplementary Data 1). 124 of the samples  
were sequenced and used previously2. The Spanish samples included  
13 individuals with Crohn’s disease and 69 with ulcerative colitis. 77 of the 
Spanish individuals were sampled twice with, on average, 6 months between 
the samplings. The Danish samples include healthy individuals ranging in 
body mass index from 18 to 42. All were subjected to Illumina deep sequencing 
resulting in 4.5 Gb sequence per sample on average, and a total of 23.2 billion 
high-quality sequencing reads with an average length of 77 bp. The study was 
approved by the local Ethical Committees of the Capital Region of Denmark 
(HC-2008-017) and Clinical Research Ethics Committees (Comités de Ética en 
Investigación Clínica, CEIC, Spain) and informed consent was obtained.

Construction of a nonredundant metagenomic gene catalog. Illumina raw 
sequencing reads from 396 metagenomic samples (Supplementary Data 1) 
were processed using the MOCAT software package22. In brief, >23.2 bil-
lion raw sequencing reads were filtered using the FastX software (http:// 
hannonlab.cshl.edu/fastx_toolkit) with a quality cutoff of 20 and reads shorter 
than 30 bp discarded. High-quality reads (92% of raw reads) were assembled  
into scaftigs (i.e., continuous sequences within scaffolds) using SOAPdenovo 
(version 1.05)23. Genes were predicted on 18.5 M scaftigs longer than 500 bp 
(35 Gbp in total) using MetaGeneMark24. Predicted genes from all samples 
(45.4 M in total) were clustered using BLAT by single linkage. Any two genes 
with greater than 95% identity and covering more than 90% of the shorter gene 
were clustered together. Finally, cluster representatives shorter than 100 bp 
were discarded resulting in a set of 4,201,877 nonredundant genes. From this 
set, we removed genes that were considered spurious or likely originated from 
human, animals or plants to yield a final set of 3,871,657 genes that formed 
the reference gene catalog. For a comparison to our previous gene catalog12, 
see Supplementary Data 9.

Quantification of reference gene abundances. High-quality reads were 
mapped to the reference gene catalog using the screen function in MOCAT22. 
Briefly, reads were mapped with SOAPaligner (version 2.21)25 with options: 
–M 4 (find best hits), –l 30 (seed length), –r 1 (random assignment of multiple 
hits) and –v 5 (maximum number of mismatches). Mapped reads were subse-
quently filtered using a 30-bp length and 95% identity cutoff and gene-length 
normalized base counts were calculated using the soap.coverage script (avail-
able at: http://soap.genomics.org.cn/down/soap.coverage.tar.gz). For samples 
where 11 M or more sequence reads were obtained (n = 393), 11 M sequence 
reads were drawn randomly (without replacement). These randomly drawn 
reads were mapped to the gene catalog and the number of reads counted to 
form a downsized depth or abundance matrix. The 11 M downsized depth 
matrix was used to estimate CAG abundances, gene and MGS richness. Similar 
downsizings were done for the reduced sampling depths (Fig. 3).

Taxonomical annotation. Catalog genes were assigned taxonomical annota-
tion by sequence similarity to a database of 3,048 reference genomes (ftp://ftp.
ncbi.nlm.nih.gov/genomes/Bacteria/ and ftp://ftp.ncbi.nlm.nih.gov/genomes/
Bacteria_DRAFT/, July 2012), using BLASTN, only accepting alignments with 
100 bp or longer. Sequence similarity of 95%, 85% and 75% or better was 
used for species, genus and phylum level taxonomical annotation, respectively. 
MGS were assigned a species level annotation if more than 50% of the genes 
comprising the CAG were assigned a given species level taxonomy (including 
genes with no match). MGS were described to have ‘clear and unambiguous 
similarity to a known species’ when 90% or more of the genes were annotated 
to the same species. Selected CAGs that appear in figures and could not be 
assigned to a genus or species by DNA similarity (MGS:11, MGS:17, MGS:124 
and MGS:225) were in addition taxonomically annotated by similarity to the 
UniProt database (BLASTP, best hit, E < 0.001) to get an approximate taxo-
nomical annotation.

Phage definition and taxonomy annotation. A CAG was called phage-like 
if it passed one of two criteria. (i) If a CAG contained a minimum of ten 
phage-taxonomy annotated genes and 80% of these were consistent at the 
species, genus or family level. Here phage-taxonomy annotated genes were 

defined as genes with a top-3 blastp hit (E < 0.001, against the combined 
NCBI nr Sept. 2013 and ACLAME26 0.4 database) to a viral organism listed in 
the International Committee on Taxonomy of Viruses (ICTV) master species 
list (release 2012). (ii) If a CAG-encoded five or more distinct characteristic 
phage functions and ≥40% of the CAG genes were most similar to known 
phage genes. Phage-functional classes were defined as proteins with a best-hit 
(hmmscan27, domE < 0.001, against Pfam-A28 27.0) to one of 16 phage-specific  
Pfam functions defined by Minot et al.13 or as proteins matching the  
corresponding set of functions identified among phage orthologous  
groups (blastp, E < 0.001, against POG VQ29). A characteristic phage  
function was counted only once per CAG. Furthermore, a gene most similar 
to known phage genes was defined as a gene with a best hit (blastp, E < 0.001, 
against the combined NCBI nr and the ACLAME 0.4 database) to a viral organ-
ism. All phage-like CAGs were taxonomically annotated to species, genus or 
family level using a 50% consistency criteria across ICTV annotated genes 
(top-3 blastp hits, E < 0.001, against the combined NCBI nr and ACLAME26 
database). Interestingly, the functions “tail,” “portal,” “terminase” and “capsid” 
were each found in ≥70% of all phage-like CAGs and on average in only 5% 
of other small CAGs.

Gene annotations and enrichment analysis. Functional annotation (includ-
ing CRISPR-associated genes) of the gene catalog was obtained by aligning 
predicted proteins to the UniProt database using BLASTP (best hit with  
E < 0.001) and proteins from the eggNOG (v3) database30 using BLASTP 
(WU-BLAST 2.0, default parameters except E = 1 × 10−5, B = 10,000) and were 
assigned to an orthologous group as described elsewhere31.

Genes of MGS:11, CAG:4957, MGS:17 and MGS:124 (appearing in 
Supplementary Fig. 16c) was aligned to proteins listed by Roessner et al.32 
as experimentally verified and strictly anaerobe corrin ring biosynthesis 
proteins (60 coverage, 40% identity). CRISPR repeat-spacer segments were 
identified with CRISPR-recognition tool (CRT, ver. 1.2)33 in selected CAG 
assemblies. Genes were annotated as virulence or antibiotic resistance genes 
when BLASTP alignments exceeded 80% identity over 80% of the length of 
protein in the Virulence Factor Database (VFDB, February 2012 version) or 
ResFinder34 (version 1.2) database, respectively.

From 271 essential genes from the genome of Bacillus subtilis strain 168 
(ref. 35), 252 clusters of orthologous genes (COGs) were deduced (ftp://ftp.
ncbi.nih.gov/genomes/Bacteria/Bacillus_subtilis_168_uid57675/NC_000964.
ptt manually curated, see Supplementary Data 10). Genes aligning to these 
COGs were termed essential genes.

CAGs significantly enriched for a specific annotation were identified using 
Fisher’s exact test (P < 0.001 for Fig. 2b). Significant biases in eggNOG30 anno-
tation, as a function of the MGS observation frequency across the samples, 
were identified using Wilcoxon rank sum test (P < 1 × 10−15; Supplementary 
Data 8).

Co-abundance clustering. The canopy-based clustering of the gene catalog 
was performed by iteratively picking a seed gene among the not yet clustered 
genes and aggregate genes with abundance profiles within a fixed distance 
from the seed gene abundance profile (Pearson correlation coefficient > 
0.9 and Spearman’s rank correlation coefficient > 0.6) into the seed canopy. 
Canopies with median abundance profiles within a distance of 0.97 PCC 
from one another were merged. Canopies with 2 or less genes (such cano-
pies included a total of 1.7 M genes), or for which the canopy abundance 
signal from any three samples constituted 90% or more of the total signal 
across all samples, for which the median profile was detected in less than 
four samples, or for which one sample made up 90% of the total signal (1.1 M  
genes) were discarded for having insufficient supporting evidence (based 
on Monte Carlo simulation; Supplementary Fig. 9). Canopies that passed 
these criteria were called CAGs. CAGs with more than 700 genes are also 
referred to as MGS or just species. Note that the number of clusters was not 
predefined for the canopy-based clustering. CAG abundance profiles were 
calculated as the sample-wise median gene depth signal (downsized). A CAG 
was considered observed in a sample when its abundance profile exceeded 
zero in that sample.

Source code for the canopy algorithm is freely available as Supplementary 
Software and at http://git.dworzynski.eu/mgs-canopy-algorithm.

http://hannonlab.cshl.edu/fastx_toolkit
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ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Bacillus_subtilis_168_uid57675/NC_000964.ptt
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MGS-augmented assembly. For each of the 741 MGS we performed a de novo 
MGS-augmented assembly, using the subset of sequence reads that mapped 
to the contigs from which the MGS genes originated. For each MGS, we per-
formed independent and sample-specific augmented assemblies on the two 
samples from which most sequence reads mapped to the MGS and the sample 
from which most of the MGS gene containing de novo contigs were derived. 
For a given sample, the reads were aligned using Burrows-Wheeler Aligner36 
(bwa-0.5.9) to the MGS specific scaffolds and the mapped reads, including 
unmapped mates, were extracted. These reads were then corrected by Quake37 
using k = 15. The reads were then de novo assembled with Velvet (1.2.01) using 
k-mers from 21 to 45 and the parameters ‘-cov_cutoff auto’ and ‘-exp_cov auto’. 
As several samples were used for assembly of each MGS, the best assembly 
was selected based on ranking of contig N50 and the number of contigs in the 
assemblies38. Contigs with read depth of less than half the average depth of all 
contigs were removed from the assemblies38,39. The contigs and scaffolds were 
then filtered to 100- and 500-bp minimum lengths, respectively, and gaps in 
scaffolds were filled using SOAPdenovo GapCloser (1.10).

Assembly statistics. General assembly statistics were calculated using  
assemblathon_stats.pl40 and coverage was calculated by aligning reads to the 
contigs using bwa (0.5.9)36 and BEDtools. To assess the quality of the assem-
blies, we adopted the six high-quality draft assembly criteria from the Human 
Microbiome Project (HMP)16. Five of these criteria address the contiguity of 
the assembly, and one criterion, genome completeness, by counting core genes 
contained in the assembly. The criteria are (i) 90% of the genome assembly must 
be included in contigs >500 bp, (ii) 90% of the assembled bases must be at >  
5× read coverage, (iii) The contig N50 must be >5 kb, (iv) scaffold N50 must  
be >20 kb, (v) average contig length must be >5 kb and (vi) >90% of the core 
genes must be present in the assembly. The core gene ratios were determined 
using HMP standard operating procedure for both bacteria and archaea. In 
short, blastx was used to identify core genes from the scaffolds and proteins 
with at least 30% identity and 30% coverage for Bacteria and 50% identity and 
70% coverage for Archaea were considered a core gene hit. The ratio of core 
genes identified was then calculated using get_coregroups_coverage.pl (HMP 
tools and protocols). In total 360 sample-specific MGS-augmented assemblies 
from 247 unique MGS passed all six criteria (Supplementary Data 3). In addi-
tion, 139 unique assemblies passed five criteria.

We determined the number of novel species by aligning all proteins  
to Uniprot using blastp and converted taxids from strain to species level  
using NCBI taxonomy. An assembly was considered previously unsequenced 
if less than 10% of the genes could be aligned with a minimum of 95%  
identity over 33aa to genes from a species. 181 of the 238 high-quality  
assembled draft genomes plus 83 assemblies passing 5 criteria were identified 
as novel species.

Screening for chimeric assemblies. Because the HMP criteria were created 
for single genome assembly, we applied three additional metrics to account 
for putative chimeric assemblies arising from metagenomic data, (i) uniform-
ity of the contig read depth distribution, (ii) identification of multiple copies 
of conserved 40 COGs30 and (iii) inter-assembly tetranucleotide frequency 
(TNF) consistency.

Because assemblies consisting of genomic regions from different  
organisms are likely to have multimodal coverage distributions, we performed  
peak detection on the contig read coverage distributions for all assem-
blies passing 4-6 HMP criteria and assemblies with more than 1 peak were  
manually inspected. From the presence of multiple copies of COGs, we were 
able to identify three assemblies as chimeric. Of the 247 unique high-quality 
draft assemblies, 9 (3.6%) were identified as potentially chimeric, and for the 
additional 139 assemblies that passed five criteria, we identified 3 potential  
chimeric assemblies (2.3%) and 1 without any core genes (MGS:3246).  
The remaining assemblies have been deposited at the European Nucleotide 
Archive (ENA).

Furthermore, tetranucleotide frequencies z-scores were calculated for all 
assemblies and HMP reference assemblies as described by Teeling et al.41. For 
each assembly the frequencies were calculated in windows of 5 kb to avoid 
biases introduced by different scaffold lengths. If a scaffold was shorter than 
the window size it was still included in the calculations. Within each assembly a 

median tetranucleotide frequency z-profile was created and the tetranucleotide 
frequency z-scores of each 5-kb window were correlated to this median profile 
using PCC. The resulting high-quality draft genomes showed comparable TNF 
correlations to the single organism HMP reference genomes indicating a low 
rate of chimeric assemblies (Supplementary Fig. 12).

Comparison of MGS-augmented assemblies and reference genomes. To 
estimate the completion level of the MGS-augmented assemblies, 299 draft 
reference genomes from the human intestinal tract HMP DACC database and 
the NCBI collection of complete reference genomes (both version updated 
from 2012/04) were used as a reference set for a blast comparison procedure. 
44 of the assemblies that passed 5 or more of the 6 HMP criteria (including 
the bacteria/archaea core ratio criteria) were similar to a reference genome. 
The contigs and scaffolds of these assemblies were projected on their closest 
reference genomes using the GAGE pipeline for assembly quality evaluation42. 
First nucmer (default parameters) was used to align the contigs/scaffolds to 
the reference genome. Then delta-filter was used to remove low identity match 
(parameters: -I 95, -o 80). Finally dnadiff was used to compare the assemblies 
and the closest reference genome and estimate the mean identity and cover-
age of each contigs and scaffolds (Supplementary Data 4). Additionally, the 
MGS:337 assembly, which did not meet the six criteria, was 99.9% identical 
to B. animalis subsp. lactis CNCM I-2494 (ref. 18) and covered 95% of this 
reference genome (Fig. 4).

To search for potential contaminants, unaligned scaffold fragments  
were blasted to the complete reference genome set, and the best hit (with 
identity and coverage threshold of ≥95% and ≥80%, respectively) was 
extracted. Scaffolds that matched to a different genus were considered 
potential contaminants. Of the 44 MGS-augmented assemblies, only 16 
contained any scaffolds with similarity to an alternative genus. In general 
these scaffolds were small with an average size of only 2,721 bp. If we con-
sider unaligned scaffold with similarity to an alternative genus as a potential 
contaminant, the mean contamination rate was estimated to 1.00 scaffold 
per HQ assembly.

MGS-augmented assembly gap closure using Sanger sequence data. To  
further experimentally validate the coherence of the sample-specific MGS- 
augmented assemblies, we used Sanger sequence data from eight samples2. 
Fecal microbial DNA from those individuals was used to construct plasmid- 
based (pCNS) clone libraries of 3 kb long inserts, containing 250,000 
clones each. Clone insert ends were sequenced using the Sanger technology 
(ABI3730XL). Sequences were subsequently subjected to vector cleaning  
and quality trimming, generating on average 230,468 (±5,145) reads per 
sample. The same DNA was used for pyrosequencing (454GSFlx-Titanium), 
resulting in 2,362,978 reads on average per sample (±3,245,603). For  
each reference subject, Sanger and 454 reads as well as Velvet contigs gener-
ated from Illumina sequencing of the same DNA were combined for assembly 
using the 454-Newbler software (v2.3). CAGs detected in a given reference 
subject were compared with Sanger reads from that individual using blastn. 
High-scoring segment pair (HSPs) covering at least 90% of the length of the 
smallest read or velvet contig with at least 90% identity were selected, and 
corresponding reads extracted. Scaffolding of the CAG contigs with paired 
Sanger reads was then achieved using the bambus software43. Only assem-
blies with >1× coverage were kept, and used to assess the rate of gap closure 
(Supplementary Data 3). On average 64% of the assembly gaps were closed,  
and in particular, the MGS:710 assembly was closed to only 3 scaffolds from 
an initial 32 scaffolds.

Phylogeny of the MGS assemblies. We used all nonchimeric assemblies pass-
ing 5 and 6 HMP criteria (139 and 247 assemblies, respectively) and 296 HMP 
gut microbiome reference genomes (HMPDACC) and 1,506 reference genomes 
to construct a phylogeny based on 40 phylogenetic marker proteins (COGs)44. 
For each assembly, proteins were predicted using Prodigal and aligned using 
blastp to the individual COG proteins, and the best hits were selected requir-
ing at least 50% id over 50% of the COG sequence. For each COG the MGS 
assembly and reference proteins were aligned using muscle and here joined to 
a single alignment file for each COG using muscle-profile. The 40 individual 
protein alignments were concatenated to a single alignment for each reference  
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genome/MGS assembly and alignments containing less than 35 COGs 
were removed from further analysis, resulting in 337 MGS assemblies for  
the final tree. The phylogenetic tree was constructed with FastTree using the 
JTT substitution matrix with the parameters “-gamma -pseudo -spr 4 -mlacc 
3 -slownni” and visualized using ITOL45.

Co-assembly of E. coli and dependency-associated CAGs. A pool of the 
main E. coli (MGS:4) and its nine dependency-associated CAGs (CAG:427, 
CAG:1345, CAG:2136, CAG:2318, CAG:2530, CAG:2610, CAG:3070, 
CAG:3196 and CAG:5108) were used for recruiting 1,708 contigs for a 
pooled assembly, across 247 selected samples. Subsequently, de novo assembly  
(as described above) from 13 of these samples passed five or more HMP  
criteria (Supplementary Data 7). A consensus assembly was generated 
from the contigs of these assemblies using minimus2, where each assembly  
was joined to the consensus in separate steps46. The consensus assembly  
contained 4.3 Mb sequences in 45 contigs with a contig N50 of 129 kb. 
Subsequently all the individual assemblies were aligned with blastn to the 
consensus assembly, and contigs without a significant hit were pooled and 
clustered using cd-hit-est with the parameters “-c 0.8 -n 7”47. To further reduce 
redundancy of the extra contigs they were cut into 500-bp ‘reads’ with 250-bp 
overlap and reassembled using Newbler 2.6. The resulting 157 contigs were 
then added to the consensus assembly obtained from minimus2 to a final 
assembly of 4.91 Mb in 202 contigs.

Dependency associations. A CAG was considered dependency associated on 
another CAG when the sample-wise overlapping detections of the CAG pair 
were statistically significantly over-represented (Fisher’s exact test, upper tail, 
Bonferroni corrected P < 1 × 10−10) and the dependency-associated CAG was 
not detected independently.

Smaller CAGs (<700 genes) were considered ‘co-existence associated’ when 
their detections were significantly enriched (Fisher’s exact test, Bonferroni 
corrected P < 0.05) in samples where an MGS pair was co-observed, and never 
occurred independently of one of the two MGS (the host). Here an MGS pair 
consisted of a host MGS and a companion MGS. An MGS was considered a 
potential companion if it co-existed with a potential host species in samples 
from ten or more individuals and was found independently of the host species  
in samples from ten or more human individuals. For the co-existence- 
associated relationships where the small CAG was not observed independently 
of any of the two MGS, the host species were determined as the MGS with 
the strongest abundance correlation to the small CAG across samples where 
both were detected, and by the sample specific co-assembly. No inconsistency 
between these measures was found.

Dependency-associated small CAGs were considered significantly  
absent in samples where a specific companion species was found, when it was 
significantly enriched in samples where the companion species was absent 
compared to samples where the host MGS was found (Fisher’s exact test, 
Bonferroni corrected P < 0.05). Furthermore, the small CAG could never be 
observed independent of the hosting species. Again, an MGS was considered 
as a potential companion species if it co-existed with a host species in samples 
from ten or more individuals.

For all types of dependency associations a CAG was considered detected in  
a sample if the CAG abundance profile exceeded zero. Furthermore, only 
CAGs detected in ≥10 and ≤308 samples were considered. To ensure  
independence between the observations only one sample per individual  
was used (n = 318). Dependency-associated, ‘co-existence–associated’ and  
‘co-existence–absent’ CAGs showed correlation to the species richness  
comparable to that of all CAGs.

Estimation of CAG persistence probabilities. Data from 73 human individu-
als, which were sampled twice, were used to estimate the annual persistence 
probabilities of MGS with or without dependency-associated CAGs (Fig. 6, 
Supplementary Fig. 17 and Supplementary Data 6). All of the 2 × 73 stool 
samples included in this analysis resulted in at least 11 M sequence reads, and 
samples yielding more than this were downsized to 11 M reads. Furthermore, 
all included sample pairs exhibited strong stability between the samplings,  
in that they were more similar to each other than to 99% of the other  
samples in the cohort (using the Spearman correlation coefficient of the MGS 

abundances as similarity measure). Four of the original 77 sample pairs did 
not pass these criteria.

The main idea in this analysis was the following: for a fraction of the  
73 sample pairs, a given MGS is present in the sample obtained at time point 1. 
For a subset of these sample pairs, the same MGS was also present at time point 2.  
Based on these, data logistic regression can be used to estimate an annual 
persistence probability for the MGS. The predictor variable (time between 
two consecutive samples) is continuous, whereas the outcome variable (pres-
ence or absence of an MGS) is binary. Logistic regression is used to estimate 
how the probability of an MGS still being present depends on the amount of 
time passed.

This computation is based on the assumption that an MGS has a typical 
probability per time unit of persisting in the gut of an individual. Thus the 
likelihood of observing an MGS at time point 2 is expected to be smaller 
the more time that has passed between the two samplings. Specifically, this 
decline is assumed to be exponential; thus if the probability that a given MGS 
will persist for a year is P(1) = 0.7, then the probability that it will persist for 
two years is P(2) = 0.72 = 0.49, etc. This assumption seems to fit well with 
Kaplan-Meier curves constructed from these data (Fig. 6a). Of course, the 
persistence of a given MGS in any individual is likely to depend on the specific 
conditions in that individual. We simply assume that there is a typical overall 
annual persistence probability associated with the MGS (on average, a given 
MGS has a typical tendency to persist in the gut of any individual), and real 
data will be scattered around this average according to unidentified covariates 
and stochastic effects.

Annual persistence probabilities were estimated in a probabilistic (Bayesian) 
model–based framework that explicitly accounts for time dependence. In this 
approach we assume that the annual persistence probability for an MGS is 
determined by the inherent resilience of the MGS itself, in combination with 
possible additional effects (positive or negative) caused by a set of dependency- 
associated CAGs. Specifically, we assume that the annual persistence  
probability, P, for a given MGS, depends on the effects of a set of dependency- 
associated CAGs in the form of a logistic regression model: ln(P/[1-P]) =  
logit(P) = b0 + Sum[biXi] or, equivalently: P = expit(b0 + Sum[biXi]). Here, the 
regression coefficient b0 corresponds to the inherent persistence tendency of 
the MGS itself, bi corresponds to the effect of dependency-associated CAG 
number i and Xi is a binary variable indicating whether dependency-associated  
CAG number i is present or absent for a given sample. “Expit” is the sigmoidal, 
logistic function (the inverse of the logit function). The index, i, runs over all 
the dependency-associated CAGs for a given MGS.

The probability that a CAG will survive for t days, P(t), can be found from its 
annual persistence probability, P, in the following way: P(t) = P[t/365]. The like-
lihood for a data point where the MGS survives (i.e., where it is still present at 
the second sample, after t days have elapsed) is therefore given by the following 
expression: L = P[t/365] = [expit(b0 + Sum[biXi])] [t/365]. For data points where a 
CAG does not survive, the likelihood is simply: L = 1 − P[t/365] = 1 − [expit(b0 +  
Sum[biXi])] [t/365]. As recommended in Gelman et al.48 the priors for all b0 
regression coefficients (which correspond to the inherent persistence of all 
MGS) are t-distributions with µ = 0, d.f. = 1, and rate = 0.1 (corresponding to 
scale = 10). The priors for all bi regression coefficients (corresponding to the 
effects on persistence of the dependency-associated CAGs) are t-distributions 
with µ = 0, d.f. = 1 and rate = 0.4 (corresponding to scale = 2.5). These are 
conservative priors that help keep the correlation coefficients close to zero. 
Given these expressions for priors and likelihoods, it is possible to perform a 
Bayesian analysis of the model, resulting in estimates of the above-mentioned 
regression coefficients. However, since the regression coefficients themselves 
can be difficult to interpret, we instead report the following derived measures: 
(i) the annual persistence probability for each MGS. This can be computed as: 
P = expit(b0). (ii) The annual persistence probability for a specific MGS when 
together with a given dependency-associated CAG. This can be computed as: 
P = expit(b0 + bj), where j refers to the specific dependency-associated CAG. 
(iii) The effect of the dependency-associated CAG. We have chosen to simply 
express this as the absolute difference between the above two measures. (For 
instance, if the annual persistence probability of an MGS, together with a 
specific dependency-associated CAG, is 0.75, and the annual persistence prob-
ability of the MGS alone is 0.5, then the effect of the dependency-associated 
CAG is reported as 0.75 – 0.5 = 0.25).
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For the analysis of coexistence between a pair of MGS and an associated 
CAG (Supplementary Note 9, Supplementary Fig. 16 and Supplementary 
Data 11), there were insufficient data to obtain estimates for each individual 
CAG. We therefore pooled all data points for CAGs having a positive effect on 
the persistence of their MGS host, and estimated an overall effect for these.

Note that, in the Bayesian framework, estimates are expressed as prob-
ability distributions over the possible values for parameters of interest20. We 
therefore obtain both an estimate of a parameter, and quantification of how 
certain we are of the estimate. To declare an effect to be substantially different 
from zero, we require that its 95% highest posterior density interval (the “95% 
HDI”) should be located entirely outside of a “region of practical equivalence” 
to 0 (a “ROPE”). In this analysis the ROPE was defined to be [–0.02, 0.02]. 
The 95% HDI is the narrowest interval that includes 95% of the probability. 
By design, all parameter values inside a 95% HDI will be more likely than 
all values outside. In this work we have identified 26 dependency-associated 
CAGs where we are more than 95% certain that they have a nonzero effect on 
the persistence probability of an MGS (Supplementary Data 6).

The model was implemented and analyzed in a Bayesian framework by 
Markov chain Monte Carlo (MCMC) using the JAGS package49. Convergence 
of MCMC was checked by running two independent chains and verifying that 
they arrived at similar posterior distributions. In particular it was checked that 
the potential scale reduction factor (“R-hat”) for each estimated parameter 
was <1.1 (ref. 50).
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