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Alterations of the human gut microbiome
in liver cirrhosis
Nan Qin1,2*, Fengling Yang1*, Ang Li1*, Edi Prifti3*, Yanfei Chen1*, Li Shao1,2*, Jing Guo1, Emmanuelle Le Chatelier3, Jian Yao1,2,
Lingjiao Wu1, Jiawei Zhou1, Shujun Ni1, Lin Liu1, Nicolas Pons3, Jean Michel Batto3, Sean P. Kennedy3, Pierre Leonard3,
Chunhui Yuan1, Wenchao Ding1, Yuanting Chen1, Xinjun Hu1, Beiwen Zheng1,2, Guirong Qian1, Wei Xu1, S. Dusko Ehrlich3,4,
Shusen Zheng2,5 & Lanjuan Li1,2

Liver cirrhosis occurs as a consequence of many chronic liver diseases that are prevalent worldwide. Here we character-
ize the gut microbiome in liver cirrhosis by comparing 98 patients and 83 healthy control individuals. We build a reference
gene set for the cohort containing 2.69 million genes, 36.1% of which are novel. Quantitative metagenomics reveals 75,245
genes that differ in abundance between the patients and healthy individuals (false discovery rate , 0.0001) and can be
grouped into 66 clusters representing cognate bacterial species; 28 are enriched in patients and 38 in control individuals.
Most (54%) of the patient-enriched, taxonomically assigned species are of buccal origin, suggesting an invasion of the gut
from the mouth in liver cirrhosis. Biomarkers specific to liver cirrhosis at gene and function levels are revealed by a
comparison with those for type 2 diabetes and inflammatory bowel disease. On the basis of only 15 biomarkers, a highly
accurate patient discrimination index is created and validated on an independent cohort. Thus microbiota-targeted bio-
markers may be a powerful tool for diagnosis of different diseases.

Cirrhosis is an advanced liver disease resulting from acute or chronic
liver injury, including alcohol abuse, obesity and hepatitis virus infec-
tion. The prognosis for patients with decompensated liver cirrhosis is
poor, and they frequently require liver transplantation1. The liver inter-
acts directly with the gut through the hepatic portal and bile secretion2

systems. Enteric dysbiosis, especially the translocation of bacteria3 and
their products4,5 across the gut epithelial barrier, is involved in the pro-
gression of liver cirrhosis. However, the phylogenetic and functional com-
position changes in the human gut microbiota that are related to this
progression remain obscure5. Some studies have revealed that altera-
tions in the gut microbiota are important in complications of end-stage
liver cirrhosis6 (such as spontaneous bacterial peritonitis7 and hepatic
encephalopathy8) and the induction and promotion of liver damage
in early-stage liver disease9 (such as alcoholic liver disease10 and non-
alcoholic fatty liver disease11), but definitive associations of gut micro-
biota and liver pathology in humans are still lacking12. Studies of patients
with liver cirrhosis13 and of mouse models for alcoholic liver disease10

have revealed a similar and substantial alteration in the gut microbiota,
as measured by sequencing of 16S ribosomal RNA genes. How these
phylogenetic alterations relate to changes in the functioning of this eco-
system is, however, unclear.

The role of gut microbiota in human health and disease14 has recently
received considerable attention. Chronic diseases, such as obesity15–18,
inflammatory bowel disease (IBD)19,20, diabetes mellitus21,22, metabolic
syndrome23, symptomatic atherosclerosis24 and non-alcoholic fatty liver
disease10, have been associated with gut microbiota. The US National
Institutes of Health Human Microbiome Project (HMP) generated a
large data set from different anatomical sites among 242 healthy indivi-
duals and created a large human microbiome gene resource25,26. Quanti-
tative metagenomics analysis27,28 developed by the MetaHIT consortium
revealed a significant loss of gut microbial richness associated with the

risk of metabolic syndrome related co-morbidities. Here we apply a
similar analysis to contrast microbiota from 123 patients with liver cir-
rhosis and 114 healthy counterparts of Han Chinese origin.

Gene catalogue of gut microbes
We constructed a gene catalogue from 98 Chinese patients with liver
cirrhosis and 83 healthy Chinese control individuals (Supplementary
Table 1) using the methodology developed by MetaHIT. The liver cirrho-
sis catalogue contained 2,688,468 non-redundant open reading frames
(ORFs). We compared it with three other gut microbial catalogues:
MetaHIT29, HMP25 and T2D22. To facilitate this comparison, genes were
predicted from the original contigs using the same criteria. The MetaHIT
catalogue contained 3,452,726 genes, HMP 4,768,112 genes and T2D
2,148,029 genes. In total 674,131 genes were common to all catalogues
(Extended Data Fig. 1a). The liver cirrhosis catalogue, MetaHIT, HMP
and T2D gene sets contained 794,647, 1,419,517, 2,620,096 and 623,570
unique genes, respectively. Genes from the liver cirrhosis, T2D and
MetaHIT catalogues were merged; the HMP was not included, as it
contained Sanger, 454 or Illumina-based 16S sequences, in addition to
whole metagenomic data. The merged non-redundant catalogue con-
tained 5,382,817 genes (Extended Data Fig. 1b).

Phylogenetic profiles of gut microbes
The sequencing reads (36.67%) were aligned against 4,398 reference
genomes from the National Center for Biotechnology Information and
the HMP (Supplementary Table 2). After correction for population strat-
ification that could be related to non-liver cirrhosis-related factors (see
Methods), the relative abundances of phylum, class, order, family, genus
and species between liver cirrhosis and control groups were compared
(Extended Data Fig. 2). Phylotypes with a median relative abundance
larger than 0.01% of the total abundance in either the healthy control
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group or the liver cirrhosis group were included for comparison. At the
phylum level, Bacteroidetes and Firmicutes dominated the faecal micro-
bial communities of both groups (Fig. 1a, b). Compared with healthy
controls, patients with liver cirrhosis had fewer Bacteroidetes (Fig. 1a),
but higher levels of Proteobacteria and Fusobacteria (Fig. 1b).

At the genus level, Bacteroides was the dominant phylotype in both
groups, but was significantly decreased in the liver cirrhosis group. Of
the remaining genera, Veillonella, Streptococcus, Clostridium and Prevotella
were enriched in the liver cirrhosis group, while Eubacterium and Alistipes
were dominant in the healthy controls (Fig. 1a, b). The most abundant
species in both liver cirrhosis and the healthy control groups were pri-
marily from the Bacteroides genus. Of the 20 species that increased the
most in abundance in the liver cirrhosis group, four were Streptococcus
spp. and six were Veillonella spp., suggesting that the two genera might
play an important role in liver cirrhosis. Of the species that decreased
the most in abundance in the liver cirrhosis group, 12 were Bacteroidetes
and seven were Firmicutes, specifically from the order Clostridiales.

Gut microbial species associated with cirrhosis
Our investigation included two phases. The first was discovery, where
we compared 98 patients with liver cirrhosis and 83 healthy controls.
The second was validation, with additional 25 patients and 31 controls.
In the discovery phase, a Wilcoxon rank-sum test corrected for mul-
tiple testing by the Benjamini and Hochberg method was used to iden-
tify differentially abundant genes in patients and controls. At a stringent
threshold (false discovery rate (FDR) , 0.0001), 75,245 genes were found:
49,830 were more abundant in the patients and 25,415 in the controls
(Methods). Patients and controls could be clearly separated by princi-
pal component analysis based on the 75,245 genes; this was confirmed
with the validation samples (Supplementary Table 3 and Extended Data
Fig. 1c).

To explore further the microbial genes associated with liver cirrhosis
we grouped them into clusters, denoted metagenomic species (MGS)
here, on the basis of their abundance profiles27,30. Of the 66 MGS, 38 and
28 were enriched in healthy individuals and patients, respectively. The
significantly different abundance distribution between healthy and liver
cirrhosis subjects is shown in Fig. 2 and Supplementary Table 4. A majority
(82%) were also differentially abundant in the validation cohort (q , 0.05),
in spite of the reduced statistical power due to the smaller cohort size.

Composition of bacterial communities varies considerably as a func-
tion of the overall gene richness27,28 and the loss of richness is associated
with obesity and IBD27,28,31. A large majority of the 38 MGS enriched in
the healthy individuals (33, 86.8%) was correlated with the richness at
q , 1023 in the Chinese cohort; 26 of these (78.8%) were similarly cor-
related in a Danish cohort (Extended Data Fig. 3). These observations
indicate that gut communities of bacteria in healthy individuals across
continents may be largely similar. Furthermore, gene richness was much
lower in patients with liver cirrhosis than in healthy individuals (on
average 389,000 and 497,000 genes, respectively; Supplementary Table 5
and Extended Data Fig. 4, top left). Interestingly, among the species
enriched in healthy Chinese, were Faecalibacterium prausnitzii, which
has anti-inflammatory properties and was found in a ‘healthy’ gene-rich
microbiome27,28, and Coprococcus comes, which might contribute to gut
health through butyrate production. A similar butyrate production role
may be played by three Lachnospiraceae and five Ruminococcaceae
enriched in healthy individuals. A lower abundance of these species in
patients with liver cirrhosis indicates that these individuals have a less
healthy gut microbiome.

Most interestingly, a high proportion of MGS enriched in patients
belong to taxa such as Veillonella (n 5 8) or Streptococcus (n 5 6), known
to include species of oral origin (Supplementary Table 4). However, the
small intestine also harbours such species32 and small-intestinal bacterial
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Figure 1 | Differentially abundant phyla in patients (n 5 98) and healthy
individuals (n 5 83). The phylotypes decreased (a) and increased (b) in
patients with liver cirrhosis at the phylum, genus and species levels. Blue and
red represent healthy controls and patients with liver cirrhosis, respectively.
Only the 20 most abundant species in each group are shown for clarity. The
phylotypes with median relative abundances greater than 0.01% of total
abundance in either the healthy control group or the liver cirrhosis group are

included (FDR , 0.01, Wilcoxon rank-sum test corrected by the Benjamini and
Hochberg method). The boxes represent the interquartile range (IQR), from the
first and third quartiles, and the inside line represents the median. The whiskers
denote the lowest and highest values within 1.5 IQR from the first and third
quartiles. The circles represent outliers beyond the whiskers. The notches show
the 95% confidence interval for the medians. If the notches of two boxes do not
overlap, it gives evidence of a significant difference between the medians.
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overgrowth is frequently found in patients with liver cirrhosis33. To
explore the origin of the patient-enriched species, we used information
from the HOMD34 and GOLD35 databases about the origin of the closely
related sequenced isolates. We also constructed a catalogue of 114 pub-
licly available genomes for Streptococcus, Fusobacterium, Lactobacillus,
Veillonella and Megasphaera strains, originating mostly from mouth
or gut (57 or 28, respectively; Supplementary Table 6) and used it for
blastN and blastP analysis (Methods). Thirteen of the species were closest
to an oral isolate whereas only six were closest to the gut isolates, a single
species being from the ileum (Supplementary Table 4 and Extended Data
Fig. 4, top right). Comparison with the three ileum metagenomes failed
to reveal identity above that detected by comparison with the sequenced
genomes (Methods). We conclude that oral commensals invade the gut
in patients with liver cirrhosis. Possibly, an altered bile production in
cirrhosis renders the gut more permissible and/or accessible to ‘foreign’

bacteria, as bile resistance may be required for survival in the human
gut36,37. As patient-enriched MGS include pathogens such as Campylo-
bacter and Haemophilus parainfluenzae, these also might use the oral
route to invade the gut, possibly via contaminated food. The invasion
species foreign to the niche may occur not only in the colon but also in
the ileum, and contribute to the small-intestinal bacterial overgrowth
associated with liver cirrhosis. Among the patient-enriched species were
Streptococcus anginosus, Veillonella atypica, Veillonella dispar, Veillonella
sp. oral taxon and Clostridium perfringens, which have been reported
to cause opportunistic infections38–40.

To analyse the relations between the liver-cirrhosis-associated MGS,
we generated networks based on co-abundance, for healthy individuals
and patients with liver cirrhosis (Fig. 2b). A striking feature is that tax-
onomically related species tend to cluster, as reported previously29. These
observations indicate that the gut environment becomes permissive for
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Figure 2 | Differentially abundant MGS in patients (n 5 123) and healthy
individuals (n 5 114). a, Abundance of 50 ‘tracer’ genes for each species in the
discovery (npatients 5 98, nhealthy 5 83) and validation cohorts (npatients 5 25,
nhealthy 5 31); oral species are highlighted in red. Genes are in rows, abundance
is indicated by colour gradient (white, not detected; red, most abundant); the
enrichment significance is shown (q indicates the Mann–Whitney P values
corrected by the Benjamini and Hochberg method). Individuals are shown in
columns, ordered by increasing abundance of patient-enriched species.
Correlation of the species abundance and patients’ clinical parameters in the
discovery cohort are indicated in colour code (red and blue for positive and
negative correlations; intensity reflects the level of correlation). MELD, model
for end-stage liver disease; CTP, Child–Turcotte–Pugh score; TB, total
bilirubin; PT, prothrombintime test; INR, international normalized ratio

describing coagulation of the blood in patients with liver cirrhosis; Crea,
creatinine level; Alb, albumin level. b, Top, clinical parameters of patients for
the lowest and highest patient-enriched species abundance (LPA and HPA,
respectively; n 5 24 for each). P values indicate the significance of the difference
by Mann–Whitney U-test except MELD (Student’s t-test). Middle and bottom,
abundance-based species correlation network enriched in patients with liver
cirrhosis (n 5 25) and healthy individuals (n 5 33), respectively. Two nodes are
linked if the pooled variance z-test shows an FDR , 1029 when accounting
for the compositionality effect (see Methods). The edge width is proportional to
the correlation strength. The node size is proportional to the mean abundance
in the respective population. Nodes with the same colour are classified in the
same phylogenetic order level.
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the development and maintenance of the related taxa in many indivi-
duals. Obviously, taxonomically unrelated species can also thrive in such
environments, as observed with Campylobacter concisus, H. parainflu-
enzae or Fusobacterium, which tend to be associated with Veillonella in
patients. The overall abundance of species enriched in patients reached
high levels, exceeding 5% in over a quarter and approaching the extreme
of 40%, whereas it was very low in healthy individuals (Extended Data
Fig. 4, bottom). Interestingly, the severity of the disease was positively
correlated with the abundance of a number of MGS enriched in patients
and negatively correlated with those of the MGS enriched in controls
(and therefore under-represented in patients; Fig. 2a). The disease status
of the patients with the highest load of these bacteria was significantly
worse than that of the patients with the lowest load (Fig. 2b, top). Such a
‘dose response’ is consistent with an active role of the enriched species
in liver cirrhosis.

Microbial functions enriched in liver cirrhosis
To investigate the functional role of the gut microbiota in liver cirrhosis,
we identified 4,801 KEGG (Kyoto Encyclopedia of Genes and Genomes
database) orthologues and 13,970 eggNOG (evolutionary genealogy of
genes: Non-supervised Orthologous Groups database) orthologues asso-
ciated with the disease (Supplementary Tables 7 and 8). The most abun-
dant KEGG orthologues in patients and controls were enzyme families.
The most enriched orthologues in patients were membrane transport,
similar to findings for IBDs19,20, obesity41 and T2D22. In contrast, the
most prevalent markers among the controls included those involved in
carbohydrate metabolism, amino-acid metabolism, energy metabolism,
signal transduction and the metabolism of cofactors and vitamins (Ex-
tended Data Fig. 5). At the module or pathway level, the liver-cirrhosis-
associated markers included assimilation or dissimilation of nitrate to
or from ammonia, denitrification, GABA (c-aminobutyric acid) biosyn-
thesis, GABA shunt, haem biosynthesis, phosphotransferase systems and
some types of membrane transport, such as amino-acid transport. The
control-enriched modules included histidine metabolism, ornithine bio-
synthesis, creatine pathway, carbohydrate metabolism, repair systems and
glycosaminoglycan metabolism (Supplementary Table 9).

The enrichment of the modules for ammonia production in patients
suggests a potential role of gut microbiota in hepatic encephalopathy, a
complication related to liver cirrhosis that is characterized by hyper-
ammonemia. Overproduction of ammonia by gut bacteria might con-
tribute to increased levels of ammonia in blood. Manganese-related
transport system modules enriched in patients possibly contribute to
the changes in concentrations of manganese. The accumulation of man-
ganese within the basal ganglia in patients with end-stage liver disease
may have a role in the pathogenesis of chronic hepatic encephalopathy42,
a main complication of liver cirrhosis. The hydrodynamic venous shunt
and liver failure could promote this accumulation, which, in turn, causes
metabolic disorders of the nerve cell enzymes, affects transmission func-
tion of neural synapses and eventually leads to hepatic encephalopathy40.
Finally, the modules for GABA biosynthesis were enriched in the patients.
The GABA neurotransmitter system is involved in the pathogenesis of
hepatic encephalopathy in humans43. Because of the hydrodynamic
venous shunt and liver failure, GABA levels in the blood are increased44,
and could go through the blood–brain barrier to activate GABA recep-
tor and cause hepatic encephalopathy. Microbiome modulation, aim-
ing at manganese elimination and lowering of GABA levels in the gut,
might provide a new therapeutic option for the treatment of hepatic
encephalopathy.

Microbial dysbiosis in chronic diseases
It is unclear whether a gut microbial dysbiosis in type 2 diabetes (T2D)22,
IBD41 and liver cirrhosis13 is similar or unique for each disease. We com-
pared the differences between the gut microbiota from patients with
liver cirrhosis, T2D and IBD, and organized the disease-associated gene,
KEGG orthologue group and eggNOG orthologue group markers into
patient- and control-enriched groups. We then identified markers common

to different disease pairs (T2D and liver cirrhosis, liver cirrhosis and
IBD, and IBD and T2D) and to the three diseases (Supplementary
Table 10). Different diseases displayed a relatively unique profile, even
if some markers were shared (Extended Data Fig. 6a, b). Most liver-
cirrhosis-enriched markers had low P values (Extended Data Fig. 6c),
implying that patients with liver cirrhosis had more severe dysbiosis
than patients with T2D. Functional differences between liver cirrhosis
and T2D were also detected at the pathway level, even if there was a sig-
nificant increase in membrane transport markers in both (Extended
Data Figs 7 and 8). Most functional markers in both diseases were from
categories of carbohydrate metabolism, metabolism of cofactors and
vitamins, amino-acid metabolism and signal transduction. In contrast,
most cell motility markers in the KEGG orthologue group were enriched
in liver cirrhosis or T2D but not both, possibly indicating a unique role
in each disease (Extended Data Fig. 8a, b). However, similar cell motility
markers and pathways in the KEGG orthologue group were enriched
both in liver cirrhosis and in T2D controls, suggesting a possible role
in health (Extended Data Figs 8c, d and 9a, b).

Gene markers that identify patients with liver cirrhosis
We used a pattern recognition technique to identify patients by gut mic-
robiota information in the discovery cohort (n 5 181). For this we selected
46,000 genes, half enriched in patients and half in controls (Supplemen-
tary Table 11). From this set we selected 15 optimal gene markers by a
minimum redundancy–maximum relevance (mRMR) method combined
with an incremental feature search, which showed the highest value of
Matthews correlation coefficient (Extended Data Fig. 9c). A support
vector machine discriminator was constructed using the same samples
and 15 gene markers (Supplementary Table 12), with the training and
leave-one-out cross-validation AUC (area under the receiver operating
characteristic curve) achieving 0.918 (confidence interval: 0.881–0.955)
(Fig. 3b) and 0.838, respectively. The validation cohort of 31 healthy
controls and 25 patients with liver cirrhosis showed an AUC value of
0.836 (95% confidence interval 0.730–0.943) (Fig. 3c) for these samples,
confirming that the gut microbiota information could be applied to iden-
tify patients accurately.

To facilitate the clinical application of the 15 optimal gene markers,
we propose a patient discrimination index (PDI). The high correlation
coefficient value between the ratio of patients in our cohort and the PDI
(Fig. 3a and Supplementary Table 13) indicates that the PDI could be
used to identify patients with liver cirrhosis. The discriminatory power
of the PDI was then validated using an independent group (Fig. 3d).
The average PDI index between the control and the patient groups was
significantly different (P , 8.18 3 1025, Wilcoxon rank-sum test), con-
firming the potential use of gut microbiota information for identifying
patients with liver cirrhosis.

Discussion
To study gut microbiota in liver cirrhosis we first established a novel gut
gene catalogue (liver cirrhosis catalogue), including 98 patients with liver
cirrhosis and 83 healthy control individuals. Comparison with the previ-
ously established MetaHIT and T2D22 gene catalogues indicated a com-
mon core of approximately 800,000 genes and a considerable propor-
tion of catalogue-specific genes (37.01% of MetaHIT, 36.59% of T2D
and 18.02% of liver cirrhosis), indicating that the current gene sets are
still limited and should be completed by inclusion of more individuals.
Interestingly, although the T2D and liver cirrhosis gene sets are both
derived from Chinese populations, the number of unique genes in each
gene set was large. This might be due to the difference in disease profiles
and to the different genotypes, body mass indices, age45 and dietary
habits46 (Supplementary Table 14 and Extended Data Fig. 10). Never-
theless, there was no significant difference in the abundance of main
phyla (P . 0.01); of the top 30 most abundant genera and species, 28 and
26, respectively, were the same in both studies, and there were no signi-
ficant differences in abundance for most of them. Furthermore, the top
four species were exactly the same. These results, and the similarity of
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controls with the healthy Danish population, point towards overall sim-
ilarity of the microbiota in healthy individuals.

Use of the liver cirrhosis gene catalogue, in conjunction with the quan-
titative metagenomics approach, revealed a major change of the gut mic-
robiota in the patients with liver cirrhosis, mainly because of a massive
invasion of the gut by oral bacterial species. Correlation of the severity
of the disease with the abundance of the invading species suggests that
they may play an active role in the pathology. This was not noted in a
previous study, where the 16S-based approach probably lacked the required

species-level resolution, even if similar trends in taxonomy change between
the liver cirrhosis group and the healthy controls at the phylum, class
and order levels were observed13. Some of the MGS depleted in patients
were negatively associated with the severity of the disease (Fig. 2). This
opens avenues to the development of novel probiotics, which might help
combat the aggravation of liver cirrhosis. More generally, modulation
of microbiota to correct the major dysbioses we report might open new
avenues to treatment of liver cirrhosis.

A combination of 15 microbial genes discriminates patients with liver
cirrhosis from healthy individuals, with a high specificity. This could
lead to a new way of monitoring and preventing liver cirrhosis. None of
the 15 markers found in the liver cirrhosis study overlapped with the 50
markers found in the T2D study22, indicating that diagnosis of different
diseases with microbiota-targeted biomarkers may be a powerful tool
for disease detection.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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Figure 3 | PDI on the basis of gut microbial biomarkers. a, A PDI was
calculated for each individual from 15 gene markers selected using the mRMR
approach to evaluate the risk of liver cirrhosis. The filled blue circles show the
distribution of liver cirrhosis indices for all individuals (bins of 0.5 PDI units
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proportion of patients with liver cirrhosis in the corresponding bins. b, c, The
AUC is shown for the training (b) and validation (c) samples. d, The liver
cirrhosis PDI was computed for an additional 25 liver cirrhosis samples and 31
healthy control samples. The box depicts the interquartile range between the
first and third quartiles (25th and 75th percentiles, respectively); the line inside
denotes the median. Inset, the PDI without the outliers.
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METHODS
Patient information. Liver cirrhosis was diagnosed according to the international
guidelines by comprehensive consideration of liver biopsy, imaging examination,
clinical symptoms, physical signs, laboratory tests, medical history, progress notes
and cirrhosis-associated complications. Biopsy as the ‘gold standard’ for cirrhosis
diagnosis was used for 46 out of the 123 (37.4%) patients. As biopsy was counter-
indicated for patients with conditions such as refractory ascites and obvious bleed-
ing tendency, the remaining 77 (62.6%) were diagnosed using all other approaches
combined. To confirm diagnoses, we solicited outside expert opinions for each case.
Borderline or otherwise inconclusive cases were excluded from the study. After
discharge of the patient from the hospital, their case history was further reviewed
for medication history. Cases that progressed to hepatic carcinoma or those found
to suffer from other diseases such as hypertension and diabetes were excluded.

The control group included 114 healthy volunteers who visited the First Affiliated
Hospital of Zhejiang University in China for their annual physical examination.
The liver imaging and liver biochemistry results of all healthy controls were in the
normal range. Physical examination, routine examination of blood, urine and stools,
preoperative serological tests (including the detection of hepatitis B surface antigen,
hepatitis C virus antibody, Treponema pallidum antibody, human immunodefi-
ciency virus antibody), liver function, renal function, electrolyte, liver ultrasound,
electrocardiogram and chest X-ray results were checked in the healthy controls to
exclude any abnormal samples. Comprehensive clinical information for each enrolled
individual was recorded (Supplementary Table 1). Exclusion criteria for the con-
trol group included hypertension, diabetes, obesity, metabolic syndrome, IBD, non-
alcoholic fatty liver disease, coeliac disease and cancer. Individuals who received
antibiotics and/or probiotics within 8 weeks before enrolment were also excluded.
All participants, or their legally authorized representatives, provided a written informed
consent upon enrolment. The study conformed to the ethical guidelines of the 1975
Declaration of Helsinki and was approved by the Institutional Review Board of the
First Affiliated Hospital of Zhejiang University.
Human faecal sample collection and DNA extraction. Each cirrhotic patient and
healthy individual provided a fresh stool sample that was delivered immediately
from our hospital to the laboratory in an ice bag using insulating polystyrene foam
containers. In the laboratory it was divided into five aliquots of 200 mg and imme-
diately stored at 280 uC. A frozen aliquot (200 mg) of each faecal sample was pro-
cessed by phenol trichloromethane DNA extraction16,47 as previously described. DNA
concentration was measured by NanoDrop (Thermo Scientific) and its molecular
size was estimated by agarose gel electrophoresis.
DNA library construction and sequencing. DNA libraries were constructed accord-
ing to the manufacturer’s instructions (Illumina). The same workflows from Illumina
were used to perform cluster generation, template hybridization, isothermal amp-
lification, linearization, blocking, denaturing and hybridization of the sequencing
primers. We performed paired-end sequencing on 2 3 100 base pairs (bp) for all
libraries. The base-calling pipeline (Casava 1.8.2 with parameters ‘-use-bases-mask
y100n, I6n, Y100n, -mismatches 1, -adaptor-sequence’) was used to process the raw
fluorescent images and call sequences. The same insert size inferred by Agilent 2100
was used for all libraries (ranging from 275 to 450).
Quality control of reads. Reads that mapped to human genome together with
their mated/paired reads were removed from each sample using BWA48 with para-
meter ‘-n 0.2’. Then quality control used the following criteria: (1) reads containing
more than 3 N bases were removed; (2) reads containing more than 50 bases with
low quality (Q2) were removed; (3) no more than 10 bases with low quality (Q2) or
assigned as N in the tail of reads were trimmed. Sequences that lost their mated reads
were considered as single reads and were used in the assembly procedure. Resulting
filtered reads were considered for the next step of the analysis.
De novo assembly of the Illumina short reads. Considering that k-mers with
very low frequencies might arise from sequencing errors, they were not used in
assembly by SOAPdenovo49 (version 1.05), which is based on De Brujin graph con-
struction. SOAPdenovo (version 1.05) was used in Illumina short read assembly
with parameters ‘-d 1 -M 3’. Then we removed ambiguous bases from assembled
scaffolds (this could divide one scaffold into multiple ones) and discarded scaffolds
with lengths less than 500 bp. Finally we tested series of k-mer values (from 31 to
59), then chose one with the longest N50 value for the remaining scaffolds. For each
sample, we mapped clean data against scaffolds using SOAPalign version 2.21 (ref. 50)
with parameters ‘-u -2 -m 200’. Unused data from each sample were pooled and split
into four parts (considering memory limit). Unused reads were repeatedly assembled
with the same parameters but only one k-mer value, -K 55, was chosen.
Construction of non-redundant human gut gene set. Total DNA was extracted
from the faecal samples of 98 Chinese patients with liver cirrhosis and 83 healthy
Chinese controls (Supplementary Table 1) and sequenced using an Illumina HiSeq
2000 (Illumina). This produced an average of 4.74 gigabases (Gb) of high-quality
sequence for each sample, providing a total of 858 Gb of sequence data (Supplementary
Table 15). The reads were assembled into contigs for all samples using the assembly

software SOAPdenovo49.Unassembled reads from 166 samples were pooled and
the de novo assembly process was performed again for these reads (Extended Data
Fig. 9d). Finally, 61.68% of the total reads were used to generate 4.4 million contigs
without ambiguous bases (minimum length of 500 bp). These contigs had a total
length of 11.1 Gb, an average N50 length of 8,644 bp and ranged from 1,673 to
48,822 bp (Supplementary Table 15). To predict microbial genes for each of the 181
samples, we applied the methodology used in the MetaHIT human gut gene cata-
logue study29. The non-redundant human gut gene set was built by pairwise com-
parison of all the predicted ORFs using blat and the redundant ORFs were removed
using a criterion of 95% identity over 90% of the shorter ORF length, which is con-
sistent with the criterion used for the non-redundant European human gut gene
set29 and T2D study22.

MetaGeneMark51 (prokaryotic GeneMark.hmm version 2.8) was used to predict
ORFs in scaffolds without ambiguous bases. The program predicted 13,371,697
ORFs using a 100 bp cut-off for prediction (Supplementary Table 15). The total length
of the predicted ORFs was 9,495,923,532 bp, representing 90.28% of the total length of
the contigs. Among the ORFs, 1,047,885 (54.6%) were complete genes, while 869,808
(45.4%) were incomplete. A non-redundant ‘liver cirrhosis gene set’ was established
by removing redundant ORFs, defined as those sharing 95% identity over 90% of the
shorter ORF length in pairwise alignments. The final non-redundant liver cirrhosis
gut gene set contained 2,688,468 ORFs, with an average length of 750 bp and 42%
of reads could be aligned to the gene catalogue.

Then genes from the liver cirrhosis, T2D and MetaHIT catalogues were merged
to create a non-redundant gene set for subsequent analyses. We checked the gaps
and frames in the blat results; if there were gaps or the frames were different in the
alignment result of two ORFs, the shorter one would not be removed as a redund-
ancy. We used MetaGeneMark to predict genes in assembled contigs originally from
MetaHIT and T2D and merged these three gene sets into a single one with the above
method.
Organism abundance profiling. SOAPalign 2.21 was used to align paired-end clean
reads against reference genomes with parameters ‘–r 2 –m 200 –x 1000’. Reads with
alignments on the same reference genomes could be assigned into two types, as fol-
lows. (1) Unique reads (U): reads having alignments with only one genome. These
reads were denoted as unique reads. (2) Multiple reads (M): reads having alignments
with more than one genome. If these genomes came from one species, we denoted
these reads as unique reads. If they were from more than one species, we denoted
these reads as multiple reads.

For species S, if its abundance is Ab(S), and it might have alignments with U
unique reads and M multiple reads, the computation is

Ab Sð Þ~Ab(U)zAb(M)

Ab(U)~U=l

Ab(M)~(
XM

i~1

Co � fMg)=l

Ab(U) and Ab(M) are abundance of unique and multiple reads, respectively, and l
is length of relative genome. For each multiple read, there is a species-specific coe-
fficient Co; let us suppose one read in {M} has alignments with N different species,
then Co was calculated as follows:

Co~U=
XN

i~1

Ab(U)

For these reads, we add a unique abundance of N species as the denominator. Before
we calculate the abundance of species S, we calculate Ab(U) for all species as con-
stants; if Ab(U) of species S is 0, then Co will also be 0, and consecutively the abun-
dance of species S is 0. Species abundance was added to obtain the genus-level profile
table. For some species that do not have a genus, they are denoted as unclassified
genera for each species.
Gene abundance profiling. Reads were aligned against the gene set by using
SOAPalign50 with parameters ‘-r -m 200 -x 1000’. We counted a gene’s abundance
if both paired-end reads could be aligned on the same gene. If only one of the paired-
end reads could be aligned on a gene, we aligned both reads against assembled
contigs by checking if the previously non-aligned read were in the non-translated
region or not. If true, both reads were validated for gene count; if not, both reads
were discarded.

When calculating the abundance of genes, we used the same strategy as for
the abundance profiling of the organisms. For a given gene G, its abundance is
Ab(G), and it might have alignments with U unique reads and M multiple reads,
as follows:
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Ab Gð Þ~Ab(U)zAb(M)

Ab(U)~U=l

Ab(M)~(
XM

i~1

Co � fMg)=l

Ab(U) and Ab(M) are the abundances of unique and multiple reads, respectively,
and l is length of gene G. For each multiple read, we calculate a specific coefficient
Co for this gene. Let us suppose one read with multiple {M} alignments in N dif-
ferent genes, then Co was calculated as follows.

Co~U=
XN

i~1

Ab(U)

For these reads, we add a unique abundance of N species as the denominator.
Population stratification. Population stratification involved in our metagenomic
data was corrected with the modified EIGENSTART method as follows, First, sin-
gular value decomposition was carried out to obtain axes of variation, where the
number of significant axes was determined according to a Tracy–Widom test at a
significance level of P , 0.05; each axis was then replaced with the residuals of this
axis from a regression to disease state; the corrected data were finally achieved by sub-
tracting from original data set the information associated with the residuals of each axis.
Gene count determination. Gene counts were computed essentially as described
in ref. 27. Briefly, data were downsized to adjust for sequencing depth and technical
variability by randomly selecting 6.2 million reads mapped to the merged gene
catalogue for each sample and then computing the mean number of genes over 30
random drawings (Supplementary Table 4). This was possible for all but two patients
with liver cirrhosis from the validation cohort (with insufficient number of mapped
reads), who were excluded from this analysis. The results are displayed in Extended
Data Fig. 4 top left.
Gene functional classification and orthologue group abundance profiling. Protein
sequences of the predicted genes were searched using National Center for Biotech-
nology Information blastP against the eggNOG 3.0 database52 and the KEGG gene
database (KEGG FTP release 21 January 2013) with parameters ‘-num_descriptions
100000, -evalue 1e-5’. Genes that had alignments with a bits score higher than 60
were assigned into one or more eggNOG or KEGG orthologue groups. We used the
methods introduced in ref. 29 to calculate abundance of proteins archived in the
eggNOG and KEGG databases. To calculate abundances of eggNOG or KEGG orth-
ologue groups, we added abundances of proteins assigned into the same eggNOG or
KEGG orthologue groups, as abundances of eggNOG or KEGG orthologue groups,
then profiles of eggNOG/KEGG orthologue groups were generated.
Gene biomarker identification. Genes from the gene-profile matrix were used in
an association study aimed at identifying those that were differentially abundant
between the patient and the healthy control groups. Wilcoxon tests were employed
to compute the probabilities that frequency profiles did not differ between the patient
and the healthy control groups by chance alone. Benjamini and Hochberg multiple
test correction was applied to the P values. By performing a selection only based on
a threshold of P , 0.01, we found 541,582 genes. For specificity and computational
reasons, we used a very stringent significance threshold of FDR , 0.0001. This pro-
cess identified 75,245 genes that were differentially abundant between the groups
(49,830 were more abundant in the patients with liver cirrhosis and 25,415 in the
healthy control group). A similar P value and group enrichment method was calcu-
lated for the NOG/KEGG orthologue groups as well.
MGS. We followed the approach described in refs 27 and 30 to cluster genes from
the current study into MGS. Briefly, in a first step the pairwise Spearman’s corre-
lation coefficient (r) of different genes was computed, using gene abundances
across all individuals, and the genes correlated over a given threshold were clus-
tered (single-linkage clustering). To favour clustering specificity (that is, assigning
only the genes of the same species to the same cluster) we used a rather high thresh-
old (r . 0.7). To correct for the concomitant loss of sensitivity, we performed a
second step whereby the mean abundance signal of each cluster of at least 50 genes
was computed, using the 50 most connected genes of a cluster. The clusters that
had r . 0.85 were fused. This procedure was applied separately to the 49,830 genes
enriched in patients with liver cirrhosis and the 25,415 genes enriched in healthy
controls. Of the 25,415 ‘healthy’ genes, 21,423 fell into 43 clusters composed of 51–
2,702 genes after the first clustering step, and 38 clusters of 51–2,970 genes after the
second step. Of the ‘liver cirrhosis’ genes, 31,386 out of 49,830 fell into 60 clusters of
51–3,000 genes after the first clustering step, and 28 clusters of 51–5,755 genes after
the second step.

To verify that the genes from a given cluster belonged to the same genome and
to annotate the MGS taxonomically, we performed blastN and blastP analyses using
a collection of 6,006 genomes (the available reference genomes from the National
Center for Biotechnology Information and the set of draft gastrointestinal gen-
omes from the Data Analysis and Coordination Center of the HMP and MetaHIT

(3 August 2012 version)). MGS were assigned to a given genome when more than
80% of its ‘tracer genes’27 matched the same genome using blastN, at a threshold of
95% identity over 90% of gene length. Six ‘healthy’ and 24 ‘liver cirrhosis’ MGS could
thus be assigned to the strain level (see Extended Data Fig. 9e, f and Supplementary
Table 4). The remaining MGS were annotated using blastP analysis and assigned to
a given taxonomical level from genus to superkingdom level if more than 80% of
their 50 tracer genes had the same level of assignment27. All but one of the 36 remain-
ing species could thus be assigned to a given genus, family or order (see Supplemen-
tary Table 4). The quality of the clustering was thus validated by the homogenous
annotation of its marker genes, which also held true for all of the MGS genes (data
not shown). The abundance of the 66 MGS in each individual was computed using
the 50 tracer genes.

To explore the origin of the species-level annotated MGS, we constructed a ref-
erence catalogue, grouping 114 publicly available Streptococcus (57), Fusobacterium
(26), Lactobacillus (16), Veillonella (12) and Megasphaera (3) genomes, mostly of
oral (50) or gut (28) isolates (Supplementary Table 6). The 16 liver cirrhosis MGS
that were assigned to the corresponding genera were compared with the genomes,
using blastN. A score (T) was computed for each MGS, taking into account (1) the
proportion of genes above 95% identity and 90% coverage (Q), (2) the average iden-
tity (R), (3) the average coverage (S) and (4) T 5 Q 3 R 3 S.

A majority of the MGS enriched in patients with liver cirrhosis (15 out of 28)
were of oral origin by this criterion whereas six were from gut or faeces, including
a single species from the ileum (Supplementary Table 4 and Extended Data Fig. 4
top right). To explore further the origin of the liver-cirrhosis-enriched MGS, we
compared them by blastN with the genes from three available ileum metagenomes31

and failed to reveal identity beyond that found with sequenced genomes.
Only a small minority of the 38 MGS enriched in healthy individuals (15.8%)

could be assigned species phylogenetic information by comparison with sequenced
gut genomes using blastN (95% identity and 90% overlap; Supplementary Table 4).
Annotation to comparable taxonomic levels was observed for the 58 gut MGS ana-
lysed in the context of gene richness in a Danish cohort27 (Extended Data Fig. 9e, f),
reflecting a paucity of isolated and sequenced gut strains. Furthermore, it is striking
that all 38 MGS enriched in healthy Chinese were found in the Danish cohort
(Extended Data Fig. 3). In sharp contrast with the MGS enriched in healthy sub-
jects, an overwhelming majority of the MGS enriched in patients (24 out of 28)
could be assigned to a species. Such a difference has a vanishingly low probability
of being caused by chance alone (1.3 3 10221 by a x2 test, Extended Data Fig. 9e, f)
and indicates a highly modified composition of gut microbes.
Co-occurrence network of MGS. The 66 marker profiles of the differentially
abundant MGS between patient and healthy individuals were correlated separately
for patients and for healthy individuals, essentially as described in ref. 53. For each
of the 2,112 possible edges [(66 3 66/2) – 66] we computed 1,000 permutations by
renormalizing the data after each step and computed Spearman’s correlation coe-
fficients to obtain the null distributions due to the compositionality effect53. For
each of the edges we also computed the bootstrap distribution of the Spearman’s
correlation coefficients to have the confidence interval and the corresponding var-
iance. We next applied for each edge a z-test with the pooled variance from both
distributions and computed a significance P value. Multiple testing corrections were
applied to the P values using the Benjamini and Hochberg method, and only those
having FDR , 1029 were used to construct the network. This FDR threshold cor-
responds approximately to r . 0.4. The network reflects strong correlations that
are not spurious and that are not due to the compositionality effect. The resulting
network is displayed as Fig. 2.
Marker selection by mRMR. Patient discrimination gene markers (23,000 from
healthy controls and 23,000 from patients, selected as most discriminant by the
Wilcoxon rank-sum test upon adjustment for age, performed as described in ref. 54;
Supplementary Table 11) were selected with a two-step scheme (using the side
Channel Attack R package). All markers retained were first filtered by the mRMR
algorithm55 (using the side Channel Attack R package), and the top 180 best ones
were selected for further analysis. Then, we performed an incremental search to
select the optimal subset of genes, named as markers. Concisely, genes were sequen-
tially added into the subset with a step of 5, the performance of which was evaluated
on the basis of linear discriminant analysis and leave-one-out cross-validation.
Here, Matthews correlation coefficient is a balanced measure taking into account
true and false positives and negatives; it is superior to accuracy or error rate when
the classes (healthy and diseased, etc.) are of very different sizes. Matthews corre-
lation coefficient (MCC) is defined as

MCC~
TP|TN{FP|FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPzFPð Þ TPzFNð Þ TNzFPð Þ TNzFNð Þ
p

where TP, TN, FP and FN are true positive, true negative, false positive and false
negative, respectively. We finally selected a set of 15 gut microbial gene markers as
the optimal selection for patient discrimination.
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Model construction and validation. On the basis of the 15 metagenomic markers
described above, a support vector machine classifier (radial basis function kernel
and default parameters) was constructed for patient discrimination (realized by the
e1071 package of R software), the performance of which was assessed by receiver
operating characteristic analysis. The AUC and corresponding 95% confidence
intervals for training and validation data sets, obtained by using the pROC package
of R software (10,000 bootstrap replicates), were 0.97 (0.95–0.99) and 0.889 (0.79–
0.98), respectively.
Definition of PDI. To facilitate clinical application of the selected 15 metage-
nomic markers, we defined a more straightforward index (PDI) for discrimination
of patients. For each individual sample, the PDI of sample j that was denoted by Ij

was computed as follows:

Id
j ~

X
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X
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 !
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where Aij is the relative abundance of marker i in sample j. N and M are subsets of
patient- and control-enriched markers in these 15 selected gut metagenomic mar-
kers, respectively. Moreover, jNj and jMj are the sizes of these two sets.
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Extended Data Figure 1 | Venn diagram comparing the current major
human microbiome gene set and the results of a principal component
analysis of biomarkers distributed between patients with liver cirrhosis and
healthy controls. a, Venn diagram of the four currently available major human
microbiome gene sets. The total gene number in each gene set and the
overlapping areas are indicated. b, Venn diagram of the three major human gut
gene sets (LC, liver cirrhosis gene set; T2D, type 2 diabetes gene set; MetaHIT,

MetaHIT gene set; HMP, HMP gene set). c, Visualization of the principal
component analysis results for the liver-cirrhosis-associated genes that differed
significantly in the discovery cohort (FDR , 0.0001, Wilcoxon rank-sum test
adjusted for multiple testing). The principal component analysis is built here
using these genes in the validation cohort (25 patients with liver cirrhosis in red,
31 healthy controls in green).
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Extended Data Figure 2 | Phylogenetic abundance at the phylum, genus
and species levels from liver cirrhosis and healthy control samples.
a, Phylogenetic abundance variation box plot at the phylum level and the 30
most abundant phylotypes at the genus and species levels in the healthy
controls are shown. Red, green, blue, turquoise and purple represent
Bacteroidetes, Firmicutes, Proteobacteria, Actinobacteria and other phyla,
respectively. The colour of each genus and species corresponds with the colour

of its respective phylum. b, Phylogenetic abundance variation box plot at the
phylum level and the 30 most abundant phylotypes at the genus and species
levels in the liver cirrhosis are shown (see Methods for the calculations). The
boxes represent the interquartile range, from the first and third quartiles, and
the inside line represents the median. The whiskers denote the lowest and
highest values within an interquartile range of 1.53 from the first and third
quartiles. The circles represent outliers beyond the whiskers.
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Extended Data Figure 3 | MGS enriched in healthy Chinese individuals
(n 5 114) are present in Danish individuals (n 5 292). Presence and
abundance of 50 ‘tracer’ genes for each species; genes are in rows; abundance
is indicated by colour gradient (white, not detected; red, most abundant).
Individuals, ordered by increasing gene count, are in columns. Significance of

correlation of species abundance (computed as mean abundance of the tracer
genes) and gene count (q value, FDR adjusted) is given. Species in the Chinese
cohort that were identical to those previously found, as correlated with the
gene diversity in the Danish cohort27, are highlighted in red. Left, the Chinese
healthy cohort. Right, the Danish obesity cohort.
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Extended Data Figure 4 | Massive changes in the gut microbiome in liver
cirrhosis. Top left, healthy individuals have more gut microbial genes than
patients with liver cirrhosis. Gene count was computed after downsizing the
mapped reads to a level of 6.2 million (ref. 27). The significance of the difference
was computed using a Student’s t-test. Bottom, abundance of patient-enriched
species (n 5 28) in patients with liver cirrhosis (n 5 98) and healthy controls
(n 5 83). The relative abundance of each patient-enriched species was
computed as a sum of the abundances of all the genes assigned to it divided by
the sum of the abundances of all gut microbial genes in each patient, which is

equal to 1 in the normalized data set. Bar length indicates the relative
abundance of a given species depicted by a different colour. Patients were
ordered by the total patient-enriched species abundance; LPA and HPA
quartiles (n 5 24) are separated by red vertical lines. Top right, oral species are
frequent in patients with liver cirrhosis. MGS enriched in healthy controls
are largely not assigned to a species level, while those enriched in patients with
liver cirrhosis are largely assigned to a species level and are mostly of oral origin
(see Methods for species assignment).
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Extended Data Figure 5 | The distribution of eggNOG orthologue group
and KEGG functional categories for liver-cirrhosis-related markers.
a, Comparison between the liver-cirrhosis-enriched and control-enriched
eggNOG orthologue group markers for 24 eggNOG orthologue group
functional categories shown by number. b, Comparison between the liver-
cirrhosis-enriched and control-enriched eggNOG orthologue group markers

for 24 eggNOG orthologue group functional categories shown by percentage.
c, Comparison between the liver-cirrhosis-enriched and control-enriched
KEGG orthologue group markers for each KEGG functional category shown by
number. d, Comparison between the liver-cirrhosis-enriched and control-
enriched KEGG orthologue group markers for each KEGG functional category
shown by percentage.
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Extended Data Figure 6 | A comparison of the gene markers for the
different groups. a, Venn diagram showing a gene marker comparison of
case-enriched gene markers from the liver cirrhosis, T2D and IBD studies.
b, Venn diagram showing a gene marker comparison of control-enriched gene
markers from the liver cirrhosis, T2D and IBD studies. c, The length of the bar

(y axis) represents the number of genes; the P value in the related range is shown
on the x axis. The pink and light green bars show genes involved in type 2
diabetes and liver cirrhosis, respectively. Inset, the log P value of the gene
markers between the two studies.
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Extended Data Figure 7 | The distribution of eggNOG functional categories
for case-enriched and control-enriched gene markers in liver cirrhosis
only, T2D only and the liver cirrhosis/T2D groups. a, Comparison of the
eggNOG orthologue group functional categories for case-enriched gene
markers shown by number. b, Comparison of the eggNOG orthologue group

functional categories for case-enriched gene markers shown by percentage.
c, Comparison of the eggNOG orthologue group functional categories for the
control-enriched gene markers shown by number. d, Comparison of the
eggNOG orthologue group functional categories for the control-enriched gene
markers shown by percentage.
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Extended Data Figure 8 | The distribution of the KEGG functional
categories for case-enriched and control-enriched gene markers in liver
cirrhosis only, T2D only or the liver cirrhosis/T2D group. a, Comparison of
the KEGG pathway categories for the case-enriched gene markers shown by
number. b, Comparison of the KEGG pathway categories for the case-enriched

gene markers shown by percentage. c, Comparison of the KEGG pathway
categories for the control-enriched gene markers shown by number.
d, Comparison of the KEGG pathway categories for the control-enriched gene
markers shown by percentage.
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Extended Data Figure 9 | Estimating the optimum number of markers and
establishing the taxonomic assignment of MGS. a, Comparison of the case-
enriched gene markers. b, Comparison of the control-enriched gene markers.
c, The mRMR method was used to identify the liver-cirrhosis-associated
markers. Sequential subsets were generated at five-marker intervals. For each
subset, the error rate was estimated using a leave-one-out cross-validation of a
linear discrimination classifier. The optimum (highest value of the Matthews
correlation coefficient) subset contains 15 gene markers. d, The study included
a discovery and a validation phase. Volunteers for both phases were recruited in
the same hospital. Both direct read mapping and de novo assembly were
performed for each sample. A taxonomy profiling table was established for

taxonomy analysis. A novel gut gene set was established, and annotated.
Identification of the MGS, finding markers and validating markers is also
shown. e, MGS enriched in Chinese patients with liver cirrhosis and healthy
individuals. Species-level assignment was deduced from the best BlastN hits of
genes from a given MGS at thresholds of the average of more than 95% identity
and more than 90% overlap with genes from a sequenced genome. For MGS
where these thresholds were not reached, an assignment was attributed at the
lowest taxonomy level where at least 80% of the genes had the same best hit
BlastP taxonomy; in all cases these criteria held true at higher taxonomic levels.
f, Taxonomic assignments of 58 species related to gut gene richness in a
Danish cohort27.
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Extended Data Figure 10 | Phylogenetic abundance of healthy controls in
the discovery stage in the liver cirrhosis and T2D studies. The relative
abundance of top bacterial phylotypes at the phylum, genus and species levels,

respectively, in the liver cirrhosis study (top three panels) and in the T2D study
(bottom three panels).
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