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Antimicrobial resistance is one of the major threats to health 
identified by the World Health Organization for the com-
ing decades1. The intestinal microbiota plays a pivotal role 

in this phenomenon as it harbours a vast diversity of bacterial spe-
cies, some of them possessing antibiotic resistance determinants 
(ARDs) that may enable their survival under antibiotic exposure. 
Previous studies attempted to identify ARDs in the intestinal 
microbiota2–4 but were confounded by the distant homologies 
between known ARDs (mostly from culturable bacteria) and 
ARDs from the intestinal microbiota (which are generally not cul-
tured)5,6. For these reasons, bioinformatic tools based on sequence 
comparison (ARG-ANNOT7, CARD8, Resfinder9, DeepARG10) or 
motif detection (Resfams11) are often unsuccessful in character-
izing the diversity of ARDs from metagenomic datasets. Indeed, 
there is no consensus on an optimal approach to detect ARDs  
in metagenomic datasets. Consequently, an accurate census of 

intestinal ARDs (that is, the intestinal resistome12) has not yet 
been fully determined.

While many bacteria have intrinsic, chromosomally encoded 
ARDs and the capability of increasing resistance through mutation, 
they can also enrich their resistance capabilities through the acquisi-
tion of exogenous ARDs located on mobile genetic elements (MGEs) 
such as plasmids, transposons or phages. The intestinal microbiota 
harbours thousands of bacterial species including well-known 
pathogens (for example, Enterobacteriaceae and Enterococcus spp.). 
This unique environment is assumed to be a reservoir of ARDs that 
can potentially be transferred to bacterial pathogens13. Nonetheless, 
despite the high selective pressure exerted on the intestinal micro-
biota by over seven decades of intensive antibiotic usage, a very low 
number of transfer events from an intestinal commensal to a bacte-
rial pathogen have been observed14,15. This challenges the hypoth-
esis of a mobile resistome and the assumption that the intestinal 
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The intestinal microbiota is considered to be a major reservoir of antibiotic resistance determinants (ARDs) that could poten-
tially be transferred to bacterial pathogens via mobile genetic elements. Yet, this assumption is poorly supported by empirical 
evidence due to the distant homologies between known ARDs (mostly from culturable bacteria) and ARDs from the intestinal 
microbiota. Consequently, an accurate census of intestinal ARDs (that is, the intestinal resistome) has not yet been fully deter-
mined. For this purpose, we developed and validated an annotation method (called pairwise comparative modelling) on the 
basis of a three-dimensional structure (homology comparative modelling), leading to the prediction of 6,095 ARDs in a cata-
logue of 3.9 million proteins from the human intestinal microbiota. We found that the majority of predicted ARDs (pdARDs) 
were distantly related to known ARDs (mean amino acid identity 29.8%) and found little evidence supporting their transfer 
between species. According to the composition of their resistome, we were able to cluster subjects from the MetaHIT cohort 
(n = 663) into six resistotypes that were connected to the previously described enterotypes. Finally, we found that the rela-
tive abundance of pdARDs was positively associated with gene richness, but not when subjects were exposed to antibiotics. 
Altogether, our results indicate that the majority of intestinal microbiota ARDs can be considered intrinsic to the dominant 
commensal microbiota and that these genes are rarely shared with bacterial pathogens.
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microbiota serves as a reservoir of ARDs to which pathogenic bac-
teria have easy access16. In this study, our objective was to perform 
an extensive characterization of the human gut resistome (including 
the capacity of ARDs to transfer between species) and to assess its 
dynamics under various antibiotic exposures.

Prediction of ARDs in the intestinal microbiota
To predict ARDs in the intestinal microbiota, we developed a 
method based on protein homology modelling (see Methods) 
that we termed pairwise comparative modelling (PCM). PCM is a 
generic method using homology modelling to increase the speci-
ficity of functional prediction of proteins, especially when they 
are distantly related to potential homologues. PCM uses a list of 
reference proteins sequences from a given family, the ARD struc-
tures of this family (used as structural templates in protein data 
bank (PDB) format) and a series of negative references (Fig.  1a 
and Supplementary Figs.  1–3). Structural models are built using 
both the ARD reference and negative reference templates. Scores 
generated from both positive and negative references are used to 
determine which model performed the best. This is done using a 
machine-learning algorithm trained on 662 ARDs and 522 nega-
tive references. The PCM score equals the number of times the 
query was classified as an ARD for the bootstraps performed, 
expressed as a percentage. Candidates with a PCM score ≥​50% and 
an alignment score with the reference template (TM score given by 
TM-Align) ≥​0.517 were predicted as ARDs.

The performance of PCM to predict ARDs was assessed using 
in vitro and in silico methods. We synthesized 71 candidate ARDs 
from 12 families (Table 1) and expressed them in Escherichia coli (see 
Methods). All 12 predicted ARDs (pdARDs) sharing an amino acid 
identity >​95% with a known ARD had a detectable resistance activ-
ity against antibiotics (Fig. 1b). Resistance activity was also detected 
in 35 out of 41 (85.3%) of the predictions made with a good level 
of confidence (PCM score >​99%, TM score TM-Align >​0.9) and in 
8 out of 18 (44.4%) of the predictions with a lower level of con-
fidence (PCM score <​80%, TM score TM-Align <​0.8). The mean 
amino acid identity of the functional pdARDs (good and fair pre-
dictions, n =​ 43) with known ARDs was 28.6% (range 19.4–82.6%, 
Supplementary Table  1). We then tested PCM against an experi-
mentally validated functional metagenomics dataset from soils18. 
In this case, PCM was able to accurately identify 1,374 ARDs out 
of 1,423 hits (sensitivity 96.6%) (see Methods). Finally, we assessed 
the performances of PCM with incomplete proteins as inputs, and 
showed that PCM could correctly predict ARDs when the available 
amino acid sequence was at least 40% complete (Supplementary 
Fig.  4). After the in vitro and in silico validation of the method, 
we used PCM to search for ARDs in a catalogue made of 3,871,657 
proteins that was built from the sequencing of faecal samples of 
396 human individuals (177 Danes and 219 Spanish) recruited in 
the MetaHIT project19. In total, we predicted 6,095 ARDs (0.2% of 
the catalogue) from 20 ARD classes conferring resistance to nine 
major antibiotic families20: β​-lactams (class A, B1–B2, B3, C and D 
β​-lactamases), aminoglycosides (AAC(2’), AAC(3)-I, AAC(3)-II, 
AAC(6’), ANT, APH, 16S rRNA methylases), tetracyclines (Tet(M), 
Tet(X)), macrolides (Erm), quinolones (Qnr), sulfonamides (Sul), 
trimethoprim (DfrA), fosfomycin (Fos) and glycopeptides (Van 
ligases) (Table 1 and Supplementary Table 1). With the same, exten-
sively curated reference ARDs census as input, only 67 ARDs would 
have been predicted according to conventional BLASTP21 search 
with a specific identity threshold (80% over 80% of the reference 
sequence)3,4. ARG-ANNOT7, Resfinder9 and DeepARG10 were able 
to predict 54, 50 and 2,139 ARDs, respectively, while Resfams11 pre-
dicted a very high number of ARDs (n =​ 44,105). The HMM-based 
search for class B1 β​-lactamases published by Berglund et al.22 also 
yielded a high number of hits (n =​ 3,490) in the 3.9 million protein 
catalogue (Fig. 1c and Supplementary Fig. 5). Further analysis on a 

catalogue of dummy, synthetic 3.9 million proteins indeed showed 
that Resfams, DeepARG and the Berglund et al. HMM-based search 
lacked specificity (see Supplementary Information). The mean iden-
tity shared between predicted (n =​ 6,095) and reference ARDs was 
29.8%; it was significantly higher than candidates not predicted as 
ARDs (mean 23.0%, Wilcoxon unpaired test P =​ 2 ×​ 10–16, Fig. 1d). 
Indeed, most of the pdARDs were distantly related to reference 
ARDs (Supplementary Figs. 6 and 7). Besides, PCM failed to pre-
dict 16 ARDs that shared at least 40% identity with a reference ARD 
(Supplementary Table 2). The 6,095 pdARDs and their structures 
are available at http://mgps.eu/Mustard.

Taxonomic distribution of ARDs
A host bacterial phylum could be assigned to 72.3% (4,405 out of 
6,095) pdARDs. The majority was identified as from the domi-
nant human intestinal phyla Firmicutes (2,962 out of 4,405, 72.3%) 
and Bacteroidetes (858 out of 4,405, 19.5%) (Supplementary 
Fig.  8) with only 5.8% (225 out of 4,405) of pdARDs coming 
from Proteobacteria. An additional seven pdARDs were pre-
dicted to be harboured by Archaea (Methanobrevibacter and 
Methanoculleus genera), putatively conferring resistance to macro-
lides, tetracyclines, aminoglycosides, sulfonamides and glycopep-
tides (Supplementary Table 1). We also predicted ARDs in genera 
of medical interest where no ARDs had been identified such as 
Akkermansia23 (ten pdARDs) and Faecalibacterium24 (44 pdARDs). 
Only 23 out of 6,095 (0.4%) had been previously identified in fami-
lies and genera that include human pathogens (Enterobacteriaceae, 
Campylobacter, Enterococcus, Streptococcus and Acinetobacter). The 
distribution of the families of pdARDs differed according to the 
phyla (Supplementary Fig. 9): Firmicutes and Proteobacteria were 
enriched with aminoglycosides-modifying enzymes (spanning 
APH, ANT and AACs) whereas Bacteroidetes were enriched in 
Sul and class A β​-lactamases. Interestingly, the tigecycline-degrad-
ing monooxygenase Tet(X) was frequently found in Bacteroidetes 
and Proteobacteria, the two phyla between which transfer of the 
tet(X) gene has been reported14,25. To support these assignments, we 
sequenced the metagenome of four human faecal samples before 
and after an overnight culturing using conditions that favoured the 
growth of oxygen-tolerant bacteria such as Enterobacteriaceae and 
enterococci (see Methods). The results showed an enrichment of 
Proteobacteria (over Firmicutes and Bacteroidetes), and a commen-
surate increase of class C β​-lactamases, Fos and Tet(X), along with 
Van ligases (Supplementary Fig. 10).

Location of the pdARDs and association with MGEs
We investigated the potential for mobility of the pdARDs at differ-
ent levels. First, we took advantage of the identification of gene clus-
ters based on co-abundance and co-occurrences of genes among 
the 396 faecal metagenomes used to build the 3.9 million MetaHIT 
gene catalogue19. A total of 7,381 gene clusters referred to as metage-
nomic units (MGUs) were identified. Among MGUs, metagenomic 
species (MGS) are defined as MGUs with ≥​700 genes, which are 
considered to be representative of partial or complete bacterial 
genomes19. MGUs of <​700 genes include MGEs such as plasmids, 
phages, transposable elements and incomplete chromosomal 
sequences. The 7,381 MGUs from the 3.9 million gene catalogue of 
intestinal microbiota gene were queried with the pdARDs. A total 
of 3,651 (59.9%) pdARDs could be mapped onto an MGU. The dis-
tribution of pdARDs as a function of MGU size is shown in Fig. 2a. 
Most (95.6%, 3,489 out of 3,651) pdARDs mapped onto MGS and 
the relative abundance of pdARDs correlated strongly with the 
abundance of their respective MGS (Supplementary Information), 
supporting their location on the same bacterial host across the 396 
individuals. We also searched for pdARDs in MGS pangenomes 
(MSPs)26 obtained from the 9.9 million intestinal gene catalogue27. 
Similar to MGS, MSPs are clusters of genes that are co-abundant in a 
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set of sample. In MSPs, genes that are constantly found are referred 
to as ‘core’, while inconsistently found genes are referred to as ‘acces-
sory’. Besides, ‘shared core’ genes are assumed to be conserved genes 
shared between phylogroups26. We found 4,912 pdARDs located 
on MSPs, with the majority being assigned to the core pangenome 
(83.4%, 4,099 out of 4,912) or shared between core-pangenomes 
(7.9%, 389 out of 4,912). This was different with MGE-associated 
genes27 with most not being found in MSPs (Fig. 2b).

Then, we investigated whether genes associated with gene mobil-
ity (transposases, conjugative elements and integrons) were present 
on the same contig than the pdARDs. We found that 7.9% (484 out 
of 6,095) of pdARDs were co-located with homologues of MGE-
associated genes. For pdARDs not found in MGS or in MSPs (n =​ 974), 
876 (89.9%) had no detectable MGE-associated genes in their vicinity.

Finally, we searched for pdARDs homologues (BLASTN >​97% 
identity over >​90% of the query length) in the GenBank database 

(2018 July 11). Only 538 pdARDs homologues were identified, 
with 49 being located on a plasmid and/or a phage (Supplementary 
Table  3). Among the 489 remaining pdARDs, 82 (16.8%) were 
found in multiple species, mainly (73.2%, 60 out of 82) from the 
same genus (Supplementary Table 4).

The phyla Bacteroidetes, Firmicutes and Tenericutes had the 
higher proportions of ARDs co-locating with MGEs (Fig. 2c). No 
ARD family was found to be enriched in MGE, with the exception 
of the Tet(X) family in which three out of nine (33.3%) predictions 
(two from Bacteroides fragilis and one from E. coli) were associated 
with transposases (Fig. 2d).

Distribution of pdARDs in human hosts’ microbiota
In the MetaHIT cohort (663 subjects), we found that subjects car-
ried pdARDs with a median relative abundance of 0.22% (range 
0.14–0.38%), with pdARDs from the Tet(M) family being the most 
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Fig. 1 | Illustration of the concept of PCM with a class A β-lactamase. a, Left: class A β​-lactamase protein structure (4EWF) obtained from the PDB 
database. Middle: a candidate protein (MC3.MG12.AS1.GP1.C14.G3 from Faecalibacterium prausnitzii) for class A β​-lactamase modelled with a reference 
class A β​-lactamase structural template. This protein had 26.5% amino acid identity with the closest reference class A β​-lactamase. Right: the same 
candidate protein (MC3.MG12.AS1.GP1.C14.G3) for class A β​-lactamase this time modelled with a negative reference template. The candidate MC3.MG12.
AS1.GP1.C14.G3 was predicted to be a class A β​-lactamase with 100% confidence by our model and later found to be functional after gene synthesis. 
b, Bar plot of the activity of the synthesized pdARDs against antibiotics with respect to the degree of confidence of the prediction (‘reference’ meaning 
that the protein shares more than ≥​95% amino acid identity with a functionally proven ARD, ‘good’ meaning a PCM score over 99% and a TM-Align 
TM score ≥​0.8, ‘fair’ meaning a PCM score between 50 and 80%). c, Number of predictions of ARDs from a 3.9 million gene catalogue of the intestinal 
microbiota19 using PCM, BLASTP21, ARG-ANNOT7, Resfinder9, DeepARG10, Resfams11 and the HMM-based method published by Berglund et al. for class B1 
β​-lactamases22. d, Violin plot of the maximal identity observed with a reference ARD for candidates predicted as ARDs (blue violin, n =​ 6,095) and those 
not predicted as ARDs (red violin, n =​ 3,982). The point depicts the median. The width of the violins depicts the distribution of pdARDs according to their 
maximal identity with a reference ARD. See Supplementary Table 2 for details about candidates sharing at least 40% identity with reference ARDs but 
that were not predicted as ARDs. Bla, β​-lactamase; AAC, aminoglycoside acetylase; ANT, aminoglycoside nucleotidyl transferase; APH, aminoglycoside 
phosphotransferase; DfrA, type A dihydrofolate reductase; Sul, dihydropteroate synthase; Erm, erythromycin ribosome methylase; Qnr, quinolone 
resistance; Fos, fosfomycin resistance; Van, D-Ala—D-Lac/Ser ligase (vancomycin resistance).
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abundant (0.07%) and those from class B3 β​-lactamases the least 
(median 0.004%). The average number of unique pdARDs genes 
detected per metagenome was 1,377 (range 258–2,367). Most 
pdARDs were shared across multiple subjects, 987 out of 6,095 
(16.2%) were found in at least 50% of individuals and only 106 out 
of 6,095 (1.7%) occurred uniquely in a single individual. All ARD 
families, with the exception of 16S rRNA methylases and AAC(2’) 
families, were found in more than 80% of individuals.

Then, we assessed whether subjects with no recent exposure 
to antibiotics could cluster according to their intestinal resistome. 
Based on the pdARDs family patterns, six clusters (that we named 
‘resistotypes’ by analogy with the enterotypes28) were detected using 
Dirichlet multinomial mixture models (Supplementary Fig.  11). 
The four most frequent resistotypes each represented around 20% 
of the cohort (the fifth and the sixth representing 8.7 and 7.5%, 
respectively). The three first resistotypes were characterized by a 
high abundance of Van ligases (Supplementary Fig. 12). Resistotype 
1 was enriched in ANT, while resistotype 3 was driven by Tet(M) 
and class C β​-lactamases. Resistotype 4 was enriched with Tet(X) 
and class A β​-lactamases and resistotype 6 in class B1 β​-lactamases 
and Sul. We observed that resistotypes, as determined by PCM, 
were highly connected to the composition of the microbiota, and 
that this effect was more pronounced than resistotypes determined 
from the results of BLASTP and Resfams (Fig. 3a). The resistotypes 
of the MetaHIT cohort were found to be associated with entero-
types (chi-square test, P =​ 5 ×​ 10–4, see Fig. 3b–d and Supplementary 
Fig. 13). Resistotypes 1 and 3 had higher gene richness and were 
associated with the Clostridiales-driven enterotype. Resistotype 4 
was more prevalent in enterotypes driven by Bacteroides (known 
to harbour Tet(X) and class A β​-lactamases) while resistotype 6 was 
very specific to the Prevotella enterotype (Fig.  3c,d). The relative 

abundance of pdARDs was observed to be positively correlated to 
the gene richness (Fig. 4a, Spearman’s rank correlation test ⍴ =​ 0.31, 
P =​ 5 ×​ 10–16). Conversely, we did not find any link between resisto-
types and body mass index, age or gender.

Dynamics of the pdARDs under various exposures to 
antibiotics
We investigated the abundances of pdARDs in subjects under vari-
ous exposures to antibiotics and healthcare environments. Three 
types of exposure were considered (see Methods for details): hos-
pitalization in a French hospital without receiving antibiotics, 
n =​ 15, chronic exposure (Spanish cystic fibrosis patients frequently 
exposed to antibiotics, n =​ 30) and short high-dose exposure 
through selective digestive decontamination (SDD; oral colistin, 
tobramycin, antifungal amphotericin and parenteral cefotaxime29) 
at admission in intensive care units in the Netherlands, n =​ 10). We 
again confirmed a positive correlation between relative abundance 
of pdARDs and gene richness among patients unexposed to anti-
biotics (Fig. 4b, Spearman’s rank correlation test ⍴ =​ 0.37, P =​ 0.01, 
see Methods). However, when all the samples were considered, 
including those with antibiotic exposure, this relationship was no 
longer present (Fig. 4c). Instead, the relative abundance of pdARDs 
was found to be higher in subjects with a chronic exposure than 
in subjects with no recent exposure (Fig.  4d, Wilcoxon unpaired 
test P =​ 1 ×​ 10–10), and gene richness was lower (Fig. 4e, Wilcoxon 
unpaired test P =​ 0.006) In particular, subjects with chronic expo-
sure carried more class B1-B2 β​-lactamases, AAC(6’), ANT, APH, 
Erm and DfrA with lower abundance of Sul (Supplementary Fig. 14). 
At the phylum level, we observed a decrease of Bacteroidetes and 
Verrucomicrobia and an increase of Firmicutes and Actinobacteria 
in patients chronically exposed to antibiotics (Supplementary 

Table 1 | Summary of the predictions of ARDs from a 3.9 million gene catalogue of the intestinal microbiota19 and of gene synthesis 
results 

Antibiotic resistance 
class

Number of 
references

Number of 
candidates

Number of 
predictions

Rate ARD 
predictions/
candidates (%)

Tested (%) N functional 
(%)

N not functional 
(%)

16S rRNA methylase 17 4 2 50.0 0 (0%) NA NA

AAC(2’) 5 15 3 20.0 0 (0%) NA NA

AAC(3)-I 7 53 15 28.3 2 (13.3%) 2 (100%) 0 (0%)

AAC(3)-II 12 81 81 100 5 (6.2%) 5 (100%) 0 (0%)

AAC(6’) 36 1,191 312 26.2 8 (2.6%) 6 (75%) 2 (25%)

ANT 29 158 67 42.4 3 (4.5%) 3 (100%) 0 (0%)

APH 30 430 279 64.9 4 (1.4%) 3 (75%) 1 (25%)

Class A β​-lactamase 682 402 267 66.4 14 (5.2%) 9 (64.3%) 5 (35.7%)

Class B1-B2 β​-lactamase 150 554 134 24.2 8 (6.0%) 6 (75%) 2 (25%)

Class B3 β​-lactamase 31 493 221 44.8 7 (3.2%) 5 (71.4%) 2 (28.6%)

Class C β​-lactamase 56 373 76 20.4 4 (5.3%) 4 (100%) 0 (0%)

Class D β​-lactamase 248 76 27 35.5 2 (7.4%) 2 (100%) 0 (0%)

DfrA 35 632 632 100 0 (0%) NA NA

Erm 58 873 781 89.5 0 (0%) NA NA

Fos 34 84 62 73.8 0 (0%) NA NA

Qnr 66 272 219 80.5 0 (0%) NA NA

Sul 33 357 353 98.9 0 (0%) NA NA

Tet(M) 72 2,824 1,682 59.6 13 (0.8%) 9 (69.2%) 4 (30.8%)

Tet(X) 12 42 9 21.4 1 (11.1%) 1 (100%) 0 (0%)

Van ligase 16 1,163 873 75.1 0 (0%) NA NA

N, number; NA, not applicable.
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Fig. 15). A total of 74 MGS were found to be differentially abun-
dant among subjects with or without chronic exposure to antibiotics 
(Supplementary Table 5).

This was different with subjects before and after SDD. A drastic 
loss of gene richness was measured for this group (Fig. 4e): from a 
mean of 295,919 genes to 95,286 (67.8% reduction, Wilcoxon paired 
test P =​ 0.006). Meanwhile, the relative abundance of pdARDs 
did not change significantly (Fig.  4d, P =​ 0.4). At the ARD fam-
ily level, we observed that some families decreased significantly: 
class C β​-lactamases (commonly found in Enterobacteriaceae and 
Pseudomonadaceae that are specifically targeted by SDD), Fos, 
Tet(X), APH and ANT (Supplementary Fig.  16). We then anal-
ysed the MGS at the phylum level and found that Proteobacteria, 
Actinobacteria, Firmicutes and Fusobacteria decreased significantly 
after SDD (Supplementary Fig. 17). A total of 358 MGS were found 
in this cohort and, despite the small number of subjects (n =​ 10), 
we found 133 MGS for which a significant variation was observed 
(Supplementary Table 6). We tested whether a high abundance of 
pdARDs could be protective against the antibiotics used in SDD, but 
found no association: the relative abundance of pdARDs before SDD 
was not linked to the gene richness after SDD. Hospitalization with-
out antibiotic therapy, that is, potential exposure to antibiotic-resis-
tant nosocomial pathogens without selective pressure, did not affect 
the gene richness nor the relative abundance of pdARDs (Fig. 4d,e).

Discussion
The results of this study support the concept that the majority of ARDs 
from the intestinal microbiota is hosted by commensal bacteria, and 
that their transfer between species (including to opportunistic patho-
gen) is rare30. We provide several findings to support this assumption: 
(1) we used a three-dimensional structure-based method to assess 
the diversity of ARDs in the intestinal microbiota and confirmed that 
ARDs predicted by PCM in the intestinal microbiota were distantly 
related to known ARDs; (2) the sensitivity and the specificity of the 
method was validated by gene synthesis of a subset of predictions and 
by benchmarking against various datasets (functional metagenomic 
of the soil microbiota, genomes and random protein catalogue); (3) 
the majority of pdARDs could be found in clusters of co-abundant 
genes (MGS and MSPs) in large cohorts of samples, while only a 
minority was found on plasmids, phages or in the vicinity of MGE-
associated genes; (4) we could stratify subjects into resistotypes that 
were connected to enterotypes; and (5) gene richness, otherwise asso-
ciated with a healthy status31, was positively correlated to the abun-
dance of ARDs in subjects not exposed to antibiotics.

Our results challenge the paradigm that ARDs of the intestinal 
microbiota are a threat to public health. As was previously dem-
onstrated for environmental samples18,32, ARDs tend to cluster 
according to the underlying microbial ecology of the ecosystem, 
suggesting that the vast majority of ARDs are fixed in their microbial  
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hosts and are not, or are very rarely, transferred. Our results show that 
the dominant intestinal microbiota is not a major conduit through 
which opportunistic pathogens can acquire ARDs. Nevertheless, we 
acknowledge that such transfer events have been reported14,15 and 
that consequences for public health can be important, as in the case of 
the vanB vancomycin resistance operon that is shared by Clostridium 
spp. and enterococci15. Understanding the mechanisms that can lead 
to the mobilization of ARDs in the intestinal microbiota, as well as a 
broader census of environmental reservoirs of ARDs (for example, 
sewage, livestock, the subdominant human intestinal microbiota) 
will continue to be an important area for future research.

We found that subjects cluster according to the composition of 
their resistome into six groups named resistotypes (as a reference 
to the previously described enterotypes28). These resistotypes were 
indeed connected to the enterotypes. Description of this underlying 
structure is interesting as one might hypothesize that a particular 
resistotype, or microbiota enriched with ARDs, might be affected 
to different degrees by antibiotic therapy. This has previously been 
observed for β​-lactamase-producing Bacteroides that can protect the 
microbiome against exposure to β​-lactams33. In patients undergo-
ing faecal microbiota transplantation, follow-up antibiotic therapy 
may be adjusted to favour engraftment of the donor microbiota34. 
Identifying donors with a resilient microbiota, due to a protective 
resistotype, could open perspectives for the optimization of the 
clinical implementation of faecal microbiota transplants.

Contrary to initial expectations, some pdARD families 
decreased in their abundance under antibiotic exposure, especially 
when patients were exposed to a combination of antibiotics (such as 
SDD). To resist to a combination of antibiotics, bacteria would need 
to be intrinsically resistant or to acquire an adequate combination 
of ARDs. The dynamics of ARDs under antibiotic exposure depend 
on various parameters: spectrum of the ARD (the level of resistance 
towards the antibiotic provided by the ARD), the expression level of 
the ARD and the presence of other resistance mechanisms (intrinsic 
or acquired). The large number of possible combinations of these 
factors can explain that, in some situations, a bacterium can be 
inhibited by antibiotics despite the presence of a putatively compat-
ible ARD. Alternatively, we cannot exclude that changes in pdARDs 
families could also be explained by simple taxonomic shifts that are 
not connected to the antibiotics studied.

The limitations of current techniques and of this study leave a 
number of important questions unresolved. As mentioned earlier, 
metagenomic sequencing provides information for the dominant 
fraction of intestinal bacteria, and so ARDs present in subdominant 
bacteria remain unobserved. Indeed, several ARDs found in oppor-
tunistic pathogens among the Enterobacteriaceae (for example, 
E. coli and Klebsiella pneumoniae) originate from other species in 
the same Proteobacteria phylum35. A recent study indeed cultured 
many Proteobacteria species that were not detected in metagenomic 
sequencing36. We cannot rule out that the subdominant bacteria, 
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which were not probed by metagenomic sequencing, could be an 
additional reservoir of ARDs. In terms of the clinical samples ana-
lysed, we cannot exclude that the differences between patients and 
controls may be resulting from confounding factors other than the 
antibiotic exposure.

The method we used to identify distantly related proteins is 
based on homology modelling and takes advantage of the obser-
vation that proteins sharing the same function have more similar 
structures than amino acid sequences37. Indeed, PCM could iden-
tify functional ARDs with amino acid identity below 20% to known 
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ARDs. Notably, PCM can only be used to predict the function of 
genes that are homologous to known ARDs, and therefore the iden-
tification of different classes of ARDs with no homology to known 
ARDs will still require functional screening. Besides, while PCM 
was validated in this study, it remains a prediction tool. While simi-
lar structures are usually indicative of similar function, this is not 
always the case and PCM can yield false positive results (as observed 
in the functional validation of synthesized pdARDs). Due to the 
scope of our study, gene synthesis validation was not performed for 
all ARD families, leaving open the possibility that not all pdARDs 
identified here truly have a role in antibiotic resistance.

In summary, we developed a method, PCM, which could unveil 
the diversity of ARDs in the intestinal microbiota. Employing this 
tool, we gathered evidence that the vast majority of the ARDs we 
predicted showed no sign of mobility and that their abundance was 
correlated to gene richness. Together with the protective trait of 
some intestinal bacteria against antibiotics33, our results suggest that 
the ARDs from the intestinal microbiota might be considered as our 
‘resilience allies’38 assuring the preservation of the healthy commen-
sal microbiota under antibiotic exposure.

Methods
Constitution of the databases of ARDs. We define as an ARD as in Martínez 
et al.39: a protein encoded by a gene that confers resistance to antibiotics when 
it is present or increases susceptibility to antibiotics when it is absent. This 
definition excluded housekeeping genes in which mutations can confer resistance 
to some antibiotics (such as topoisomerases in which mutations can lead to 
fluoroquinolone resistance) and genes involved in the regulation of antibiotic 
resistance genes. Also, we excluded efflux pumps such as Tet(A) or QepA as 
very few or no PDBs are available, presumably due to the difficulty to crystallize 
transmembrane proteins. Amino acid sequences of functionally characterized 
ARDs from the major antibiotic families used in human medicine (β​-lactams, 
aminoglycosides, tetracyclines, trimethoprim, sulfonamides, macrolides-
lincosamides-synergistines, fluoroquinolones, fosfomycin and glycopeptides)20,40 
were obtained from the following antibiotic resistance databases: Resfinder9, 
ARG-ANNOT7, the Lahey Clinic (http://www.lahey.org/studies/), RED-DB 
(http://www.fibim.unisi.it/REDDB/), Marilyn Roberts’s website for macrolides and 
tetracycline resistance genes (http://faculty.washington.edu/marilynr/) and from 
functional metagenomics studies5,6,41. When ARDs were provided as nucleic acids 
sequences, they were translated into proteins with Prodigal42. Non-redundancy 
of the reference ARDs was assessed with CD-HIT v4.5.743 (100% identity). 
The final database was manually curated to remove incomplete sequences and 
ARDs from families not considered in this work. The cluster of orthologous 
genes (COG) of each member of the reference dataset was assigned from the 
v3 eggNOG database44. In total, we collected 1,651 non-redundant amino acid 
sequences spanning 20 ARD families: class A β​-lactamases (Blaa), class B1-B2 β​
-lactamases (Blab1), class B3 β​-lactamases (Blab3), class C β​-lactamases (Blac), 
class D β​-lactamases (Blad), aminoglycoside acetyltransferases (AAC) AAC(2’), 
AAC(3)-I, AAC(3)-II and AAC(6’), aminoglycoside nucleotidyltransferases 
(ANT), aminoglycoside phosphotransferases (APH), 16S ribosomal RNA 
(rRNA) methylases, Tet(M), Tet(X), type A dihydrofolate reductases (DfrA), 
dihydropteroate synthases (Sul), erythromycin ribosome methylases (Erm), 
quinolone resistance proteins (Qnr), fosfomycin resistance proteins (Fos) and 
D-Ala–D-Lac/Ser ligases (Van) (Table 1). The recently described plasmid-mediated 
colistin resistance mcr-1 gene45 could not be included because of the lack of a 
reliable PDB template obtained by X-ray diffraction at the time of the study.

Interrogation of the catalogue for ARDs. We used a 3,871,657 million proteins 
catalogue previously published19. This catalogue was built from the metagenomic 
sequencing of the faeces of 396 subjects from Denmark and Spain. In brief, the 
3.9 million gene catalogue results from a non-redundancy filtering at 95% nucleic 
acid identity and 90% coverage: predicted genes from all samples (45.4 million in 
total) were clustered using BLAT by single linkage. Any two genes with greater 
than 95% identity and covering more than 90% of the shorter gene were clustered 
together. The contigs were originally built using SOAPdenovo (from the MOCAT 
pipeline46). We selected this catalogue over the more recent 9.9 million gene 
catalogue that was published during the course of this study27 because MGUs 
(including the MGS) had been determined only for the 3.9 million gene catalogue. 
The genes of the catalogue were translated into proteins using Prodigal42 using the 
–p meta option. For each ARD family, we searched for ARDs using the following 
three methods: (1) we built a hidden Markov model file for each ARD family 
and searched the catalogue with Hmmsearch (v3.1)47; (2) we performed a Smith–
Waterman alignment with a heuristic seed detection (BLASTP v.2.2.28+​)21; and (3) 
a rigorous Smith–Waterman search (SSearch v.36.3.6)48 with an E-value threshold 
of 1 ×​ 10–5. Only the hits with a size ranging from 75 to 125% of the mean amino 

acid size of the ARD family were further considered. All candidates were assigned 
a COG/NOG from eggNOG v344. When candidates were found in different ARD 
families (for example, a candidate could be a hit in class B1-B2 and class B3 β​
-lactamases), the candidate was assigned to the family for which it had the highest 
amino acid identity with the reference.

Negative references. For each ARD family, COGs/NOGs were attributed to 
reference ARDs. In parallel, the COGs/NOGs were attributed to the hits obtained 
during the initial steps of PCM (that is, the hits obtained by the BLASTP/SSearch 
and Hmmer search). In the list of candidates from a given ARD family, the COGs/
NOGs that were not found in the COGs/NOGs attributed to reference ARDs were 
assumed to be potential COGs/NOGs from false positive hits (Supplementary 
Fig. 2) as it reproduced the errors of functional assignment that were likely to 
be generated in sequence-only annotations. The amino acid sequences of the 
representative proteins from those COGs/NOG groups were obtained from the 
eggNOG v3 database and were added to the negative reference dataset. A manual 
curation step was performed to ensure that no references were included in the 
negative references.

Selection of structural templates. The list of protein structures that could be 
used as structural templates was downloaded (June 2014 and November 2014) 
from the PDB library (ref. 49, http://www.rcsb.org/). Using the reference dataset 
and the negative references described above, Hmmer47, BLASTP21 and SSearch48 
were performed on the PDB database with default settings and E values of 1 ×​ 10–5. 
Results were merged into a non-redundant PDB list. Both lists (references and 
negative templates) were manually curated to ensure that no references were 
represented in the negative templates dataset, and vice versa. If more than one PDB 
shared the same UniProt number (that is, if the structure of a protein has been 
determined on multiple occasions), we filtered the PDB files to include a unique 
structure per UniProt number using the following positive criteria: absence of 
ligand, completeness of the protein and high resolution.

PCM. The concept of PCM is shown in Supplementary Figs. 1–3 and the 
framework is available at https://github.com/aghozlane/pcm. The concept of 
leveraging the protein structure in complement to its amino acid sequence was 
motivated by the fact that proteins sharing common functions would be more 
conserved in the active site that cannot be observed by the analysis of protein 
sequence alignments37. Each candidate was subjected to homology modelling with 
reference templates and negative templates, generating two three-dimensional 
structures for each candidate (Fig. 1a). The main idea is that if a sequence is truly 
functionally related to the reference fold, its model must be significantly different 
from the ones obtained with the negative structural template. Homology modelling 
was performed by PCM in six main steps (example in Supplementary Fig. 3):

	(1)	 Three structural templates were identified by BLASTP (among the lists pro-
duced as described above) that shared the highest amino acid identity with 
the candidate protein.

	(2)	 A multiple sequence alignment was performed between the candidate and the 
three templates sequences using Clustalo50.

	(3)	 A prediction of the secondary structure was performed using psipred (v3.5)51. 
The residues predicted to fold in helix or in beta-sheet conformation with a 
level of confidence higher or equal to seven were considered to constrain  
the model.

	(4)	 A comparative modelling was performed with the MODELLER program-
ming interface52. MODELLER automatically calculates a model by satisfac-
tion of spatial restraints such as atomic distance and dihedral angles in the 
target sequence, extracted from its alignment with the template structures. 
Stereo-chemical restraints for residues are obtained from the CHARMM-22 
molecular force field and statistical preferences obtained from a representa-
tive set of known protein structures.

	(5)	 The best model out of a hundred produced by MODELLER (based on the 
Dope score) was considered for structure assessment analysis using ProQ53 
and Prosa-web54. The Dope score (Modeller), z-score (Prosa), MaxSub and 
Levitt-Gerstein (LG) score (ProQ) are statistical potential variables used 
to predict the model quality. Both ProQ and Prosa-web are trained on the 
PDB to determine real protein configuration and they estimate the energetic 
farvourability of the conformation of each residue in the model.

	(6)	 The best model was aligned with the reference set of structures using TM-
Align17 and MAMMOTH55. The r.m.s.d (TM-Align), z-score (MAMMOTH), 
TM score (MAMMOTH, TM-Align) estimates the degree of superposition of 
the residue between two structures.

The differences (delta) between the scores determined from each modelling 
path (with the reference set or the negative set) were calculated and used for the 
PCM machine-learning program (see below).

For one given candidate, the PCM whole process took an average of 8 CPU-
hours (30 min on 16 CPUs).

Taxonomic assignation. The pdARDs were taxonomically assigned by combining 
the results obtained from BLASTN against the National Center for Biotechnology 
Information (NCBI) Genomes database (minimal 70% identity and 80% coverage), 
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a BLASTN against the IMOMI in-house database (minimal 85% identity  
and 90% coverage) and the taxonomy of the metagenomic unit whenever 
applicable. The lowest taxonomic rank from the results of the three methods  
was assigned to the pdARD.

Statistical analysis. To discriminate reference proteins from negative references, 
we used model quality predictors and alignment scores (inferred from the semi-
automatic pipeline described above) and developed a custom pipeline in R (R Core 
Team, 2013, http://www.R-project.org) to perform the classification. The LASSO 
penalized logistic regression56 implemented in LIBLINEAR57 was used to compute 
the classifier. Ten-fold stratified cross validation (re-sampled 100 times to obtain 
more stable accuracy estimates) was used to partition the data into a training 
and test sets. The LASSO hyper-parameter was optimized for each model in a 
nested five-fold cross validation on the training dataset using the area under curve 
as the model selection criterion. From the 100 times re-sampled ten-fold cross 
validation, receiver operating characteristic analysis was used to evaluate model 
performance using the median area under curve. Coefficients extracted for each 
modelling or alignment score were also evaluated for their stability throughout 
the computed models. The PCM score was the ratio (expressed as a percentage) 
between the numbers of time a candidate was classified as a reference and the 
number of bootstraps. Predicted ARDs were candidates with a PCM score ≥​50% 
and a TM score given by TM-Align ≥​0.517. To control how structural modelling 
brought additional information compared to amino acid sequence alignment only, 
we built a logistic regression model based on T-coffee alignment score (R glm, 
ten-fold stratification, re-sampled 100 times). We then compared the two classifier 
models used for PCM and for T-coffee alignment based on the reference set (see 
Supplementary Information).

Validation of the method with a functional metagenomic dataset. The 
performance of PCM was assessed by analysing the data in Forsberg et al., where 
the ARD content of different North American soils was analysed using functional 
metagenomics18. The screening of the clones was performed on aztreonam, 
chloramphenicol, ciprofloxacin, colistin, cefepime, cefotaxime, cefoxitin, 
D-cycloserine, ceftazidime, gentamicin, meropenem, penicillin, piperacillin, 
piperacillin-tazobactam, tetracycline, tigecycline, trimethoprim and trimethoprim-
sulfamethoxazole (cotrimoxazole). Here, we collected the nucleotide sequences 
of the inserts deposited on GenBank (KJ691878–KJ696532). The sequence 
translation of the open reading frames was performed by Prodigal (using default 
parameters)42. A total of 4,654 insert sequences were collected, in which 12,904 
amino acid sequences were predicted. We then searched for ARDs belonging to 
the relevant ARD families according to the antibiotics used for the screening of 
the clones: β​-lactamases (all classes), APH, ANT, AAC(2’), AAC(3)-I, AAC(3)-
II, AAC(6’), 16S rRNA methylases, Tet(M), Tet(X), Qnr, Sul and DfrA, using the 
Supplementary Table 2 of the Forsberg et al. paper. Inserts with no putative ARDs 
(according to the annotation of the gene) were removed (n =​ 269). Inserts selected 
on cycloserine (n =​ 868) and chloramphenicol (n =​ 129) were not considered here 
because they were not included in the 20 ARD families in this work. Fourteen 
inserts that contained more than one putative ARD that could be identified to 
confer resistance to the antibiotic used for the screening (for example, two β​
-lactamases) were not considered in this analysis. An additional 1,658 inserts 
containing no putative ARDs or a putative ARDs that did not confer resistance to 
the antibiotic used for selection were discarded and so were 294 inserts containing 
efflux pumps, as these were not considered in this study. The resulting validation 
set contained 1,423 inserts (with resistance genes) for a total of 3,778 genes. To 
compare the outcome of PCM with other tools, the results for class B1-B2 and B3 β​
-lactamases generated by PCM were merged into one class B β​-lactamases group as 
other tools do not separately consider the different class B β​-lactamases.

In total, 1,390 unique hits were found during the initial screen of PCM, of 
which 1,374 were predicted as ARDs (Supplementary Table 7). Among the 33 
ARDs not included for PCM, 12 were not considered because they were undersized 
and ten because they were oversized. No hits for AAC(2’), ANT, Qnr or Sul were 
found. The mean identity shared with reference ARDs was 37.6% (range 18.8–
94.5). Overall, the sensitivity was 96.6%, with no false negative. In comparison, 
only eight ARDs would have been identified by a conventional method 
(combination of Hmmsearch, BLASTP and SSearch with both a minimal identity 
with a reference ARD and coverage over or equal to 80%). Conversely, Resfams11 
that was specifically designed to identify ARDs from functional metagenomic 
datasets showed a similar sensitivity to PCM with the identification of 1,346 ARDs 
out of 1,423 (94.6% sensitivity).

Validation of the method for incomplete genes. The 3.9 million gene catalogue 
harbours 41.4% of genes that are predicted to be incomplete either on the 5’, the 
3’ or both extremities19. As the size parameter is crucial for homology modelling, 
we tested to what extent the prediction of incomplete ARDs by PCM could remain 
valid. We selected 12 reference class A β​-lactamases (BlaZ, CblA-1, CepA-29, 
CfxA2, CfxA6, CTX-M-8, KPC-10, OXY-1, PER-1, SHV-100, TEM-101 and VEB-
1) and we then iteratively removed 5% of the amino acid sequence at both edges 
to obtain 16 bi-directionally trimmed candidates (from 100 to 25%) per reference 
ARD. Candidate genes were chosen to span the diversity of known β​-lactamases, 

but the main representative β​-lactamase of the subfamily (for example, TEM-1 for 
TEM β​-lactamase) was not necessarily chosen. Note that SHV-100 has a slightly 
longer sequence (13 amino acid duplication) than other SHV. A total of 192 PCM 
experiments were performed: we observed that the 12 references were correctly 
predicted as ARDs when at least 40% of the protein remained (that is, 30% trim 
from each extremity, Supplementary Fig. 4). Thus, we are confident that with the 
75% size threshold used in this study (a maximum of 25% removed from one 
edge), no misclassification due to an incomplete gene would be expected.

Gene synthesis. We selected 71 pdARDs from 12 ARD families: 14 from class 
A β​-lactamases, eight from class B1-B2 β​-lactamases, seven from class B3 β​
-lactamases, four from class C β​-lactamases, two from class D β​-lactamases, 2 
AAC(3)-I, 5 AAC(3)-II, 8 AAC(6’), 3 ANT, 4 APH, 13 Tet(M) and 1 Tet(X)) for 
gene synthesis and sub-cloning into E. coli to test the decrease of susceptibility to 
antibiotics. For β​-lactamases, a chromogenic test (nitrocefin) was used to detect 
function. Minimal inhibitory concentrations (MIC) were determined by E-Test 
strips (bioMérieux, Marcy-l’Etoile, France) in duplicate. A pdARD was considered 
to have an activity against an antibiotic (tobramycin for AAC(3)-I, AAC(3)-II, 
AAC(6’) and ANT; kanamycin for APH and tetracycline for Tet(M)) when the 
MIC of the clone was above the MIC of a clone harbouring the plasmid without a 
synthesized gene or when the colour of the broth containing nitrocefin turned red, 
in the case of β​-lactamases. We used the plasmid vector pET-22b+​ (embedding 
a β​-lactamase-encoding gene) for pdARDs hypothesized to confer resistance to 
aminoglycosides and the pET-26b (embedding a gene conferring resistance to 
kanamycin) for the other pdARDs. The selection of the pdARDs for synthesis was 
performed as follows: references (n =​ 12), pdARDs that shared a high identity with 
known ARDs (≥​95% amino acid identity and ≥​80% coverage with a reference 
ARD); good predictions (n =​ 41), pdARDs with the highest degree of confidence 
for the prediction (PCM score >​99%, TM score TM-Align >​0.9 and <​70% amino 
acid identity with a reference ARD); fair predictions (n =​ 18): pdARDs with the 
lowest degree of confidence for the prediction (PCM score <​80%, TM score TM-
Align <​0.8 and <​70% amino acid identity with a reference ARD).

Signatures of MGEs nearby the predictions of ARDs. We searched for MGE-
associated proteins encoded by genes located in the same contigs as pdARDs. The 
3.9 million gene catalogue results from a non-redundancy filtering at 95% for the 
genes19, but to identify the contigs on which pdARDs were identified, we needed to 
return to the redundant catalogue (that is, the non-dereplicated catalogue of genes) 
and identified homologues sharing 95% nucleic acid identity with the pdARDs. 
By doing so, we could identify contigs (n =​ 16,955) carrying at least one pdARD. 
The mean size of the contigs was 19,711 base pairs (minimum 500, maximum 
461,981, median 8,513). In total, the 16,955 contigs contained a total of 908,888 
genes after the subtraction of pdARDs. The 908,888 genes were then translated 
into proteins with Prodigal42 and queried for IS elements using BLASTP (query 
size threshold, 150 amino acids; E value, 1 ×​ 10–30; identity threshold, 40%) against 
the ISfinder database58. Conjugative elements were queried among the same gene 
set (n =​ 908,888) with Conjscan59, using the default parameters and the filters 
recommended by the authors (best E <​ 0.001 and sequence coverage of at least 
50%). Most proteins belonging to the type IV secretion systems (T4SS), which are 
involved in conjugation, are ubiquitous in that they have numerous homologues. 
Hence, when searching for conjugation proteins in a 3.9 million protein catalogue, 
there would be a high risk of false positives. Accordingly, the co-location of hits 
was deemed crucial. A conjugative T4SS is made from:

•	 a protease (VirB4)
•	 a second coupling protein protease (t4cp)
•	 a relaxase (MOB)
•	 a proteic complex (MPF) composed of at least ten proteins

To identify a T4SS on a contig, we required presence of at least one virB4 hit, 
a t4cp1 or t4cp2 hit, a MOB hit and a certain number of MPF hits. All hits must 
co-localize. A MOB element alone can mobilize a neighbouring gene (such as an 
ARD-encoding gene) via other T4SSs. However, in our dataset the short length of 
contigs led us to adapt those parameters (following the recommendations of the 
developers of the Conjscan software). Besides the MOB element, we considered 
that the presence of two hits from the same family (for example, T_virB6 and 
T_virB8, or B_traF and B_traH) or virB4+​ any hit from another family on the same 
contig as a pdARD was a strong indication of the presence of mobility associated 
elements. Integrons were identified using IntegronFinder60 on the 16,955 contigs 
using default parameters.

We also searched for pdARDs in MSPs26 obtained from the 9.9 million 
intestinal gene catalogue27 using BLASTN with a 95% identity threshold over 90% 
of the query.

Finally, we searched for homologues of pdARDs in GenBank with 97% identity 
threshold over 90% of the query. We found 820 out of 6095 pdARDs (13.5%) that 
aligned against 139,413 GenBank entries. We filtered hits corresponding to a virus, 
a plasmid or a vague taxonomic affiliation by considering the following terms: 
uncultured bacterium, artificial, unidentified, uncultured organism, environmental 
samples and metagenome.
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Distribution of the pdARDs in the MetaHIT cohort (n = 663 subjects). pdARDs 
profiles were obtained from the abundance matrix of the 3.9 million genes as 
described in Nielsen et al19. The ‘reads per kilobase per million mapped read’ method 
was used to normalize the mapping counts. After summing the relative abundances 
of pdARDs genes belonging to the same family, Dirichlet multinomial mixture 
models were used to find ARD clusters (that is, resistotypes) using the Dirichlet 
multinomial R package. The same method was applied to detect gut microbiota 
clusters (that is, enterotypes)61. The Laplace criterion was used to define optimal 
number of clusters as described on oral and faecal microbial dataset62. By analogy 
with the term enterotype, we chose to name a cluster of subjects on the basis of 
their similarity of their faecal relative abundance of pdARDs a resistotype. The chi-
squared test was used to assess the associations between resistotypes and enterotypes. 
Rarefaction analysis at 1 million reads was done to determine the gene richness per 
samples. RLQ analysis63 was conducted to assess the associations between the relative 
abundances of pdARDs, their characteristics (family, size of the cluster of associated 
genes) and those of subjects (enterotypes, resistotypes, gender, body mass index, age). 
Of note, we excluded the patients suffering from inflammatory bowel disorders from 
this analysis. Co-inertia analysis was conducted to assess the associations between 
microbiota β​-diversity and pdARDs profiles. Microbiota composition was assessed 
using MGS (see below) relative abundance and β​-diversity by square root Jensen–
Shannon Divergence. A principal coordinate analysis was done on Jensen–Shannon 
Divergence distance matrix and a principal component analysis was done on ARD 
profiles. Both analyses were then subjected to co-inertia analysis and Monte Carlo 
permutation was done to assess to robustness of shared inertia.

Constitution of cohorts of patients with various antibiotic exposures. We 
included three cohorts of patients with various exposures to antibiotics.

Hospitalization without antibiotics. A total of 31 patients with no exposure to 
antibiotics or hospitalization during the three preceding months and admitted to 
the medicine ward of the Beaujon University Teaching Hospital (Clichy, France) 
were included and provided a faecal sample at admission. Among them, 16 also 
provided a stool sample at discharge. One patient received antibiotics between 
admission and discharge and was not further considered for the analysis. In total, 
15 patients could provide a stool sample soon after admission (T0) and at discharge 
(T1). The mean time between T0 and T1 samples was 10.7 days. The mean age of 
patients was 67.8 years old and the gender ratio (M/F) was 1.3. All patients gave 
informed consent. This work was approved by the French National Institutional 
Review Board (IRB 00008522) and registered at clinicaltrials.gov (NCT02031588).

Chronic exposure. Thirty cystic fibrosis patients were enroled at the Cystic Fibrosis 
Unit of the Ramón y Cajal Hospital in Madrid. One faecal sample was collected at 
the occasion of a consultation. All subjects for this study were provided a consent 
form describing the study and providing sufficient information for subjects to 
make an informed decision about their participation as faecal donors in this 
study. Cystic fibrosis is a genetic disease that leads to an impairment of the lung 
function through an uncontrolled production of mucus. The consequence is 
chronic bacterial colonization, resulting in deleterious reactive fibrosis of the lung. 
Bacterial load is controlled by chronic exposure to antibiotics (home-therapy, 
mostly oral and inhaled in our cohort), which has resulted in significant life 
prolongation, and the near-absence of hospital care. Hence, the cystic fibrosis 
patients had been exposed to various antibiotics during the five years before the 
faecal sample was collected:

•	 β​-lactams (ampicilln, amoxycillin, cloxacillin, piperacillin-tazobactam, 
cefepime, ceftriaxone, ceftazidime, cefditoren, meropenem): 25 out of 30

•	 Macrolides (azithromycin, clarithromcyin): 17 out of 30
•	 Colistin: 21 out of 30
•	 Fluoroquinolones (ciprofloxacin, levofloxacin, moxifloxacin): 26 out of 30
•	 Cotrimoxazole: 14 out of 30
•	 Glycopeptides (vancomycin): 1 out of 30
•	 Aminoglycosides (amikacin, tobramycin): 12 out of 30
•	 Tetracyclines (doxycycline, minocycline): 2 out of 30
•	 Linezolid: 3 out of 30
•	 Rifampin: 1 out of 30
•	 Fosfomycin: 5 out of 30

On average, cystic fibrosis patients had been exposed to 5.9 different antibiotics 
and had an average of 12.2 antibiotic courses during the five years before the sample 
was taken. The mean age was 36.3 years old and the gender ratio (M/F) was 1.3. 
The consent form was obtained before that subject provided any faecal sample for 
the study and was signed by the subject or legally acceptable surrogate, and the 
investigator-designated research professional obtaining the consent. According to the 
National Spanish laws the study did not require the approval of the Ethics Committee. 
Nonetheless, the Ethics Committee of the Hospital Ramón y Cajal guaranteed that the 
study was performed done according to the good clinical practices guidelines.

Short high-dose exposure. Short high-dose exposure consists of administering a 
mixture of topical and parenteral antibiotics and antifungal agents to a patient at 

admission to eliminate potential bacterial and fungal pathogens. SDD has been 
shown to significantly reduce mortality in the intensive care unit29 and is now 
part of standard care for intensive care patients in the Netherlands. To assess the 
effect of SDD on the intestinal microbiota, we analysed the faecal samples from 
13 patients admitted to the intensive care unit of the University Medical Centre of 
Utrecht (Netherlands). The samples were collected at admission (T0, first sample 
passed after admission) and after SDD (T1). Among the 13 patients for whom a 
faecal sample could be obtained at T0, 10 could provide a faecal sample at T1. The 
mean age was 59.9 years old and the gender ratio (M/F) was 0.5. SDD consisted 
of 4 days of intravenous cefotaxime and topical application of tobramycin, colistin 
and amphotericin B. Additionally, a subset of samples (n =​ 4) from this cohort 
was cultured in a brain-heart infusion broth overnight in ambient atmosphere at 
37 °C. The protocol for the collection of stool samples was reviewed and approved 
by the institutional review board of the University Medical Centre of Utrecht 
(Netherlands) under number 10/0225. Informed consent for faecal sampling 
during hospitalization was waived. Written consent was obtained for the collection 
of faecal samples after hospitalization.

Metagenomic sequencing and mapping. Total faecal DNA was extracted64,65 and 
sequenced using SOLiD 5500 wildfire (Life Technologies) resulting in a mean of 
68.5 million sequences of 35-base-long single-end reads. High-quality reads were 
generated with quality score cut-off >​20. Reads with a positive match with human, 
plant, cow or SOLiD adaptor sequences were removed.

Filtered high-quality reads were mapped to the MetaHIT 3.9 million gene 
catalogue19 using the METEOR software66. The read alignments were performed in 
colourspace with Bowtie software (version 1.1.0)67. Uniquely mapped reads (reads 
mapping to a single gene from the catalogue) were attributed to the corresponding 
genes. Shared reads (mapping different genes of the catalogue) were attributed 
according to the ratio of their unique mapping counts, as following: as a read can 
map on different genes of the catalogue, the abundance of a gene G(Ag) depends on 
the abundance of uniquely mapped reads (Au), that is, reads that map only to the 
gene G and on the abundance of N shared reads (As) that aligned with M genes in 
addition to the gene G:

= +A A Ag u s

where

∑=
=

A C
i

N

os
1

i

For each shared read, the gain of abundance corresponds to a coefficient Co that 
takes in account the total number of uniquely mapped reads on the M genes:

=
+ ∑ =

C
A

A A
o

j
M
u

u 1 u
i

j

For instance, if a gene G is mapped by ten reads that only map to it (unique 
reads), but also with one read that also align on a gene M that was mapped by five 
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To decrease technical biases due to different sequencing depth, samples with at 
least 5 million mapped reads were downsized to 5 million mapped reads (random 
sampling of 5 million mapped reads without replacement) using R package 
momr31. The abundance of each gene in a sample was then normalized  
by dividing the number of reads that mapped to the gene (Ag) by the gene 
nucleotide length and by the total number of reads from the sample. The resulting 
set of gene abundances, termed a microbial gene profile, was used to estimate the 
abundance of MGS19.

Gene richness analysis. Microbial gene richness was calculated by counting the 
number of genes mapped at least once for a given sample. Gene richness was 
calculated using R package momr for samples where 5 million or more reads had 
been mapped to the 3.9 million gene catalogue.

MGS. MGS are co-abundant gene groups with more than 700 genes and can be 
considered part of complete bacterial species genomes. 741 MGS were delineated 
from 396 human gut microbiome samples19. In this study, the relative abundance 
of MGS was determined as the median abundance of 90% of the genes composing 
each cluster, meaning that the 10% genes with the lowest abundance for each MGS 
were not considered for the calculation of the abundance of the MGS. Typically, 
these genes correspond to genes with zero count, to accessory genes (hence their 
detection is not constant) or to genes that are not detected because of insufficient 
sequencing depth. The MGS taxonomical annotation was updated by sequence 
similarity using NCBI BLASTN, when more than 50% of the genes matched the 
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same reference of NCBI database (December 2014 version) at a threshold of 95% of 
identity and 90% of gene length coverage to get the species annotation19.

Statistical analysis for the distribution of pdARDs and MGS between groups. 
Statistical analyses for the differential abundances of pdARDs and MGS were 
performed using the application SHAMAN68(http://shaman.pasteur.fr/). Data 
are available at (https://github.com/aghozlane/evotar), with the graphical 
representations using the abundances from the matrix rarefied at 5 million reads. 
The relationship between richness and the abundance of ARDs was assessed by the 
Spearman correlation test. The statistical threshold for significance was set at a P 
value of 0.05.

Code availability. The PCM code can be found at https://github.com/aghozlane/pcm.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The 6,095 pdARDs PDB files, nucleotide and amino acid sequences can be 
downloaded from http://mgps.eu/Mustard/. The 3.9 million gene catalogue and the 
MGS database are accessible at https://www.cbs.dtu.dk/projects/CAG/. The reads 
from the clinical samples generated in this study are available under the accession 
number PRJEB27799 at the European Nucleotide Archive.
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Nature Research wishes to improve the reproducibility of the work that we publish. This form is intended for publication with all accepted life 
science papers and provides structure for consistency and transparency in reporting. Every life science submission will use this form; some list 
items might not apply to an individual manuscript, but all fields must be completed for clarity. 
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    Experimental design
1.   Sample size

Describe how sample size was determined. Because of the very exploratory aspect of the resistome analysis (with respect to 
the number of variables to test), no a priori hypothesis could be made of the time 
of inclusion of the patients. 

2.   Data exclusions

Describe any data exclusions. First cohort (France): patients for whom a faecal sample was not collected at 
admission and at discharge (n=5) were excluded. Moreover, one patients with 
antibiotic exposure between admission and discharge was excluded from the 
analysis (n=1). 
In the second group (cystic fibrosis), no patient was excluded. 
In the third group, patients for whom a faecal sample could not be obtained after 
selective digestive decontamination were excluded from the analysis (n=3). 

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

No experimental data besides the beta-lactamase hydrolysis test and the 
determination of the minimal inhibitory concentrations (MIC), perfomed in 
duplicates.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

The studies were cohort studies in each countries, without subgroups. Patients 
were prospectively enrolled without randomization.

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

The analysis of the resistomes of patients was a post-hoc analysis. The group 
allocation was not blinded to the analysts. 

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

We used the following bioinformatic tools:  
- Bowtie software (version 1.1.0) 
- Hmmsearch (v3. 1) 
- Blastp (v. 2. 2. 28+)  
- SSearch v. 36. 3. 6) 
- Clustalo (v1.2.4) 
- psipred (v3.5) 
- MODELLER (v9.15) 
- ProQ (v1.2) 
- Prosa-web (https://prosa.services.came.sbg.ac.at/prosa.php) 
- Mammoth (v1.2) 
- TmAlign (version 2015) 
- Compogen (https://github.com/aghozlane/compogen) 
- IntegronFinder v1.5.1 
- deeparg-ss (revision 6d10ae11a4284a9bb0a33eb2e199b94ffae0bb2a) 
- jvenn (http://jvenn.toulouse.inra.fr/app/index.html) 
- SHAMAN (http://shaman.pasteur.fr/) 
- METEOR 0.1 (http://mgps.eu/index.php?id=ibs-tools)

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

The 3.9M gene catalogue is available at http://www.cbs.dtu.dk/databases/CAG/ 
The sequences and structures of the predicted antibiotic resistance genes have 
been published at http://mgps.eu/Mustard/ 
The source code of pairwise comparative modelling is available at https://
github.com/aghozlane/PCM 
The data for the statistical analysis has been made available at https://github.com/
aghozlane/evotar.  
The 3.9 million gene catalogue and the metagenomic species database are 
accessible at https://www.cbs.dtu.dk/projects/CAG/.  
The reads from the clinical samples generated in this study are available under the 
accession number PRJEB27799 at the European Nucleotide Archive (ENA). 
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9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies were used.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used.

b.  Describe the method of cell line authentication used. No eukaryotic cell lines were used.

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

No eukaryotic cell lines were used.

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No commonly misidentified cell lines were used. 

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

No animals were used.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

The clinical information about patients used in this study are: age, gender, 
antibiotic consumption and inclusion site. 


	Prediction of the intestinal resistome by a three-dimensional structure-based method

	Prediction of ARDs in the intestinal microbiota

	Taxonomic distribution of ARDs

	Location of the pdARDs and association with MGEs

	Distribution of pdARDs in human hosts’ microbiota

	Dynamics of the pdARDs under various exposures to antibiotics

	Discussion

	Methods

	Constitution of the databases of ARDs
	Interrogation of the catalogue for ARDs
	Negative references
	Selection of structural templates
	PCM
	Taxonomic assignation
	Statistical analysis
	Validation of the method with a functional metagenomic dataset
	Validation of the method for incomplete genes
	Gene synthesis
	Signatures of MGEs nearby the predictions of ARDs
	Distribution of the pdARDs in the MetaHIT cohort (n = 663 subjects)
	Constitution of cohorts of patients with various antibiotic exposures
	Hospitalization without antibiotics
	Chronic exposure
	Short high-dose exposure

	Metagenomic sequencing and mapping
	Gene richness analysis
	MGS
	Statistical analysis for the distribution of pdARDs and MGS between groups

	Code availability
	Reporting Summary

	Acknowledgements

	Fig. 1 Illustration of the concept of PCM with a class A β-lactamase.
	Fig. 2 MGEs and pdARDs.
	Fig. 3 Association between resistotypes, enterotypes, MGS and pdARDs profiles in the 663 individuals from the MetaHIT cohort.
	Fig. 4 Dynamics of the pdARDs under various exposures to antibiotics.
	Table 1 Summary of the predictions of ARDs from a 3.




